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1.1 默认约定 

一些符号说明： 

在本专题（∑の艺术）中， 

所有表示优先级运算顺序的括号 

均用小括号表示； 

函数自变量用中括号限定； 

≔表示左边的记号由右边定义； 

=:同理； 

如不加特殊说明，所有出现的𝑛𝑛 ∈ N∗; 

对𝑏𝑏 − 𝑎𝑎 ∈ 𝐍𝐍，定义𝐙𝐙[𝑎𝑎, 𝑏𝑏]为{𝑎𝑎,𝑎𝑎 + 1, . . . , 𝑏𝑏}, 

特别地，当𝑎𝑎 = 𝑏𝑏时规定𝐙𝐙[𝑎𝑎, 𝑏𝑏] ≔ {𝑎𝑎}; 

n维向量 𝒌𝒌 ≔ (𝑘𝑘1,𝑘𝑘2, … ,𝑘𝑘𝑛𝑛) 

当对∀𝑡𝑡 ∈ 𝐙𝐙[1,𝑛𝑛]，有𝑏𝑏𝑡𝑡 − 𝑎𝑎𝑡𝑡 ∈ 𝐍𝐍时， 

定义𝐙𝐙[𝒂𝒂,𝒃𝒃] = {𝒌𝒌|𝑘𝑘𝑡𝑡 ∈ 𝐙𝐙[𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡], t ∈ 𝐙𝐙[1,𝑛𝑛]} 

 

标准形式的求和运算如下定义： 

定义 1.1.1 标准求和形式 

�𝑓𝑓[𝑘𝑘]
𝑏𝑏

𝑘𝑘=𝑎𝑎

≔ 𝑓𝑓[𝑎𝑎] + 𝑓𝑓[𝑎𝑎 + 1] +⋯+ 𝑓𝑓[𝑏𝑏] 

其中𝑏𝑏 − 𝑎𝑎 ∈ 𝐍𝐍, 𝑎𝑎, 𝑏𝑏不能由𝑘𝑘1定义; 

𝑓𝑓[𝑥𝑥]任意选取但必须使每一项有意义.   



类似地，如下定义标准型求积运算： 

定义 1.1.2 标准求积形式 

�𝑓𝑓[𝑘𝑘] ≔ 𝑓𝑓[𝑎𝑎]𝑓𝑓[𝑎𝑎 + 1] …𝑓𝑓[𝑏𝑏]
𝑏𝑏

𝑘𝑘=𝑎𝑎

 

其中 𝑏𝑏 − 𝑎𝑎 ∈ 𝐍𝐍,𝑎𝑎, 𝑏𝑏不能由𝑘𝑘1定义; 

𝑓𝑓[𝑥𝑥]任意选取但必须使每一项有意义. 

 

解释说明： 

1. 𝑏𝑏 − 𝑎𝑎 ∈ 𝐍𝐍表示𝑏𝑏 > 𝑎𝑎且相差某个整数, 

注意𝑎𝑎,𝑏𝑏可以同时不为正整数. 

2. 在满足条件的情况下，𝑎𝑎,𝑏𝑏可任意选取， 

但不可与𝑘𝑘1相关，因为在求和之前不存在𝑘𝑘1, 

而𝑎𝑎, 𝑏𝑏必须给定。 

3. 𝑎𝑎,𝑏𝑏虽然不能和𝑘𝑘1相关， 

但是可以是外部参数的函数. 

因此，𝑎𝑎, 𝑏𝑏仍然是可变的。 



1.2 换元定理 

我们想通过换元对被求和式做一些简化， 

找个函数𝑔𝑔令𝑔𝑔[𝑘𝑘1] = 𝑘𝑘2 (𝑘𝑘2是还未使用过的变量) 

但是𝑔𝑔的选取并不是任意的，一个简单的例子是 

� �𝑘𝑘1

4

𝑘𝑘1=1

≠��𝑘𝑘1
2

2

𝑘𝑘1=1

= � 𝑘𝑘1

2

𝑘𝑘1=1

 

究其原因是求和时候少了几项。 

因此条件一是𝑘𝑘1每自增 1，𝑘𝑘2也相应增加 1 或减少 1. 

同时𝑔𝑔的选取当然得使求和有意义， 

对于同增的情况，我们有以下定理： 

 

定理 1.2.1 基础换元定理 

设函数𝑔𝑔满足以下条件： 

1°∀𝑥𝑥, 𝑦𝑦 ∈ 𝐙𝐙[𝑎𝑎,𝑏𝑏],𝑔𝑔[𝑥𝑥] − 𝑔𝑔[𝑦𝑦] = 𝑥𝑥 − 𝑦𝑦 
2°对𝑡𝑡 ∈ 𝐙𝐙[𝑎𝑎,𝑏𝑏],𝑔𝑔−1[𝑡𝑡] ∈ �𝑥𝑥�𝑓𝑓[𝑥𝑥]有意义� 

 

则有𝑔𝑔[𝑥𝑥] = 𝑥𝑥 + 𝑚𝑚,𝑚𝑚 ∈ 𝑅𝑅,𝑥𝑥 ∈ 𝐙𝐙[𝑎𝑎,𝑏𝑏],且 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓�𝑔𝑔−1[𝑘𝑘2]�
𝑔𝑔[𝑏𝑏]

𝑘𝑘2=𝑔𝑔[𝑎𝑎]

= � 𝑓𝑓[𝑘𝑘2 − 𝑚𝑚]
𝑏𝑏+𝑚𝑚

𝑘𝑘2=𝑎𝑎+𝑚𝑚

 

 

 



证明： 

∀𝑥𝑥 ∈ 𝐙𝐙[𝑎𝑎,𝑏𝑏],𝑔𝑔[𝑥𝑥]− 𝑔𝑔[𝑎𝑎] = 𝑥𝑥 − 𝑎𝑎. 

取𝑚𝑚 = 𝑔𝑔[𝑎𝑎] − 𝑎𝑎,则𝑔𝑔[𝑥𝑥] = 𝑥𝑥 + 𝑚𝑚 

∴右边 = 𝑓𝑓[𝑎𝑎 + 𝑚𝑚−𝑚𝑚] + 𝑓𝑓[𝑎𝑎 + 𝑚𝑚 + 1 −𝑚𝑚] + ⋯+ 𝑓𝑓[𝑏𝑏 + 𝑚𝑚−𝑚𝑚] 

= 𝑓𝑓[𝑎𝑎] + 𝑓𝑓[𝑎𝑎 + 1] + ⋯+ 𝑓𝑓[𝑏𝑏] = 左边 

 

推论 1.2.2 改名定理 

取𝑔𝑔[𝑥𝑥] = 𝑥𝑥,得到 

� f[k1]
b

k1=a

= � f[k2]
b

k2=a

 

这表明可以直接用另一字母代替全部的𝑘𝑘1 

其实这是不证自明的，因为 

𝑘𝑘1是在求和运算中才有意义的局部变量 

𝑘𝑘1是在求和运算中才有意义的局部变量 

𝑘𝑘1是在求和运算中才有意义的局部变量 

*牢记这一点，后面很多地方会很好理解。 

既然在求和之前局部变量是没有定义的， 

那么定义的时候取什么字母都是没有本质区别的， 

只要求和式中统一用这个变量字母就行。 

 

 

 



推论 1.2.3 

联合利用 1.2.1,1.2.2，得到 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑘𝑘1 − 𝑡𝑡]
𝑏𝑏+𝑡𝑡

𝑘𝑘1=𝑎𝑎+𝑡𝑡

≔ � ℎ[𝑘𝑘1]
𝑏𝑏+𝑡𝑡

𝑘𝑘1=𝑎𝑎+𝑡𝑡

 

这个操作相当于“𝑘𝑘1用𝑘𝑘1 − 𝑡𝑡代掉”， 

而且被当做基本操作在各类解答中广泛使用, 

初学者感到一下转不过弯来往往是在这里。 

 

例 1.2.4 

现在你面前有�
(𝑘𝑘1 + 3)(𝑘𝑘1 − 8)

(𝑘𝑘1 − 14)(𝑘𝑘1 + 2)

57

𝑘𝑘1=26

 

而你出于某种需要想把(𝑘𝑘1 − 8)变成𝑘𝑘1, 

请试着找到一种最对你口味的思维方式。 

 

这里给出两种确定求和上下界的方式： 

1°用𝑘𝑘1 + 8代，𝑘𝑘1 + 8 = 26,下面变成𝑘𝑘1 = 18 

上面𝑘𝑘1 + 8 = 57,于是写个49上去。 

2°因为换元前后第一项实际上相同， 

将26代入𝑘𝑘1 − 8,得到18，于是下面变成18; 

同理57代入𝑘𝑘1 − 8 = 49 

这样就有一种备用方法来验证。 



最后写一下答案： 

�
(𝑘𝑘1 + 3)(𝑘𝑘1 − 8)

(𝑘𝑘1 − 14)(𝑘𝑘1 + 2)

57

𝑘𝑘1=26

= �
(𝑘𝑘1 + 11)𝑘𝑘1

(𝑘𝑘1 − 6)(𝑘𝑘1 + 10)

49

𝑘𝑘1=18

 

 

对于减一的情况，类似有 

∀𝑥𝑥 ∈ {𝑎𝑎, 𝑎𝑎 + 1, … , 𝑏𝑏},𝑔𝑔[𝑥𝑥] − 𝑔𝑔[𝑦𝑦] = 𝑦𝑦 − 𝑥𝑥 

用常数𝑎𝑎代入𝑦𝑦,有𝑔𝑔[𝑥𝑥] − 𝑔𝑔[𝑎𝑎] = 𝑎𝑎 − 𝑥𝑥 

设 m = 𝑎𝑎 + 𝑔𝑔[𝑎𝑎],则 g[𝑥𝑥] = −𝑥𝑥 + 𝑚𝑚，于是有 

 

定理 1.2.5 逆序求和定理 

设函数𝑔𝑔[𝑥𝑥] = −𝑥𝑥 + 𝑚𝑚满足： 

对 t ∈ 𝐙𝐙[𝑎𝑎, 𝑏𝑏],𝑔𝑔−1[𝑡𝑡] ∈ {𝑥𝑥|𝑓𝑓[𝑥𝑥]有意义} 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑔𝑔−1[𝑘𝑘2]]
𝑔𝑔[𝑎𝑎]

𝑘𝑘2=𝑔𝑔[𝑏𝑏]

= � 𝑓𝑓[𝑚𝑚− 𝑘𝑘2]
𝑚𝑚−𝑎𝑎

𝑘𝑘2=𝑚𝑚−𝑏𝑏

 

证明略。注意因为此时𝑔𝑔[𝑎𝑎] > 𝑔𝑔[𝑏𝑏]上下界交换。 



1.3 合并定理 

定理 1.3.1 前后合并定理 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

+ � 𝑓𝑓[𝑘𝑘1]
𝑐𝑐

𝑘𝑘1=𝑏𝑏+1

= � 𝑓𝑓[𝑘𝑘1]
𝑐𝑐

𝑘𝑘1=𝑎𝑎

 

证明：利用加法结合律即可。 

 

推论 1.3.2 裂一项定理 

实际操作时，往往使用以下几个式子： 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑘𝑘1 + 1] + 𝑓𝑓[𝑎𝑎]     (𝑏𝑏 > 𝑎𝑎)
𝑏𝑏−1

𝑘𝑘1=𝑎𝑎

 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑘𝑘1 − 1] + 𝑓𝑓[𝑏𝑏]     (𝑏𝑏 > 𝑎𝑎)
𝑏𝑏

𝑘𝑘1=𝑎𝑎+1

 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑘𝑘1 − 1] − 𝑓𝑓[𝑎𝑎 − 1] 
𝑏𝑏+1

𝑘𝑘1=𝑎𝑎

 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑘𝑘1 + 1]− 𝑓𝑓[𝑏𝑏 + 1] 
𝑏𝑏

𝑘𝑘1=𝑎𝑎−1

 

 

证明：只需要补出中间的一步 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑘𝑘1] + 𝑓𝑓[𝑎𝑎]
𝑏𝑏

𝑘𝑘1=𝑎𝑎+1

 

利用换元定理，得到 



� 𝑓𝑓[𝑘𝑘1] + 𝑓𝑓[𝑎𝑎]
𝑏𝑏

𝑘𝑘1=𝑎𝑎+1

= � 𝑓𝑓[𝑘𝑘1 + 1] + 𝑓𝑓[𝑎𝑎]
𝑏𝑏−1

𝑘𝑘1=𝑎𝑎

 

其他几个式子类似。 

 

定理 1.3.3 相间合并定理 

� 𝑓𝑓[2𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

+ � 𝑓𝑓[2𝑘𝑘1 + 1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑘𝑘1]
2𝑏𝑏+1

𝑘𝑘1=2𝑎𝑎

 

证明：全写出来，不证自明:) 

 

推论 1.3.4 多项相间合并定理 

� �� 𝑓𝑓[𝑛𝑛𝑘𝑘1 + 𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

� = � 𝑓𝑓[𝑘𝑘1]
𝑛𝑛𝑛𝑛+𝑛𝑛−1

𝑘𝑘1=𝑛𝑛𝑛𝑛

𝑛𝑛−1

𝑘𝑘2=0

 

之后将给出 1.3.4 的详细证明。 

 

注意到 1.3.4 中出现了𝑛𝑛倍的𝑘𝑘1,由此可以 

进一步拓展换元定理。但是，为了推得它，我们还需要构建另一基

本定理——嵌套交换定理。



1.4 嵌套交换定理 

引理 1.4.1 系数穿透定理 

对∀𝜆𝜆 ∈ 𝐑𝐑，𝜆𝜆 � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝜆𝜆𝜆𝜆[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

证明：归纳乘法对加法的分配律即可。 

 

定理 1.4.2 乘法嵌套交换定理 I 

�� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

��� 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

� 

= � ��� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�𝑔𝑔[𝑘𝑘2]�
𝑑𝑑

𝑘𝑘2=𝑐𝑐

= � ��� 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

�𝑓𝑓[𝑘𝑘1]�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

= � �� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑔𝑔[𝑘𝑘2]�
𝑑𝑑

𝑘𝑘2=𝑐𝑐

= � �� 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑓𝑓[𝑘𝑘1]�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

 

证明：利用 1.4.1，将 � 𝑓𝑓[𝑘𝑘1]视为 λ
𝑏𝑏

𝑘𝑘1=𝑎𝑎

,得到 

( � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

)(� 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

) = � ��� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�𝑔𝑔[𝑘𝑘2]�
𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

 



将每一项的𝑔𝑔[𝑘𝑘2]视为 λ，得到 

( � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

)𝑔𝑔[𝑘𝑘2] = � 𝑔𝑔[𝑘𝑘2]𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

因而 � ��� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�𝑔𝑔[𝑘𝑘2]�
𝑑𝑑

𝑘𝑘2=𝑐𝑐

= � �� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑔𝑔[𝑘𝑘2]�
𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

同理，可得到另外两个等式。 

 

有两点需要牢记: 

1°    � 𝑓𝑓[𝑘𝑘1]是个常数

𝑏𝑏

𝑘𝑘1=𝑎𝑎

！常数！常数！ 

2°    嵌套形式 � ��� 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

�𝑓𝑓[𝑘𝑘1]�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

对于第一层求和，𝑘𝑘1是变量， � 𝑔𝑔[𝑘𝑘2]是个常数

𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

对于第二层求和，𝑘𝑘2是变量，和𝑘𝑘1相关的量都是常数 

 

定义 1.4.3 乘法嵌套Σ形式 

� � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

: = � �� 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

 



特别地，当𝑎𝑎 = 𝑐𝑐, 𝑏𝑏 = 𝑑𝑑时，有 

� 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎

: = � � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘2=𝑎𝑎

𝑔𝑔[𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

 

定理 1.4.4 乘法嵌套交换定理 II 

现在我们可以写得更人性化一些。 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

× � 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

= � �𝑓𝑓[𝑘𝑘1] � 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � �𝑔𝑔[𝑘𝑘2] � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�
𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

= � � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

 

对于 � � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

，若𝑐𝑐或𝑑𝑑与𝑘𝑘1相关， 

不妨设𝑐𝑐由函数 ℎ[𝑘𝑘1]决定，则交换定理不成立。 

� � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=ℎ[𝑘𝑘1]

𝑏𝑏

𝑘𝑘1=𝑎𝑎

≠ � � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑑𝑑

𝑘𝑘2=ℎ[𝑘𝑘1]

 

事实上，右式的存在就是个错误，因为在确定𝑘𝑘2的求和范围时𝑘𝑘1

还不存在。 

 



现在仍然存活的式子是： 

� � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=ℎ[𝑘𝑘1]

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � �𝑓𝑓[𝑘𝑘1] � 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=ℎ[𝑘𝑘1]

�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

但是如果满足一定条件，仍可以进行嵌套交换操作。 

 

定理 1.4.5 三角嵌套交换定理 

对于二层求和，以两个求和变量建立坐标系，如果被求和计算的

点形成一个等腰直角三角形，那么由横向遍历和纵向遍历两种方

式效果相同可得三角嵌套交换定理。 

左上三角： � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘2=𝑘𝑘1

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑘𝑘2

𝑘𝑘1=𝑎𝑎

𝑏𝑏

𝑘𝑘2=𝑎𝑎

 

左下三角： � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑎𝑎+𝑏𝑏−𝑘𝑘1

𝑘𝑘2=𝑎𝑎

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑎𝑎+𝑏𝑏−𝑘𝑘2

𝑘𝑘1=𝑎𝑎

𝑏𝑏

𝑘𝑘2=𝑎𝑎

 

右上三角： � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘2=𝑎𝑎+𝑏𝑏−𝑘𝑘1

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎+𝑏𝑏−𝑘𝑘2

𝑏𝑏

𝑘𝑘2=𝑎𝑎

 

右下三角： � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑘𝑘1

𝑘𝑘2=𝑎𝑎

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑘𝑘2

𝑏𝑏

𝑘𝑘2=𝑎𝑎

 

 

由简单换元可知，求和变量有一定偏移亦可进行相似操作，如 

� � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑘𝑘1+𝑚𝑚

𝑘𝑘2=𝑎𝑎+𝑚𝑚

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2 + 𝑚𝑚]
𝑘𝑘1

𝑘𝑘2=𝑎𝑎

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 



= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2 + 𝑚𝑚]
𝑏𝑏

𝑘𝑘1=𝑘𝑘2

𝑏𝑏

𝑘𝑘2=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑘𝑘2−𝑚𝑚

𝑏𝑏+𝑚𝑚

𝑘𝑘2=𝑎𝑎+𝑚𝑚

 

 

若求和点形成一个直角+45°梯形，则可以将其切分为两部分，对

两部分单独应用相应的嵌套交换定理。如： 

� � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑘𝑘1

𝑘𝑘2=𝑎𝑎−𝑚𝑚

𝑏𝑏

𝑘𝑘1=𝑎𝑎

       (𝑚𝑚 ∈ 𝐍𝐍+) 

= � �� 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑘𝑘1

𝑘𝑘2=𝑎𝑎

+ � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑎𝑎−1

𝑘𝑘2=𝑎𝑎−𝑚𝑚

�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑘𝑘2

𝑏𝑏

𝑘𝑘2=𝑎𝑎

+ � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑎𝑎−1

𝑘𝑘2=𝑎𝑎−𝑚𝑚

 

注意，在应用这些嵌套交换时关键不是死套公式，而是或在纸上

或在脑中能描出求和点形成的区域，再通过不同的遍历方式确定

交换后的求和范围。 

 

在之后的章节就会看到，嵌套交换定理的应用十分广泛。 

 

值得注意的是，对于求和式，我们主要考虑两方面：求和变量的变

化范围及被求和的函数。 

由本节内容可知，在多层求和中，内层求和的 



“系数”（如 � �𝑓𝑓[𝑘𝑘1] � 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=ℎ[𝑘𝑘1]

�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

中的𝑓𝑓[𝑘𝑘1] ） 

一定与内层求和变量无关，因而总是能放入内层求和中。 

如此，多层求和式刚写出来时可能比较混乱，但是这样处理后总

能对应两个方面清楚地分为两部分： 

� � … �  
𝑏𝑏𝑛𝑛

𝑘𝑘𝑛𝑛=𝑎𝑎𝑛𝑛

𝑏𝑏2

𝑘𝑘2=𝑎𝑎2

𝑏𝑏1

𝑘𝑘1=𝑎𝑎1

与𝑓𝑓[𝑘𝑘1,𝑘𝑘2, … , 𝑘𝑘𝑛𝑛] 

有助于我们将其分开考虑，分别进行一些操作（如交换求和号，函

数计算）。这正是嵌套交换定理最大的魅力所在。 

 



1.5 合并、换元 II 

例 1.5.1 2的幂次分组求和 

在 1.3中我们得到了多项相间合并公式， 

现在我们考虑作进一步拓展。 

按照 2的幂次来分组求和，即类似于 

(𝑎𝑎1) + (𝑎𝑎2 + 𝑎𝑎3) + (𝑎𝑎4 + 𝑎𝑎5 + 𝑎𝑎6 + 𝑎𝑎7)的形式。 

（注意这里的𝑎𝑎只表示数组） 

显然有 � � 𝑓𝑓[𝑘𝑘2]
2𝑘𝑘1+1−1

𝑘𝑘2=2𝑘𝑘1

𝑛𝑛−1

𝑘𝑘1=0

= � 𝑓𝑓[𝑘𝑘1]
2𝑛𝑛−1

𝑘𝑘1=1

 

 

接下来考虑更一般的形式， 

即每组按𝑔𝑔[𝑛𝑛]到𝑔𝑔[𝑛𝑛 + 1] − 1分。 

对照上面的例子，有如下定理。 

 

定理 1.5.2 合并定理 

� � 𝑓𝑓[𝑘𝑘2]
𝑔𝑔[𝑘𝑘1+1]−1

𝑘𝑘2=𝑔𝑔[𝑘𝑘1]

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑘𝑘1]
𝑔𝑔[𝑏𝑏+1]−1

𝑘𝑘1=𝑔𝑔[𝑎𝑎]

 

其中𝑔𝑔[𝑥𝑥]需要满足的条件是： 

对 k1 ∈ 𝐙𝐙[𝑎𝑎, 𝑏𝑏],𝑔𝑔[𝑘𝑘1 + 1]− 𝑔𝑔[𝑘𝑘1] ∈ 𝑁𝑁∗ 

证明：将外层求和按定义展开， 

反复使用 1.3.1 前后合并定理即可。 



应用这个定理，代入𝑎𝑎 = 0,𝑏𝑏 = 𝑛𝑛 − 1,𝑔𝑔[𝑥𝑥] = 2𝑥𝑥 

即可得到例 1.5.1. 

而代入𝑔𝑔[𝑥𝑥] = 𝑛𝑛𝑛𝑛,得到 � � 𝑓𝑓[𝑘𝑘2]
𝑛𝑛𝑛𝑛1+𝑛𝑛−1

𝑘𝑘2=𝑛𝑛𝑛𝑛1

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

利用换元定理，得到 

� � 𝑓𝑓[𝑘𝑘2]
nk1+𝑛𝑛−1

𝑘𝑘2=nk1

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘2 + nk1]
𝑛𝑛−1

𝑘𝑘2=0

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

利用嵌套交换定理，得到 

� � 𝑓𝑓[𝑘𝑘2 + 𝑛𝑛𝑛𝑛1]
𝑛𝑛−1

𝑘𝑘2=0

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[nk1 + 𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑛𝑛−1

𝑘𝑘2=0

 

应用 1.5.2,最终得到 

� � 𝑓𝑓[𝑛𝑛𝑛𝑛1 + 𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑛𝑛−1

𝑘𝑘2=0

= � 𝑓𝑓[𝑘𝑘1]
nb+𝑛𝑛−1

𝑘𝑘1=na

 

这也就是 1.3.5所得到的公式 

另外，2.3给出了另一种证法 

 

接下去我们考虑进一步的换元方式。 

 

定义 1.5.3 换元核 

在求和式 � � 𝑓𝑓[𝑘𝑘2]
𝑔𝑔[𝑘𝑘1+1]−1

𝑘𝑘2=𝑔𝑔[𝑘𝑘1]

𝑏𝑏

𝑘𝑘1=𝑎𝑎

中， 



定义由𝑓𝑓,𝑔𝑔决定的换元核𝐾𝐾𝑓𝑓,𝑔𝑔 

𝐾𝐾𝑓𝑓,𝑔𝑔[𝑘𝑘1]: = � 𝑓𝑓[𝑘𝑘2]
𝑔𝑔[𝑘𝑘1+1]−1

𝑘𝑘2=𝑔𝑔[𝑘𝑘1]

 

 

定理 1.5.4 广义换元定理 

若𝑔𝑔−1[𝑏𝑏 + 1]− 𝑔𝑔−1[𝑎𝑎] ∈ 𝑁𝑁∗ 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝐾𝐾𝑓𝑓,𝑔𝑔[𝑘𝑘1]
𝑔𝑔−1[𝑏𝑏+1]−1

𝑘𝑘1=𝑔𝑔−1[𝑎𝑎]

 

 

证明：利用核表示定理 1.5.2"  

� 𝑓𝑓[𝑘𝑘1]
𝑔𝑔[𝑏𝑏+1]−1

𝑘𝑘1=𝑔𝑔[𝑎𝑎]

= � 𝐾𝐾𝑓𝑓,𝑔𝑔[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

𝑎𝑎用𝑔𝑔−1[𝑎𝑎]代，𝑏𝑏用𝑔𝑔−1[𝑏𝑏 + 1]− 1 代 

即得到 � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � 𝐾𝐾𝑓𝑓,𝑔𝑔[𝑘𝑘1]
𝑔𝑔−1[𝑏𝑏+1]−1

𝑘𝑘1=𝑔𝑔−1[𝑎𝑎]

 

然而目前看来，这是最没用的定理之一。 

为了更好理解这抽象的东西，给一个例子。 

 

 

 

 



例 1.5.5 

令 a = 8,𝑏𝑏 = 63,𝑓𝑓[𝑥𝑥] = 𝑥𝑥2,𝑔𝑔[𝑥𝑥] = 𝑥𝑥3 

� 𝑘𝑘1
2

63

𝑘𝑘1=8

= � 𝐾𝐾𝑓𝑓,𝑔𝑔[𝑘𝑘1]
3

𝑘𝑘1=2

 

其中 K𝑓𝑓,𝑔𝑔[𝑘𝑘1] = � 𝑘𝑘2
2

(𝑘𝑘1+1)3−1

𝑘𝑘2=𝑘𝑘13
 

可以用平方数求和得出核的函数表达式， 

得到一个可以稍微分解的七次多项式； 

也可以留着，两个∑展开就回到了左边。 

 

一般来说，当𝑔𝑔为线性函数时用处会大些， 

因为设𝑔𝑔[𝑥𝑥] = 𝑠𝑠𝑠𝑠 + 𝑡𝑡,有 

𝐾𝐾𝑓𝑓,𝑔𝑔[𝑘𝑘1] = � 𝑓𝑓[𝑘𝑘2]
𝑠𝑠𝑠𝑠1+𝑠𝑠+𝑡𝑡−1

𝑘𝑘2=sk1+𝑡𝑡

= � 𝑓𝑓[𝑘𝑘2 + sk1]
𝑠𝑠+𝑡𝑡−1

𝑘𝑘2=𝑡𝑡

 

此时求和上下界与 k1无关， 

易于求出去∑表达式或者使用嵌套交换定理。



1.6 线性合并定理 

定理 1.6.1 线性合并定理 

设𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛 ∈ 𝑹𝑹, 𝑓𝑓1[𝑥𝑥],𝑓𝑓2[𝑥𝑥], … ,𝑓𝑓𝑛𝑛[𝑥𝑥]保证求和有意义， 

则有如下等式： 

t1 � 𝑓𝑓1[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

+ t2 � 𝑓𝑓2[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

+ ⋯+ tn � 𝑓𝑓𝑛𝑛[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

= � (𝑡𝑡𝑘𝑘2 � 𝑓𝑓𝑘𝑘2[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

)
𝑛𝑛

𝑘𝑘2=1

= � �� 𝑡𝑡𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

𝑓𝑓𝑘𝑘2[𝑘𝑘1]�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

证明：利用 1.4的系数穿透定理和嵌套交换定理即可。 

 

应用 1.6.2 逆序求和法 

如果𝑓𝑓在[𝑎𝑎, 𝑏𝑏]上具有一定的中心对称性，如最常见的等差数列， 

若在 1.2.5逆序求和定理中取𝑚𝑚 = 𝑎𝑎 + 𝑏𝑏, 

则𝐹𝐹[𝑥𝑥] ≔ 𝑓𝑓[𝑥𝑥] + 𝑓𝑓[𝑚𝑚− 𝑥𝑥]会有很好的性质。 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

=
1
2�

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

+ � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

� 

=
1
2�

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

+ � 𝑓𝑓[𝑎𝑎 + 𝑏𝑏 − 𝑘𝑘2]
𝑏𝑏

𝑘𝑘2=𝑎𝑎

� 

应用线性合并定理，得到 



� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

=
1
2�

� (𝑓𝑓[𝑘𝑘1] + 𝑓𝑓[𝑎𝑎 + 𝑏𝑏 − 𝑘𝑘2])
𝑏𝑏

𝑘𝑘1=𝑎𝑎

� 

=
1
2
� 𝐹𝐹[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

可以看到，在仅仅提出一个 1/2的情况下， 

我们就把对𝑓𝑓[𝑥𝑥]的求和转化为对具有更好性质的𝐹𝐹[𝑥𝑥]的求和。 



1.7 函数穿透定理 

函数穿透定理，是一些具有特殊性质 

性质的函数能穿过求和或求积号的能力 

定理 1.7.1 函数穿透定理 

对∀𝑥𝑥,𝑦𝑦 ∈ 𝐙𝐙[𝑎𝑎, 𝑏𝑏], 

𝑓𝑓[𝑥𝑥 + 𝑦𝑦] = 𝑓𝑓[𝑥𝑥] + 𝑓𝑓[𝑦𝑦] ⇒ � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= 𝑓𝑓 �� 𝑘𝑘1

𝑏𝑏

𝑘𝑘1=𝑎𝑎

� 

𝑓𝑓[𝑥𝑥 + 𝑦𝑦] = 𝑓𝑓[𝑥𝑥]𝑓𝑓[𝑦𝑦] ⇒ � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= 𝑓𝑓 �� 𝑘𝑘1

𝑏𝑏

𝑘𝑘1=𝑎𝑎

� 

𝑓𝑓[xy] = 𝑓𝑓[𝑥𝑥] + 𝑓𝑓[𝑦𝑦] ⇒ � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= 𝑓𝑓 �� 𝑘𝑘1

𝑏𝑏

𝑘𝑘1=𝑎𝑎

� 

𝑓𝑓[xy] = 𝑓𝑓[𝑥𝑥]𝑓𝑓[𝑦𝑦] ⇒ � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= 𝑓𝑓 �� 𝑘𝑘1

𝑏𝑏

𝑘𝑘1=𝑎𝑎

� 

证明：归纳即可。 

具有上面四个性质的典型函数：𝑥𝑥; e𝑥𝑥; ln 𝑥𝑥 ; 𝑥𝑥2 

 

 

推论 1.7.2 ∑-∏桥定理 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= ln�� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

� 



证明：由𝑓𝑓[𝑥𝑥] = ln e𝑓𝑓[𝑥𝑥] 得 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= ��ln e𝑓𝑓[𝑘𝑘1]�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= ln�� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

� 

 

通过桥定理，可以将求和换为求积， 

可得到之前大多数定理的∏形式。 

 

例 1.7.3 推导线性合并定理(∏形式) 

在 1.6.1 中，我们得到了如下线性合并定理： 

� (𝑡𝑡𝑘𝑘2 � 𝑓𝑓𝑘𝑘2[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

)
𝑛𝑛

𝑘𝑘2=1

= � (� 𝑡𝑡𝑘𝑘2𝑓𝑓𝑘𝑘2[𝑘𝑘1]
𝑛𝑛

𝑘𝑘2=1

)
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

将 � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= ln�� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�代入各式，有 

ln � e^(𝑡𝑡𝑘𝑘2 ln(� e𝑓𝑓𝑘𝑘2[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

))
𝑛𝑛

𝑘𝑘2=1

= ln � e^(ln(� e𝑡𝑡𝑘𝑘2𝑓𝑓k2[k1]
𝑛𝑛

𝑘𝑘2=1

))
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

化简并用 e 乘方，得到 

��� e𝑓𝑓𝑘𝑘2[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�

𝑡𝑡𝑘𝑘2𝑛𝑛

𝑘𝑘2=1

= ��� e𝑡𝑡𝑘𝑘2𝑓𝑓𝑘𝑘2[𝑘𝑘1]
𝑛𝑛

𝑘𝑘2=1

�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

设𝐹𝐹𝑚𝑚 ≔ e𝑓𝑓𝑚𝑚[𝑘𝑘1],并定义 



� �𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

≔ � �� 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

得到 

��� 𝐹𝐹𝑘𝑘2[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�

𝑡𝑡𝑘𝑘2𝑛𝑛

𝑘𝑘2=1

= � ��𝐹𝐹𝑘𝑘2[𝑘𝑘1]�𝑡𝑡𝑘𝑘2
𝑛𝑛

𝑘𝑘2=1

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

这即是∏形式的“线性合并”定理。 

 

例 1.7.4 推导嵌套交换定理(∏形式) 

#说明：这里的证明比较复杂，看不明白， 

也没关系，因为最后的结论并没有什么用处。 

在 1.4.4 中，我们得到了如下嵌套交换定理： 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

× � 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

= � (𝑓𝑓[𝑘𝑘1] � 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

)
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � (𝑔𝑔[𝑘𝑘2] � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

)
𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

= � � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

将 � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= ln�� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�代入各式，有 



ln�� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

� × ln�� e𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

� 

= ln(�𝑒𝑒^(𝑓𝑓[𝑘𝑘1] ln(� e𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

))
𝑏𝑏

𝑘𝑘1=𝑎𝑎

) 

= ln(� e^(𝑔𝑔[𝑘𝑘2] ln(� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

))
𝑑𝑑

𝑘𝑘2=𝑐𝑐

) 

= ln�� � e𝑔𝑔[𝑘𝑘2]𝑓𝑓[𝑘𝑘1]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

� = ln�� � e𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑑𝑑

𝑘𝑘2=𝑐𝑐

� 

对中间两式作形如 e𝑥𝑥 ln𝑦𝑦 = 𝑦𝑦𝑥𝑥的操作， 

用 e 乘方所有式子，注意第一式有两种做法，得 

�� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�^ ln�� e𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

� = �� e𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

�  ^ ln�� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�  

= ��� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑔𝑔[𝑘𝑘2]

= ��� e𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑓𝑓[𝑘𝑘1]

 

= � � e𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � e𝑔𝑔[𝑘𝑘2]𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

考虑化简第一式，由� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= e^ � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

得 

�� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�^ ln�� e𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

� = �� e𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

�^�� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

� 



类似有(� e𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

)^ ln(� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

) = (� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

)^(� 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

) 

得到一串等式： 

(� e𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

)^(� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

) = (� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

)^(� 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

) 

= ��� e𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�

𝑔𝑔[𝑘𝑘2]𝑑𝑑

𝑘𝑘2=𝑐𝑐

= ��� e𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

�

𝑓𝑓[𝑘𝑘1]𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

= � � e𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2] =
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

� � e𝑔𝑔[𝑘𝑘2]𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

如果取含 e𝑓𝑓[𝑘𝑘1]的三个式子并令𝐹𝐹[𝑘𝑘1] ≔ e𝑓𝑓[𝑘𝑘1]，有 

(�𝐹𝐹[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

)^(� 𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

) = ��� 𝐹𝐹[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

�

𝑔𝑔[𝑘𝑘2]𝑑𝑑

𝑘𝑘2=𝑐𝑐

 

= � �𝐹𝐹[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

其中𝐹𝐹[𝑘𝑘1]自然地大于零防止了负数开根号的可能性。 

然而接下去也没什么可做的了。可见由于乘方没有交换律， 

最后并没有得到很有价值的结论。 

但是正如席南华老师所说：“它有意思就行了，说不定哪一天就派

上用场。” 

所以我还是把它放在这里。



2.1 多重求和形式 

定义 2.1.1 多重求和形式 I 

记𝑎⃗𝑎,𝑏𝑏�⃗ , 𝑘𝑘�⃗为𝑛𝑛维向量，如𝑎⃗𝑎 ≔ (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛) 

𝑓𝑓为𝑛𝑛元函数，𝑓𝑓[𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛] =:𝑓𝑓[𝑥⃗𝑥] 

并且对𝑡𝑡 = 1,2, … ,𝑛𝑛,成立𝑏𝑏𝑡𝑡 − 𝑎𝑎𝑡𝑡 ∈ 𝐍𝐍, 

其中𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡与𝑘𝑘𝑡𝑡, … ,𝑘𝑘𝑛𝑛无关，则有 

�𝑓𝑓�𝑘𝑘�⃗ �
𝑏𝑏�⃗

𝑘𝑘�⃗ =𝑎𝑎�⃗

≔ � � … � 𝑓𝑓�𝑘𝑘�⃗ �
𝑏𝑏𝑛𝑛

𝑘𝑘𝑛𝑛=𝑎𝑎𝑛𝑛

𝑏𝑏2

𝑘𝑘2=𝑎𝑎2

𝑏𝑏1

𝑘𝑘1=𝑎𝑎1

 

: = � ( � �. . .� � 𝑓𝑓�𝑘𝑘�⃗ �
𝑏𝑏𝑛𝑛

𝑘𝑘𝑛𝑛=𝑎𝑎𝑛𝑛

� . . .�
𝑏𝑏2

𝑘𝑘2=𝑎𝑎2

𝑏𝑏1

𝑘𝑘1=𝑎𝑎1

 

 

 

定理 2.1.2 完全分解定理 

如果所有的𝑎𝑎𝑡𝑡,𝑏𝑏𝑡𝑡均与𝑘𝑘𝑡𝑡无关， 

并且𝑓𝑓�𝑘𝑘�⃗ � = �𝑓𝑓𝑡𝑡[𝑘𝑘𝑡𝑡]
𝑛𝑛

𝑡𝑡=1

，则 

 

�𝑓𝑓�𝑘𝑘�⃗ �
𝑏𝑏�⃗

𝑘𝑘�⃗ =𝑎𝑎�⃗

= � � 𝑓𝑓𝑡𝑡[𝑘𝑘𝑡𝑡]
𝑏𝑏𝑡𝑡

𝑘𝑘𝑡𝑡=𝑎𝑎𝑡𝑡

𝑛𝑛

𝑡𝑡=1

 

 



证明：在二维情况下 

若𝑓𝑓[𝑘𝑘1,𝑘𝑘2] = 𝑔𝑔[𝑘𝑘1]ℎ[𝑘𝑘2], 

并且𝑎𝑎2,𝑏𝑏2与𝑘𝑘1,𝑘𝑘2无关， 

则由嵌套交换定理得到 

� � 𝑔𝑔[𝑘𝑘1]ℎ[𝑘𝑘2]
𝑏𝑏2

𝑘𝑘2=𝑎𝑎2

𝑏𝑏1

𝑘𝑘1=𝑎𝑎1

= � � 𝑔𝑔[𝑘𝑘1]
𝑏𝑏1

𝑘𝑘1=𝑎𝑎1

�� � ℎ[𝑘𝑘2]
𝑏𝑏2

𝑘𝑘2=𝑎𝑎2

� 

对𝑛𝑛维情况简单归纳即可。 

 

 

 



2.2 条件求和形式 

定义 2.2.1 默认求和形式 

如果𝑘𝑘�⃑的限制条件是自然而然的， 

不写出也不会引起歧义的， 

或者根本不存在限制，对所有取值求和（不重复） 

则默认求和形式记为 

∑𝑓𝑓�𝑘𝑘�⃑ � 

如一组数 x1, … ,𝑥𝑥𝑛𝑛求和可记为 

∑𝑥𝑥𝑘𝑘(甚至∑𝑥𝑥𝑛𝑛) 

 

定义 2.2.2 条件求和形式 

设𝑃𝑃�𝑘𝑘�⃑ �为关于𝑘𝑘1, … , kn的命题， 

则对所有满足命题𝑃𝑃的𝑘𝑘�⃑求和表示为 

�𝑓𝑓�𝑘𝑘�⃑ �
𝑃𝑃�𝑘𝑘�⃑ �

 

若𝑘𝑘�⃑除命题𝑃𝑃外还被限定在𝐙𝐙�𝑎⃑𝑎,𝑏𝑏�⃑ �上， 

则此时求和记为 

� 𝑓𝑓�𝑘𝑘�⃗ �
𝑏𝑏�⃗

𝑘𝑘�⃗ =𝑎𝑎�⃗  
𝑃𝑃�𝑘𝑘�⃑ �

 

 



若有多个命题𝑃𝑃1, … ,𝑃𝑃𝑛𝑛 

则对所有满足所有命题的𝑘𝑘�⃑求和表示为 

� 𝑓𝑓�𝑘𝑘�⃑ �
𝑃𝑃1�𝑘𝑘

⇀�
⋮

𝑃𝑃𝑛𝑛�𝑘𝑘
⇀�

或 ∑𝑓𝑓�𝑘𝑘�⃑ �
𝑃𝑃1∧𝑃𝑃2∧…∧𝑃𝑃𝑛𝑛�𝑘𝑘�⃑ �

 

取 δ𝑃𝑃�𝑘𝑘�⃑ � = �
1, 𝑃𝑃�𝑘𝑘�⃑ �为真

0, 𝑃𝑃�𝑘𝑘�⃑ �为假
 

(在不引起歧义的情况下可省略下标) 

则可如下定义条件求和： 

�𝑓𝑓�𝑘𝑘�⃗ �
 

𝑃𝑃�𝑘𝑘�⃑ �

≔ ∑𝛿𝛿�𝑘𝑘�⃗ �𝑓𝑓�𝑘𝑘�⃗ � 

� 𝑓𝑓�𝑘𝑘�⃗ �
𝑏𝑏�⃗

𝑘𝑘�⃗ =𝑎𝑎�⃗  
𝑃𝑃�𝑘𝑘�⃑ �

≔ � 𝛿𝛿[𝑘𝑘�⃗ ]𝑓𝑓[𝑘𝑘�⃗ ]
𝑏𝑏�⃗

 
𝑘𝑘�⃗ =𝑎𝑎�⃗

 

� 𝑓𝑓�𝑘𝑘�⃑ �
𝑃𝑃1�𝑘𝑘

⇀�
⋮

𝑃𝑃𝑛𝑛�𝑘𝑘
⇀�

≔ ∑��𝛿𝛿𝑃𝑃𝑡𝑡�𝑘𝑘�⃗ �
𝑛𝑛

𝑡𝑡=1

�𝑓𝑓�𝑘𝑘�⃗ � 

= ∑�∏𝛿𝛿𝑃𝑃𝑡𝑡�𝑘𝑘�⃗ ��𝑓𝑓�𝑘𝑘�⃗ � 

 

定理 2.2.3 条件求和容斥原理 

设𝑃𝑃,𝑄𝑄为关于𝑘𝑘�⃗的命题，则 



�𝑓𝑓�𝑘𝑘�⃗ �
𝑃𝑃�𝑘𝑘�⃗ �

+ �𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄�𝑘𝑘�⃗ �

= � 𝑓𝑓�𝑘𝑘�⃗ �
𝑃𝑃∨𝑄𝑄�𝑘𝑘�⃗ �

+ � 𝑓𝑓�𝑘𝑘�⃗ �
𝑃𝑃∧𝑄𝑄�𝑘𝑘�⃗ �

 

证明： 

左边 = ∑𝛿𝛿𝑃𝑃�𝑘𝑘�⃗ �𝑓𝑓�𝑘𝑘�⃗ �+ ∑𝛿𝛿𝑄𝑄�𝑘𝑘�⃗ �𝑓𝑓�𝑘𝑘�⃗ � 

= ∑�𝛿𝛿𝑃𝑃�𝑘𝑘�⃗ � + 𝛿𝛿𝑄𝑄�𝑘𝑘�⃗ ��𝑓𝑓�𝑘𝑘�⃗ � 

由真值表不难得到 

𝛿𝛿𝑃𝑃�𝑘𝑘�⃗ � + 𝛿𝛿𝑄𝑄�𝑘𝑘�⃗ � =

⎩
⎪
⎨

⎪
⎧0 P 假，Q 假

1 P 真，Q 假

1 P 假，Q 真

2 P 真，Q 真

 

=

⎩
⎪
⎨

⎪
⎧0 P 假，Q 假

1 P 真，Q 假

1 P 假，Q 真

1 P 真，Q 真

+

⎩
⎪
⎨

⎪
⎧0 P 假，Q 假

0 P 真，Q 假

0 P 假，Q 真

1 P 真，Q 真

 

= �
0 P 假且 Q 假

1 P 真或 Q 真
+ �

0 P 假或 Q 假

1 P 真且 Q 真
 

= 𝛿𝛿𝑃𝑃∨𝑄𝑄[𝑘𝑘�⃗ ] + 𝛿𝛿𝑃𝑃∧𝑄𝑄[𝑘𝑘�⃗ ] 

因而左边 = ∑�𝛿𝛿𝑃𝑃∨𝑄𝑄�𝑘𝑘�⃗ � + 𝛿𝛿𝑃𝑃∧𝑄𝑄�𝑘𝑘�⃗ ��𝑓𝑓�𝑘𝑘�⃗ � 

= ∑𝛿𝛿𝑃𝑃∨𝑄𝑄�𝑘𝑘�⃗ �𝑓𝑓�𝑘𝑘�⃗ �+ ∑𝛿𝛿𝑃𝑃∧𝑄𝑄�𝑘𝑘�⃗ �𝑓𝑓�𝑘𝑘�⃗ � 

= 右边 

 

推论 2.2.4 广义合并定理 

设关于𝑘𝑘�⃗的命题𝑃𝑃，𝑄𝑄 



满足对∀𝑘𝑘�⃗ ,𝑃𝑃 ∧ 𝑄𝑄�𝑘𝑘�⃗ �为假，则 

�𝑓𝑓�𝑘𝑘�⃗ �
𝑃𝑃�𝑘𝑘�⃗ �

+ �𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄�𝑘𝑘�⃗ �

= � 𝑓𝑓�𝑘𝑘�⃗ �
𝑃𝑃∨𝑄𝑄�𝑘𝑘�⃗ �

 

证明：由条件求和容斥原理 

结合 � 𝑓𝑓�𝑘𝑘�⃗ �
𝑃𝑃∧𝑄𝑄�𝑘𝑘�⃗ �

= 0 显然。 

依照这个定理，可以把满足特定条件的任意多的相同函数的求和

式合并为一个。 

 

推论 2.2.5 限制定理 

设𝑅𝑅满足𝑃𝑃 ∨ 𝑅𝑅 = 𝑄𝑄 ∨ 𝑅𝑅,则 

�𝑓𝑓[𝑘𝑘�⃗ ]
𝑃𝑃[𝑘𝑘�⃗ ]

= �𝑓𝑓[𝑘𝑘�⃗ ]
𝑄𝑄[𝑘𝑘�⃗ ]

⇔ �𝑓𝑓[𝑘𝑘�⃗ ]
𝑃𝑃[𝑘𝑘�⃗ ]
𝑅𝑅[𝑘𝑘�⃗ ]

= �𝑓𝑓[𝑘𝑘�⃗ ]
𝑄𝑄[𝑘𝑘�⃗ ]
𝑅𝑅[𝑘𝑘�⃗ ]

 

证明：�𝑓𝑓[𝑘𝑘�⃗ ]
𝑃𝑃[𝑘𝑘�⃗ ]

= �𝑓𝑓[𝑘𝑘�⃗ ]
𝑄𝑄[𝑘𝑘�⃗ ]

 

⇔ �𝑓𝑓[𝑘𝑘�⃗ ]
𝑃𝑃[𝑘𝑘�⃗ ]

+ �𝑓𝑓�𝑘𝑘�⃗ �
𝑅𝑅�𝑘𝑘�⃗ �

= �𝑓𝑓[𝑘𝑘�⃗ ]
𝑄𝑄[𝑘𝑘�⃗ ]

+ �𝑓𝑓�𝑘𝑘�⃗ �
𝑅𝑅�𝑘𝑘�⃗ �

 

⇔ � 𝑓𝑓[𝑘𝑘�⃗ ]
𝑃𝑃∨𝑅𝑅[𝑘𝑘�⃗ ]

+ � 𝑓𝑓[𝑘𝑘�⃗ ]
𝑃𝑃∧𝑅𝑅[𝑘𝑘�⃗ ]

= � 𝑓𝑓[𝑘𝑘�⃗ ]
𝑄𝑄∨𝑅𝑅[𝑘𝑘�⃗ ]

+ � 𝑓𝑓[𝑘𝑘�⃗ ]
𝑄𝑄∧𝑅𝑅[𝑘𝑘�⃗ ]

 

⇔ � 𝑓𝑓[𝑘𝑘�⃗ ]
𝑃𝑃∧𝑅𝑅[𝑘𝑘�⃗ ]

= � 𝑓𝑓[𝑘𝑘�⃗ ]
𝑄𝑄∧𝑅𝑅[𝑘𝑘�⃗ ]

 



⇔ �𝑓𝑓[𝑘𝑘�⃗ ]
𝑃𝑃[𝑘𝑘�⃗ ]
𝑅𝑅[𝑘𝑘�⃗ ]

= �𝑓𝑓[𝑘𝑘�⃗ ]
𝑄𝑄[𝑘𝑘�⃗ ]
𝑅𝑅[𝑘𝑘�⃗ ]

 

注：�𝑓𝑓[𝑘𝑘�⃗ ]
𝑃𝑃[𝑘𝑘�⃗ ]

= �𝑓𝑓[𝑘𝑘�⃗ ]
𝑄𝑄[𝑘𝑘�⃗ ]

一般不能推得𝑃𝑃 = 𝑄𝑄 

此定理得名于它的效果 

如同给求和加上满足命题𝑅𝑅的限制。 

 

推论 2.2.6 条件求和非定理 

𝛿𝛿¬𝑃𝑃�𝑘𝑘�⃗ � = 1 − 𝛿𝛿𝑃𝑃�𝑘𝑘�⃗ � 

� 𝑓𝑓�𝑘𝑘�⃗ �
¬𝑃𝑃�𝑘𝑘�⃗ �

= ∑𝑓𝑓�𝑘𝑘�⃗ � −� 𝑓𝑓�𝑘𝑘�⃗ �
𝑃𝑃�𝑘𝑘�⃗ �

 

证：δ的性质可以直接验证。 

求和式证明可利用条件求和容斥原理, 

令𝑃𝑃 = 𝑃𝑃,𝑄𝑄 = ¬𝑃𝑃即可。 

也可利用第一行𝛿𝛿的性质证明。 

 

 

实际应用还需加上限制，否则∑𝑓𝑓�𝑘𝑘�⃗ �无意义 

设求和在𝑄𝑄中考虑，即𝑃𝑃也在𝑄𝑄中 

𝑃𝑃 ∧ 𝑄𝑄 = 𝑃𝑃,𝑃𝑃 ∨ 𝑄𝑄 = 𝑄𝑄 



� 𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄�𝑘𝑘�⃗ �

¬𝑃𝑃�𝑘𝑘�⃗ �

= �𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄�𝑘𝑘�⃗ �

− � 𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄�𝑘𝑘�⃗ �
𝑃𝑃�𝑘𝑘�⃗ �

 

证：∑𝑓𝑓�𝑘𝑘�⃗ � = �𝑓𝑓�𝑘𝑘�⃗ �
𝑃𝑃�𝑘𝑘�⃗ �

+ � 𝑓𝑓�𝑘𝑘�⃗ �
¬𝑃𝑃�𝑘𝑘�⃗ �

= � 𝑓𝑓�𝑘𝑘�⃗ �
𝑃𝑃∨¬𝑃𝑃�𝑘𝑘�⃗ �

 

应用限制定理，�𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄�𝑘𝑘�⃗ �

= � 𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄�𝑘𝑘�⃗ �

𝑃𝑃∨¬𝑃𝑃�𝑘𝑘�⃗ �

 

= � 𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄∧(𝑃𝑃∨¬𝑃𝑃)�𝑘𝑘�⃗ �

= � 𝑓𝑓�𝑘𝑘�⃗ �
(𝑄𝑄∧𝑃𝑃)∨(𝑄𝑄∧¬𝑃𝑃)�𝑘𝑘�⃗ �

 

注意到 P ∧ ¬P 恒为假，有 

� 𝑓𝑓�𝑘𝑘�⃗ �
(𝑄𝑄∧𝑃𝑃)∧(𝑄𝑄∧¬𝑃𝑃)�𝑘𝑘�⃗ �

= � 𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄∧(𝑃𝑃∧¬𝑃𝑃)�𝑘𝑘�⃗ �

= 0 

因此�𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄�𝑘𝑘�⃗ �

= � 𝑓𝑓�𝑘𝑘�⃗ �
(𝑄𝑄∧𝑃𝑃)∨(𝑄𝑄∧¬𝑃𝑃)�𝑘𝑘�⃗ �

+ � 𝑓𝑓�𝑘𝑘�⃗ �
(𝑄𝑄∧𝑃𝑃)∧(𝑄𝑄∧¬𝑃𝑃)�𝑘𝑘�⃗ �

 

= � 𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄∧𝑃𝑃�𝑘𝑘�⃗ �

+ � 𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄∧¬𝑃𝑃�𝑘𝑘�⃗ �

 

= �𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄�𝑘𝑘�⃗ �
𝑃𝑃�𝑘𝑘�⃗ �

+ � 𝑓𝑓�𝑘𝑘�⃗ �
𝑄𝑄�𝑘𝑘�⃗ �

¬𝑃𝑃�𝑘𝑘�⃗ �

 

移项即可证得命题。也可利用𝛿𝛿证明。



2.3 任意步长求和形式 

定义 2.3.1 任意步长求和形式 

对于𝑑𝑑 > 0,
𝑏𝑏 − 𝑎𝑎
𝑑𝑑

∈ 𝐍𝐍, 

取𝛿𝛿[𝑘𝑘1] = �1, 𝑘𝑘1 − 𝑎𝑎 ≡ 0(mod 𝑑𝑑)
0, 𝑘𝑘1 − 𝑎𝑎 ≢ 0(mod 𝑑𝑑) 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎
∆𝑑𝑑

≔ � 𝛿𝛿[𝑘𝑘1]𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

= 𝑓𝑓[𝑎𝑎] + 𝑓𝑓[𝑎𝑎 + 𝑑𝑑] + ⋯+ 𝑓𝑓[𝑏𝑏] 

显然当𝑑𝑑 = 1时退化为标准求和式，Δ1可省略。 

对于 Σ的各种形式，我们试图找到一个等式 

来将其化为标准型以便进一步操作。 

 

定理 2.3.2 任意步长求和标准化 

由于𝑘𝑘1每自增𝑑𝑑才会求和一次， 

考虑让𝑘𝑘1和新的求和变量相关， 

新的求和变量每自增 1，𝑘𝑘1就自增𝑑𝑑 

显然这个新的求和变量是𝑘𝑘2 = 𝑘𝑘1/𝑑𝑑 

而𝑓𝑓[𝑘𝑘1] = 𝑓𝑓[𝑑𝑑 · 𝑘𝑘2]，应用改名定理得 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎
∆𝑑𝑑

= � 𝑓𝑓[𝑑𝑑 · 𝑘𝑘1]

𝑏𝑏
𝑑𝑑

𝑘𝑘1=
𝑎𝑎
𝑑𝑑

 

证明：两边求和式应用定义展开写出即可。 



定义 2.3.3 任意步长的多重求和形式 I 

记𝑎⃗𝑎,𝑏𝑏�⃗ , 𝑘𝑘�⃗ ,𝑑𝑑为𝑛𝑛维向量,𝑓𝑓为𝑛𝑛元函数, 

并且对𝑡𝑡 = 1,2, … ,𝑛𝑛,
𝑏𝑏𝑡𝑡 − 𝑎𝑎𝑡𝑡
𝑑𝑑𝑡𝑡

∈ 𝐍𝐍, 

𝑎𝑎𝑡𝑡 ,𝑏𝑏𝑡𝑡与𝑘𝑘𝑡𝑡, … ,𝑘𝑘𝑛𝑛无关， 

取 δ𝑡𝑡[𝑘𝑘𝑡𝑡] = �1, 𝑘𝑘𝑡𝑡 − 𝑎𝑎𝑡𝑡 ≡ 0(mod𝑑𝑑𝑡𝑡)
0, 𝑘𝑘𝑡𝑡 − 𝑎𝑎𝑡𝑡 ≢ 0(mod𝑑𝑑𝑡𝑡)

 

𝛿𝛿[𝑘𝑘�⃗ ] = �𝛿𝛿𝑡𝑡[𝑘𝑘𝑡𝑡]
𝑛𝑛

𝑡𝑡=1

,则 

�𝑓𝑓[𝑘𝑘�⃗ ]
𝑏𝑏�⃗

𝑘𝑘�⃗ =𝑎𝑎�⃗
∆𝑑𝑑��⃗

: = �𝛿𝛿[𝑘𝑘�⃗ ]𝑓𝑓[𝑘𝑘�⃗ ]
𝑏𝑏�⃗

𝑘𝑘�⃗ =𝑎𝑎�⃗

= � � . . . � 𝑓𝑓[𝑘𝑘�⃗ ]
𝑏𝑏𝑛𝑛

𝑘𝑘𝑛𝑛=𝑎𝑎𝑛𝑛
∆d𝑛𝑛

𝑏𝑏2

𝑘𝑘2=𝑎𝑎2
∆d2

𝑏𝑏1

𝑘𝑘1=𝑎𝑎1
∆d1

 

= � ( � (. . . ( � 𝑓𝑓[𝑘𝑘�⃗ ]
𝑏𝑏𝑛𝑛

𝑘𝑘𝑛𝑛=𝑎𝑎𝑛𝑛
∆d𝑛𝑛

). . . )
𝑏𝑏2

𝑘𝑘2=𝑎𝑎2
∆d2

𝑏𝑏1

𝑘𝑘1=𝑎𝑎1
∆d1

 

注意�𝑓𝑓[𝑘𝑘�⃗ ]
𝑏𝑏�⃗

𝑘𝑘�⃗ =𝑎𝑎�⃗
∆𝑑𝑑��⃗

≠ 𝑓𝑓[𝑎⃗𝑎] + 𝑓𝑓[𝑎⃗𝑎 + 𝑑𝑑]+. . . +𝑓𝑓[𝑏𝑏�⃗ ] 

 

定理 2.3.4 步长替换定理 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎
∆𝑑𝑑

= � 𝑓𝑓[
𝑑𝑑
𝑑𝑑1
𝑘𝑘1]

𝑑𝑑1
𝑑𝑑 𝑏𝑏

𝑘𝑘1=
𝑑𝑑1
𝑑𝑑 𝑎𝑎

∆𝑑𝑑1

 

 



证明：由 2.3.2,得 

� 𝑓𝑓[𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎
∆𝑑𝑑

= � 𝑓𝑓[𝑑𝑑𝑑𝑑1]

𝑏𝑏
𝑑𝑑

𝑘𝑘1=
𝑎𝑎
𝑑𝑑

 

� 𝑓𝑓[
𝑑𝑑
𝑑𝑑1
𝑘𝑘1]

𝑑𝑑1
𝑑𝑑 𝑏𝑏

𝑘𝑘1=
𝑑𝑑1
𝑑𝑑 𝑎𝑎

∆𝑑𝑑1

= � 𝑓𝑓[𝑑𝑑𝑑𝑑1]

𝑏𝑏
𝑑𝑑

𝑘𝑘1=
𝑎𝑎
𝑑𝑑

 

证毕。 

 

定理 2.3.5 填坑原理 

� � 𝑓𝑓[𝑘𝑘1 + 𝑘𝑘2]
𝑑𝑑−𝑑𝑑1

𝑘𝑘2=0
∆d1

𝑏𝑏

𝑘𝑘1=𝑎𝑎
∆𝑑𝑑

= � 𝑓𝑓[𝑘𝑘1]
𝑏𝑏+𝑑𝑑−𝑑𝑑1

𝑘𝑘1=𝑎𝑎
∆𝑑𝑑1

 

其中
𝑑𝑑
𝑑𝑑1

∈ 𝐍𝐍∗ 

证明：设𝑏𝑏 − 𝑎𝑎 = 𝑛𝑛𝑛𝑛,由 2.3.2及换元得 

左边 = � � 𝑓𝑓[𝑎𝑎 + 𝑘𝑘1𝑑𝑑 + 𝑘𝑘2]
𝑑𝑑−𝑑𝑑1

𝑘𝑘2=0
∆𝑑𝑑1

𝑛𝑛

𝑘𝑘1=0

= � � 𝑓𝑓[𝑘𝑘2]
𝑎𝑎+(𝑘𝑘1+1)𝑑𝑑−𝑑𝑑1

𝑘𝑘2=𝑎𝑎+𝑘𝑘1𝑑𝑑
𝛥𝛥𝛥𝛥1

𝑛𝑛

𝑘𝑘1=0

 

将它和推论 1.3.2  

� ( � 𝑓𝑓[𝑘𝑘1]

𝑎𝑎(𝑘𝑘2+1)

𝑘𝑘1=𝑎𝑎𝑘𝑘2+1

)
𝑛𝑛

𝑘𝑘2=1

= � 𝑓𝑓[𝑘𝑘1]
𝑎𝑎𝑛𝑛+1

𝑘𝑘1=𝑎𝑎1+1

 

相对比，有以下一些不同。 



对比,有如下一些不同： 

1°  𝑘𝑘1和𝑘𝑘2位置反了。 

但由改名定理这当然是没关系的。 

2°  外层求和分别是 1 到𝑛𝑛和 0 到𝑛𝑛 

只要我们明白右边求和的下界是由 

左边外层求和下界 

代入内层求和下界得到即可。 

3°  1.3.2 中左边内层上下界 

分别是𝑎𝑎(𝑘𝑘2+1)和𝑎𝑎𝑘𝑘2 + 1 

而证明中的内层上下界 

分别具有𝑥𝑥(𝑘𝑘1+1) − 𝑑𝑑1和𝑥𝑥1的形式。 

注意到证明中带了 d1的步长， 

这仍然能保持前后连接的完整性。 

因此我们仍然能够得到 

左边 = � � 𝑓𝑓[𝑘𝑘2]
𝑎𝑎+(𝑘𝑘1+1)𝑑𝑑−𝑑𝑑1

𝑘𝑘2=𝑎𝑎+𝑘𝑘1𝑑𝑑
∆𝑑𝑑1

𝑛𝑛

𝑘𝑘1=0

= � 𝑓𝑓[𝑘𝑘1

𝑏𝑏+𝑑𝑑−𝑑𝑑1

𝑘𝑘1=𝑎𝑎
∆𝑑𝑑1

] 

证毕。 

之所以叫填坑原理，是因原来求和步长为𝑑𝑑， 

中间很多项没有加，好像有很多坑。 

最后得到的求和步长缩小为为𝑑𝑑1， 

正好似把其中的坑填掉了一部分。 



有兴趣的读者可以试试用广义合并定理证明。 

 

在证明过程中用到了之前的一堆定理， 

而之所以在第一章详细论述它们， 

正是为了打下坚实的基础。 

后面很多证明也都依赖于这些操作。 

 

应用 2.3.6 证明定理 1.3.5 

多项相间合并定理： 

� ( � 𝑓𝑓[𝑛𝑛𝑛𝑛1 + 𝑘𝑘2]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

)
𝑛𝑛−1

𝑘𝑘2=0

= � 𝑓𝑓[𝑘𝑘1]
𝑛𝑛𝑛𝑛+𝑛𝑛−1

𝑘𝑘1=𝑛𝑛𝑛𝑛

 

证明： 

左边 = � ( � 𝑓𝑓[𝑘𝑘1 + 𝑘𝑘2]
𝑛𝑛𝑛𝑛

𝑘𝑘1=𝑛𝑛𝑛𝑛
∆𝑛𝑛

)
𝑛𝑛−1

𝑘𝑘2=0

 

由嵌套交换定理(对步长形式也成立，证略) 

得到 左边 = � (� 𝑓𝑓[𝑘𝑘1 + 𝑘𝑘2]
𝑛𝑛−1

𝑘𝑘2=0

)
𝑛𝑛𝑛𝑛

𝑘𝑘1=𝑛𝑛𝑛𝑛
∆𝑛𝑛

 

注意到默认求和有步长为 1，应用填坑原理： 

左边 = � (� 𝑓𝑓[𝑘𝑘1 + 𝑘𝑘2]
𝑛𝑛−1

𝑘𝑘2=0
∆1

)
𝑛𝑛𝑛𝑛

𝑘𝑘1=𝑛𝑛𝑛𝑛
∆𝑛𝑛

= � 𝑓𝑓[𝑘𝑘1]
𝑛𝑛𝑛𝑛+𝑛𝑛−1

𝑘𝑘1=𝑛𝑛𝑛𝑛

，证毕。



2.4 不等求和形式 

以下讨论中𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑均与𝑘𝑘1,𝑘𝑘2无关。 

只考虑常见的情况： 

内外层求和上下界只相差某个整数 

即对于 � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

，有𝑎𝑎 − 𝑐𝑐 ∈ 𝐙𝐙 

 

定义 2.4.1 不等求和形式 

由 kronecker 𝛿𝛿ij = �1, 𝑖𝑖 = 𝑗𝑗
0, 𝑖𝑖 ≠ 𝑗𝑗 

� � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1≠𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

≔ � � (1− 𝛿𝛿𝑘𝑘1𝑘𝑘2)𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

 

定理 2.4.2 不等求和形式标准化 

当min{𝑏𝑏,𝑑𝑑} < max{𝑎𝑎, 𝑐𝑐}时， 

� � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1≠𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

当 min{𝑏𝑏,𝑑𝑑} ≥ max{𝑎𝑎, 𝑐𝑐}时， 

� � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1≠𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

− � 𝑓𝑓[𝑘𝑘1,𝑘𝑘1]
min{𝑏𝑏,𝑑𝑑}

𝑘𝑘1=max{𝑎𝑎,𝑐𝑐}

 



证明：第一种情况下， 

注意到𝑎𝑎 ≤ 𝑏𝑏且𝑐𝑐 ≤ 𝑑𝑑，有 

𝑎𝑎 ≤ 𝑘𝑘1 ≤ 𝑏𝑏 < 𝑐𝑐 ≤ 𝑘𝑘2 ≤ 𝑑𝑑或𝑐𝑐 ≤ 𝑘𝑘2 ≤ 𝑑𝑑 < 𝑎𝑎 ≤ 𝑘𝑘1 ≤ 𝑏𝑏 

可知k1 ≠ k2恒成立，结论显然。 

第二种情况下 

𝐙𝐙[𝑎𝑎, 𝑏𝑏]⋂𝐙𝐙[𝑐𝑐,𝑑𝑑] = 𝐙𝐙[max{𝑎𝑎, 𝑐𝑐}, min{𝑏𝑏,𝑑𝑑}] 

所以𝑘𝑘1,𝑘𝑘2仅可能在𝐙𝐙[max{𝑎𝑎, 𝑐𝑐}, min{𝑏𝑏,𝑑𝑑}]中相等，于是有 

� � 𝛿𝛿𝑘𝑘1𝑘𝑘2𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � � 𝛿𝛿𝑘𝑘1𝑘𝑘2𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
min{𝑏𝑏,𝑑𝑑}

𝑘𝑘2=max{𝑎𝑎,𝑐𝑐}

�
min{𝑏𝑏,𝑑𝑑}

𝑘𝑘1=max{𝑎𝑎,𝑐𝑐}

 

= � 𝑓𝑓[𝑘𝑘1,𝑘𝑘1]
min{𝑏𝑏,𝑑𝑑}

𝑘𝑘1=max{𝑎𝑎,𝑐𝑐}

 

因而 

� � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1≠𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

− � � 𝛿𝛿𝑘𝑘1𝑘𝑘2𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

− � 𝑓𝑓[𝑘𝑘1,𝑘𝑘1]
min{𝑏𝑏,𝑑𝑑}

𝑘𝑘1=max{𝑎𝑎,𝑐𝑐}

 

 

定义 2.4.3 常用不等求和形式 

经常遇到的不等求和形式是求和里外层有相同的上下界。 



定义 � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1≠𝑘𝑘2

≔ � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘2=𝑎𝑎
𝑘𝑘1≠𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

由定理 2.3.4，显然有 

� 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1≠𝑘𝑘2

= � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎

− � 𝑓𝑓[𝑘𝑘1,𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

 

定义 2.4.4 小于求和形式 

取 δ[𝑘𝑘1,𝑘𝑘2] = �1, 𝑘𝑘1 < 𝑘𝑘2
0, 𝑘𝑘1 ≥ 𝑘𝑘2

 

则 � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

≔ � � 𝛿𝛿[𝑘𝑘1,𝑘𝑘2]𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

 

定理 2.4.5 小于求和形式标准化 

我们考虑以下几种情况。 

1°  𝑏𝑏 < 𝑐𝑐 

此时由 a ≤ 𝑘𝑘1 ≤ 𝑏𝑏 < 𝑐𝑐 ≤ 𝑘𝑘2 ≤ 𝑑𝑑,可知 k1 < 𝑘𝑘2恒成立， 

故 � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

 

2°  𝑎𝑎 ≥ d 

此时由 c ≤ 𝑘𝑘2 ≤ 𝑑𝑑 ≤ 𝑎𝑎 ≤ 𝑘𝑘1 ≤ 𝑏𝑏,可知 k2 ≤ 𝑘𝑘1恒成立 



故 � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= 0 

除去以上两种情况，考虑内层求和。 

要想让 k2 > 𝑘𝑘1，只需让 k2从 k1 + 1 开始求和。 

� � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � �� 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

�
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

= � ( � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑘𝑘1+1

)
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

但是注意到𝑏𝑏和𝑑𝑑还需要比较。 

3°  𝑏𝑏 ≥ c 且𝑎𝑎 < 𝑑𝑑且𝑏𝑏 < 𝑑𝑑 

此时𝑏𝑏最大可取到𝑑𝑑 − 1，𝑘𝑘1最大取𝑑𝑑 − 1 

内层求和仍然成立𝑘𝑘1 + 1 ≤ 𝑑𝑑 

因此 � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑘𝑘1+1

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

4°  𝑏𝑏 ≥ c 且 a < d 且 b ≥ d 

将外层求和拆为两部分。 

� � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

𝑑𝑑−1

𝑘𝑘1=𝑎𝑎

+ � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑑𝑑

 

注意到第一项符合情况 3，第二项符合情况 2 



分别应用结论，得 

� � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑘𝑘1+1

𝑑𝑑−1

𝑘𝑘1=𝑎𝑎

 

 

情况 3、4 可合并写为 

当 b ≥ c 且 a < d 时 

� � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑐𝑐
𝑘𝑘1<𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑑𝑑

𝑘𝑘2=𝑘𝑘1+1

min{𝑏𝑏,𝑑𝑑−1}

𝑘𝑘1=𝑎𝑎

 

 

定义 2.4.6 常用小于求和形式 

类似 2.4.3，经常遇到的是 

内外层求和上下界相同的情况。 

规定𝑏𝑏 > 𝑎𝑎， 

定义 � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1<𝑘𝑘2

≔ � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘2=𝑎𝑎
𝑘𝑘1<𝑘𝑘2

𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

由 2.4.5 可得 

� 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1<𝑘𝑘2

= � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘2=𝑘𝑘1+1

𝑏𝑏−1

𝑘𝑘1=𝑎𝑎

 

 

 



定理 2.4.7 对角线切分定理 

考虑 � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎

，其中𝑏𝑏 > 𝑎𝑎 

由𝑘𝑘1 < 𝑘𝑘2,𝑘𝑘1 > 𝑘𝑘2,𝑘𝑘1 = 𝑘𝑘2不能同时存在， 

并且它们的并组成所有情况，有 

� 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎

 

= � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1<𝑘𝑘2

+ � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1>𝑘𝑘2

+ � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1=𝑘𝑘2

 

= � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1<𝑘𝑘2

+ � 𝑓𝑓[𝑘𝑘2,𝑘𝑘1]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1<𝑘𝑘2

+ � 𝑓𝑓[𝑘𝑘1,𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

= � � (𝑓𝑓[𝑘𝑘1,𝑘𝑘2] + 𝑓𝑓[𝑘𝑘2,𝑘𝑘1])
𝑏𝑏

𝑘𝑘2=𝑘𝑘1+1

𝑏𝑏−1

𝑘𝑘1=𝑎𝑎

+ � 𝑓𝑓[𝑘𝑘1,𝑘𝑘1]
𝑏𝑏

𝑘𝑘1=𝑎𝑎

 

移项并应用 2.4.3，得到 

� 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1≠𝑘𝑘2

= � � (𝑓𝑓[𝑘𝑘1,𝑘𝑘2] + 𝑓𝑓[𝑘𝑘2,𝑘𝑘1])
𝑏𝑏

𝑘𝑘2=𝑘𝑘1+1

𝑏𝑏−1

𝑘𝑘1=𝑎𝑎

 

若𝑓𝑓具有对称性，即𝑓𝑓[𝑘𝑘1,𝑘𝑘2] = 𝑓𝑓[𝑘𝑘2,𝑘𝑘1]，则 

� 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1≠𝑘𝑘2

= 2 � � 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘2=𝑘𝑘1+1

𝑏𝑏−1

𝑘𝑘1=𝑎𝑎

 

 



若𝑓𝑓具有非对角斜对称性，即当𝑘𝑘1 ≠ 𝑘𝑘2时，有 

𝑓𝑓[𝑘𝑘1,𝑘𝑘2] = −𝑓𝑓[𝑘𝑘2,𝑘𝑘1]，则 

� 𝑓𝑓[𝑘𝑘1,𝑘𝑘2]
𝑏𝑏

𝑘𝑘1,𝑘𝑘2=𝑎𝑎
𝑘𝑘1≠𝑘𝑘2

= 0 

 

 



2.5 任选求和形式 

定义 2.5.1 有序任选求和形式 

设𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛为𝑛𝑛个变元,𝑓𝑓为𝑟𝑟元函数. 

𝑡𝑡 = (𝑡𝑡1, … , 𝑡𝑡𝑟𝑟)为𝑟𝑟维向量，满足𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑟𝑟互不相等， 

并记𝑇𝑇 = {𝑡𝑡1, … , 𝑡𝑡𝑟𝑟}, 𝑥𝑥𝑡𝑡 = �𝑥𝑥𝑡𝑡1 , … ,𝑥𝑥𝑡𝑡𝑟𝑟� 

取𝛿𝛿[𝑇𝑇] = �
1, 𝑇𝑇 ⊆ {1,2, … ,𝑛𝑛}
0, 𝑇𝑇 ⊈ {1,2, … ,𝑛𝑛} 

有序任选求和形式定义为 

  � 𝑓𝑓[𝑥𝑥𝑡𝑡]
 

𝑇𝑇⊆𝐙𝐙[1,𝑛𝑛]

≔ ∑δ[𝑇𝑇]𝑓𝑓[𝑥𝑥𝑡𝑡] 

并为了显示出𝑟𝑟，形式地记为 

� 𝑓𝑓[𝑥𝑥𝑡𝑡]
 

𝐴𝐴𝑛𝑛𝑟𝑟→𝑡𝑡

≔ � 𝑓𝑓[𝑥𝑥𝑡𝑡]
 

𝑇𝑇⊆𝐙𝐙[1,𝑛𝑛]

 

此处求和号下的𝐴𝐴𝑛𝑛𝑟𝑟仅仅是一个符号而不是具体的排列数， 

之后求和号下的𝐶𝐶𝑛𝑛𝑟𝑟亦是。 

 

定理 2.5.2 有序任选求和形式标准化 

任选求和实质是以一组数(𝑡𝑡1, … , 𝑡𝑡𝑟𝑟)为变元的求和， 

可通过多重求和及不等求和标准化。 



� 𝑓𝑓[𝑥𝑥𝑡𝑡]
 

𝐴𝐴𝑛𝑛𝑟𝑟→𝑡𝑡

= � � … � 𝑓𝑓[𝑥𝑥𝑡𝑡]
𝑛𝑛

𝑡𝑡𝑟𝑟=1
𝑡𝑡𝑟𝑟≠𝑡𝑡1
𝑡𝑡𝑟𝑟≠𝑡𝑡2…
𝑡𝑡𝑟𝑟≠𝑡𝑡𝑟𝑟−1

𝑛𝑛

𝑡𝑡2=1
𝑡𝑡2≠𝑡𝑡1

𝑛𝑛

𝑡𝑡1=1

 

证：只需验证右式求和条件满足定义。 

由 2.4.3 常用不等求和形式， 

� � … � 𝑓𝑓[𝑥𝑥𝑡𝑡]
𝑛𝑛

𝑡𝑡𝑟𝑟=1
𝑡𝑡𝑟𝑟≠𝑡𝑡1
𝑡𝑡𝑟𝑟≠𝑡𝑡2…
𝑡𝑡𝑟𝑟≠𝑡𝑡𝑟𝑟−1

𝑛𝑛

𝑡𝑡2=1
𝑡𝑡2≠𝑡𝑡1

𝑛𝑛

𝑡𝑡1=1

= � 𝑓𝑓[𝑥𝑥𝑡𝑡]
𝑛𝑛

𝑡𝑡1,…,𝑡𝑡𝑟𝑟=1
𝑡𝑡2≠𝑡𝑡1

𝑡𝑡3≠𝑡𝑡1∧𝑡𝑡3≠𝑡𝑡2…
𝑡𝑡𝑟𝑟≠𝑡𝑡1∧…∧𝑡𝑡𝑟𝑟≠𝑡𝑡𝑟𝑟−1

 

求和条件为𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑟𝑟 ∈ 𝐙𝐙[1,𝑛𝑛]且𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑟𝑟互不相等 

显然{𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑟𝑟} ⊆ 𝐙𝐙[1,𝑛𝑛]，右式求和条件满足定义。 

因而命题成立。 

 

定义 2.5.3 无序任选求和形式 

设𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛为𝑛𝑛个变元,𝑓𝑓为𝑟𝑟元函数. 

𝑡𝑡 = (𝑡𝑡1, … , 𝑡𝑡𝑟𝑟)为𝑟𝑟维向量，满足𝑡𝑡1 < 𝑡𝑡2 < ⋯ < 𝑡𝑡𝑟𝑟， 

并记𝑇𝑇 = {𝑡𝑡1, … , 𝑡𝑡𝑟𝑟}, 𝑥𝑥𝑡𝑡 = �𝑥𝑥𝑡𝑡1 , … ,𝑥𝑥𝑡𝑡𝑟𝑟� 

取𝛿𝛿[𝑇𝑇] = �1, 𝑇𝑇 ⊆ {1,2, … ,𝑛𝑛}
0, 𝑇𝑇 ⊈ {1,2, … ,𝑛𝑛} 

无序任选求和形式定义为 

  � 𝑓𝑓[𝑥𝑥𝑡𝑡]
 

𝑇𝑇⊆𝐙𝐙[1,𝑛𝑛]

≔ ∑δ[𝑇𝑇]𝑓𝑓[𝑥𝑥𝑡𝑡] 



并为了显示出𝑟𝑟，形式地记为 

� 𝑓𝑓[𝑥𝑥𝑡𝑡]
 

𝐶𝐶𝑛𝑛𝑟𝑟→𝑡𝑡

≔ � 𝑓𝑓[𝑥𝑥𝑡𝑡]
 

𝑇𝑇⊆𝐙𝐙[1,𝑛𝑛]

 

 

定理 2.5.4 无序任选求和形式标准化 

� 𝑓𝑓�𝑥𝑥𝑡𝑡�
 

𝐶𝐶𝑛𝑛𝑟𝑟→𝑡𝑡

= � � … � 𝑓𝑓�𝑥𝑥𝑡𝑡�
𝑛𝑛

𝑡𝑡𝑟𝑟=𝑡𝑡𝑟𝑟−1+1

𝑛𝑛−𝑟𝑟+2

𝑡𝑡2=𝑡𝑡1+1

𝑛𝑛−𝑟𝑟+1

𝑡𝑡1=1

 

证：直接把所有条件写在求和号下，并且拆分小于号。 

� 𝑓𝑓�𝑥𝑥𝑡𝑡�
 

𝐶𝐶𝑛𝑛𝑟𝑟→𝑡𝑡

= � 𝑓𝑓�𝑥𝑥𝑡𝑡�
 

1≤𝑡𝑡1<𝑡𝑡2<⋯<𝑡𝑡𝑛𝑛≤𝑛𝑛

= � � … � 𝑓𝑓�𝑥𝑥𝑡𝑡�
𝑛𝑛

𝑡𝑡𝑟𝑟=1
𝑡𝑡𝑟𝑟−1<𝑡𝑡𝑟𝑟

𝑛𝑛

𝑡𝑡2=1
𝑡𝑡1<𝑡𝑡2

𝑛𝑛

𝑡𝑡1=1

 

利用常用小于求和形式并控制上下限即得。 

� � … � 𝑓𝑓�𝑥𝑥𝑡𝑡�
𝑛𝑛

𝑡𝑡𝑟𝑟=1
𝑡𝑡𝑟𝑟−1<𝑡𝑡𝑟𝑟

𝑛𝑛

𝑡𝑡2=1
𝑡𝑡1<𝑡𝑡2

𝑛𝑛

𝑡𝑡1=1

= � � … � 𝑓𝑓�𝑥𝑥𝑡𝑡�
𝑛𝑛

𝑡𝑡𝑟𝑟=𝑡𝑡𝑟𝑟−1+1

𝑛𝑛−𝑟𝑟+2

𝑡𝑡2=𝑡𝑡1+1

𝑛𝑛−𝑟𝑟+1

𝑡𝑡1=1

 

 

在对上文内容进行说明之前，先说明一些概念。 

置换𝜎𝜎是有限集合到它自身的双射。 

不考虑具体元素，不妨设有限集合为𝐙𝐙[1,𝑛𝑛] = {1,2, … ,𝑛𝑛} 

一般用 2 × 𝑛𝑛矩阵表示某个置换: � 1 2 … 𝑛𝑛
𝜎𝜎[1] 𝜎𝜎[2] … 𝜎𝜎[𝑛𝑛]� 

对某个𝑛𝑛，所有𝜎𝜎组成集合𝑆𝑆𝑛𝑛 

例：当𝑛𝑛 = 3 时,𝑆𝑆𝑛𝑛 = {�1 2 3
1 2 3� , �1 2 3

1 3 2�, 



�1 2 3
2 1 3� , �1 2 3

2 3 1� , �1 2 3
3 1 2� , �1 2 3

3 2 1�} 

𝑛𝑛元函数𝑓𝑓[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]称作是对称的，如果对任意的𝜎𝜎 ∈ 𝑆𝑆𝑛𝑛 

有𝑓𝑓[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛] = 𝑓𝑓�𝑥𝑥𝜎𝜎[1], … , 𝑥𝑥𝜎𝜎[𝑛𝑛]� 

例：韦达定理出现的多项式都是对称𝑛𝑛元函数。如： 

𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3, 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥2𝑥𝑥3, 𝑥𝑥1𝑥𝑥2𝑥𝑥3 

 

对比有序和无序求和形式，可以发现仅有一处重要差别。在无序

形式中，向量𝑡𝑡各分量从互相不等加强为从小到大排列。 

这是因为这种形式常用在函数是对称的的情况下，选出的𝑟𝑟个变元

的不同排列对函数没有影响，对每种排列求和就造成重复，因此

只需选择其中任意一种排列即可。而选中从小到大的排列方式是

为了明确起见。 

而若函数不是对称的，变元的不同排列得到的结果就不同。一些

时候有奇效，但大多数情况不容易分析。 

例：取𝑛𝑛 = 4; 𝑟𝑟 = 2;𝑓𝑓�𝑥𝑥𝑡𝑡� = 𝑥𝑥𝑡𝑡1𝑥𝑥𝑡𝑡2，此时𝑓𝑓是对称的。 

� 𝑥𝑥𝑡𝑡1𝑥𝑥𝑡𝑡2

 

𝐴𝐴42→𝑡𝑡

= 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥1𝑥𝑥4 + 𝑥𝑥2𝑥𝑥1 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥2𝑥𝑥4 + 𝑥𝑥3𝑥𝑥1

+ 𝑥𝑥3𝑥𝑥2 + 𝑥𝑥3𝑥𝑥4 + 𝑥𝑥4𝑥𝑥1 + 𝑥𝑥4𝑥𝑥2 + 𝑥𝑥4𝑥𝑥3 

                     = 2(𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥1𝑥𝑥4 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥2𝑥𝑥4 + 𝑥𝑥3𝑥𝑥4) 

� 𝑥𝑥𝑡𝑡1𝑥𝑥𝑡𝑡2

 

𝐶𝐶42→𝑡𝑡

= 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥1𝑥𝑥4 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥2𝑥𝑥4 + 𝑥𝑥3𝑥𝑥4 

取𝑛𝑛 = 4; 𝑟𝑟 = 3;𝑓𝑓�𝑥𝑥𝑡𝑡� = 𝑥𝑥𝑡𝑡1𝑥𝑥𝑡𝑡2，此时𝑓𝑓不是对称的。 



� 𝑥𝑥𝑡𝑡1𝑥𝑥𝑡𝑡2

 

𝐴𝐴43→𝑡𝑡

= 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥1𝑥𝑥4 + 𝑥𝑥1𝑥𝑥4 + 𝑥𝑥2𝑥𝑥1

+ 𝑥𝑥2𝑥𝑥1 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥2𝑥𝑥4 + 𝑥𝑥2𝑥𝑥4 + 𝑥𝑥3𝑥𝑥1
+ 𝑥𝑥3𝑥𝑥1 + 𝑥𝑥3𝑥𝑥2 + 𝑥𝑥3𝑥𝑥2 + 𝑥𝑥3𝑥𝑥4 + 𝑥𝑥3𝑥𝑥4 + 𝑥𝑥4𝑥𝑥1
+ 𝑥𝑥4𝑥𝑥1 + 𝑥𝑥4𝑥𝑥2 + 𝑥𝑥4𝑥𝑥2 + 𝑥𝑥4𝑥𝑥3 + 𝑥𝑥4𝑥𝑥3 

                     = 4(𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥1𝑥𝑥4 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥2𝑥𝑥4 + 𝑥𝑥3𝑥𝑥4) 

� 𝑥𝑥𝑡𝑡1𝑥𝑥𝑡𝑡2

 

𝐶𝐶43→𝑡𝑡

= 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥2𝑥𝑥3 

 

定理 2.5.5 项数计数定理 

若把函数𝑓𝑓[𝑥𝑥𝑡𝑡]看成一项，则 

� 𝑓𝑓�𝑥𝑥𝑡𝑡�
 

𝐴𝐴𝑛𝑛𝑟𝑟→𝑡𝑡

项数为𝐴𝐴𝑛𝑛𝑟𝑟 =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
= (𝑛𝑛)r 

� 𝑓𝑓[𝑥𝑥𝑡𝑡]
 

𝐶𝐶𝑛𝑛𝑟𝑟→𝑡𝑡

项数为𝐶𝐶𝑛𝑛𝑟𝑟 =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)! 𝑟𝑟!
=

(𝑛𝑛)𝑟𝑟
(𝑟𝑟)𝑟𝑟

 

证：对于有序任选求和形式而言， 

求和条件为𝑡𝑡1, … , 𝑡𝑡𝑟𝑟互不相同且都在𝐙𝐙[1,𝑛𝑛]内。 

则𝑡𝑡1有𝑛𝑛种取法，𝑡𝑡2有𝑛𝑛 − 1 种取法, … , 𝑡𝑡𝑟𝑟有𝑛𝑛 − 𝑟𝑟 + 1 种取法。 

由乘法计数原理可知总共有
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
种取法。 

对于相同的集合�更贴切地说，值域�{𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑟𝑟} 

在有序形式中共有全排列𝑟𝑟!种，而在无序形式中只算作 1种。 



因此
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
再除以𝑟𝑟!就是无序任选求和形式的项数。 

 

推论 2.5.6 重复计数定理 

若𝑓𝑓[𝑥𝑥𝑡𝑡]为对称函数，则 

� 𝑓𝑓�𝑥𝑥𝑡𝑡�
 

𝐴𝐴𝑛𝑛𝑟𝑟→𝑡𝑡

= 𝑟𝑟! × � 𝑓𝑓[𝑥𝑥𝑡𝑡]
 

𝐶𝐶𝑛𝑛𝑟𝑟→𝑡𝑡

 

证：由 2.5.5 的证明可知，对于相同的集合{𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑟𝑟}，由于函

数𝑓𝑓是对称的，因而不论如何排列结果都相同，而在有序形式中共

计算了𝑟𝑟!次，在无序形式中只计算了 1次，因此两种求和形式之间

相差一个系数。 

 

应用 2.5.7 

��(𝑥𝑥 − 𝑎𝑎𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
′

= � �(𝑥𝑥 − 𝑎𝑎𝑡𝑡𝑘𝑘)
𝑛𝑛−1

𝑘𝑘=1

 

𝐶𝐶𝑛𝑛𝑛𝑛−1→𝑡𝑡

 

��(𝑥𝑥 − 𝑎𝑎𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
′′

= � � �(𝑥𝑥 − 𝑎𝑎𝑟𝑟𝑡𝑡𝑘𝑘)
𝑛𝑛−2

𝑘𝑘=1

 

𝐶𝐶𝑛𝑛−1𝑛𝑛−2→𝑟𝑟

 

𝐶𝐶𝑛𝑛𝑛𝑛−1→𝑡𝑡

 



2.6 置换轮换对称求和形式 

定义 2.6.1 置换求和形式 

设𝜙𝜙[𝜎𝜎]是以置换�概念见上节�集合为定义域的映射， 

取𝛿𝛿[𝜎𝜎] = �1, 𝜎𝜎 ∈ 𝑆𝑆𝑛𝑛
0, 𝜎𝜎 ∉ 𝑆𝑆𝑛𝑛

 

则置换求和形式定义为 

� 𝜙𝜙[𝜎𝜎]
 

𝜎𝜎∈𝑆𝑆𝑛𝑛

≔�𝛿𝛿[𝜎𝜎]𝜙𝜙[𝜎𝜎] 

 

说明：置换𝜎𝜎是一个函数，而𝛿𝛿是置换到一个数（0 或 1）的映射，

因而事实上𝛿𝛿是一个泛函，求和不再是遍历每个可能的数，而是遍

历每种可能的函数。同样地，𝜙𝜙是置换到一个数，或者一个函数，

甚至别的事物的映射。在求和中真正变的不是𝑘𝑘1或者𝑥𝑥1,𝑥𝑥2，而是

函数𝜎𝜎. 

由于𝜎𝜎的特殊性（离散且有限），置换𝜎𝜎由𝑛𝑛个数𝜎𝜎[1],𝜎𝜎[2], … ,𝜎𝜎[𝑛𝑛]唯

一确定。因此将𝛿𝛿或者𝜙𝜙看作𝑛𝑛元函数理解也是可以的。 

事实上，若𝜙𝜙[𝜎𝜎]可表为𝑓𝑓�𝑥𝑥𝜎𝜎[1], 𝑥𝑥𝜎𝜎[2], … , 𝑥𝑥𝜎𝜎[𝑛𝑛]�的形式， 

则令𝑡𝑡𝑘𝑘 = 𝜎𝜎[𝑘𝑘],𝑘𝑘 ∈ 𝐙𝐙[1,𝑛𝑛], 

易证 � 𝜙𝜙[𝜎𝜎]
 

𝜎𝜎∈𝑆𝑆𝑛𝑛

= � 𝑓𝑓[𝑥𝑥𝑡𝑡]
 

𝐴𝐴𝑛𝑛𝑛𝑛→𝑡𝑡

 

 

 



在介绍轮换求和形式之前，先引入一类特殊的置换。 

置换𝜏𝜏 = �1 2 … 𝑛𝑛 − 1 𝑛𝑛
2 3 … 𝑛𝑛 1� ∈ 𝑆𝑆𝑛𝑛 

利用复合映射得到𝜏𝜏2 = �1 2 … 𝑛𝑛 − 2 𝑛𝑛 − 1 𝑛𝑛
3 4 … 𝑛𝑛 1 2� 

并归纳定义𝜏𝜏𝑘𝑘 = 𝜏𝜏 ∘ 𝜏𝜏𝑘𝑘−1 

显然有𝜏𝜏𝑘𝑘[𝑚𝑚] = � 𝑚𝑚 + 𝑘𝑘 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 −𝑚𝑚
𝑚𝑚 + 𝑘𝑘 − 𝑛𝑛 𝑛𝑛 −𝑚𝑚 < 𝑘𝑘 ≤ 2𝑛𝑛 −𝑚𝑚， 

𝜏𝜏𝑛𝑛 = 恒等映射𝑒𝑒 

 

定义 2.6.2 轮换求和形式 

设𝜙𝜙[𝜎𝜎]是以{𝜏𝜏𝑘𝑘�𝑘𝑘 ∈ 𝐙𝐙[1,𝑛𝑛]}为定义域的映射， 

轮换求和形式定义为 

�𝜙𝜙[𝜎𝜎]
 

𝑐𝑐𝑐𝑐𝑐𝑐

≔�𝜙𝜙[𝜏𝜏𝑘𝑘]
𝑛𝑛

𝑘𝑘=1

 

此定义式可直接用于计算。 

 

实际计算时，往往让𝑘𝑘从 0 递增至𝑛𝑛 − 1，所得结果相同。 

例：�𝑥𝑥𝜎𝜎[1]
2 𝑥𝑥𝜎𝜎[2]

 

𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑥𝑥12𝑥𝑥2 + 𝑥𝑥22𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛−12 𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛2𝑥𝑥1 

 

定义 2.6.3 对称求和形式 

与置换求和形式完全相同。 



�𝜙𝜙[𝜎𝜎]
 

𝑠𝑠𝑠𝑠𝑠𝑠

≔ � 𝜙𝜙[𝜎𝜎]
 

𝜎𝜎∈𝑆𝑆𝑛𝑛

 

 

注 1：对称、置换求和形式从符号上无法得到𝑛𝑛，如果是具体的数

值需要单独注明。 

注 2：大部分资料给出的轮换、对称求和形式中默认𝑛𝑛 = 3，并将

𝑥𝑥1,𝑥𝑥2,𝑥𝑥3换为𝑥𝑥,𝑦𝑦, 𝑧𝑧或𝑎𝑎, 𝑏𝑏, 𝑐𝑐表示。本书中不采用这一规定。



3 多项式 

��𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�
2

 

= ��𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

���𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

� =(1.4) � � 𝑥𝑥𝑘𝑘1

𝑛𝑛

𝑘𝑘2=1

𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1=1

 

=(2.4.7) �𝑥𝑥𝑘𝑘2
𝑛𝑛

𝑘𝑘=1

+ � 𝑥𝑥𝑘𝑘1𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2

 

=(2.4.7) � 𝑥𝑥𝑘𝑘1𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1<𝑘𝑘2

+ � 𝑥𝑥𝑘𝑘1𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1>𝑘𝑘2

+ � 𝑥𝑥𝑘𝑘1𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1=𝑘𝑘2

 

=(2.4.7) �𝑥𝑥𝑘𝑘2
𝑛𝑛

𝑘𝑘=1

+ 2 � 𝑥𝑥𝑘𝑘1𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1>𝑘𝑘2

 

=(𝑛𝑛≥2)
(2.4.6) �𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘=1

+ 2 � � 𝑥𝑥𝑘𝑘1𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=2

𝑛𝑛−1

𝑘𝑘1=1

 

 

��𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘
𝑛𝑛

𝑘𝑘=0

���𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘
𝑛𝑛

𝑘𝑘=0

� 

= � � 𝑏𝑏𝑘𝑘2𝑥𝑥
𝑘𝑘2

𝑛𝑛

𝑘𝑘2=0

𝑎𝑎𝑘𝑘1𝑥𝑥
𝑘𝑘1

𝑛𝑛

𝑘𝑘1=0

 



= � � 𝑎𝑎𝑘𝑘1𝑏𝑏𝑘𝑘2𝑥𝑥
𝑘𝑘1+𝑘𝑘2

𝑛𝑛

𝑘𝑘2=0

𝑛𝑛

𝑘𝑘1=0

 

= �

⎝

⎜
⎛

� 𝑎𝑎𝑘𝑘1𝑏𝑏𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=0
𝑘𝑘1+𝑘𝑘2=𝑡𝑡 ⎠

⎟
⎞
𝑥𝑥𝑡𝑡

2𝑛𝑛

𝑡𝑡=0

 

由𝑘𝑘1,𝑘𝑘2 ∈ 𝐙𝐙[0,𝑛𝑛],𝑘𝑘2 = 𝑡𝑡 − 𝑘𝑘1 

得𝑘𝑘1 ∈ [max {𝑡𝑡 − 𝑛𝑛, 0}, min {𝑡𝑡,𝑛𝑛}] 

当𝑡𝑡 ≤ 𝑛𝑛时，𝑘𝑘1 ∈ [0, 𝑡𝑡];当𝑡𝑡 ≥ 𝑛𝑛时，𝑘𝑘1 ∈ [𝑡𝑡 − 𝑛𝑛,𝑛𝑛]; 

�

⎝

⎜
⎛

� 𝑎𝑎𝑘𝑘1𝑏𝑏𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=0
𝑘𝑘1+𝑘𝑘2=𝑡𝑡 ⎠

⎟
⎞
𝑥𝑥𝑡𝑡

2𝑛𝑛

𝑡𝑡=0

 

= ���𝑎𝑎𝑘𝑘𝑏𝑏𝑡𝑡−𝑘𝑘

𝑡𝑡

𝑘𝑘=0

�𝑥𝑥𝑡𝑡
𝑛𝑛

𝑡𝑡=0

+ � � � 𝑎𝑎𝑘𝑘𝑏𝑏𝑡𝑡−𝑘𝑘

𝑛𝑛

𝑘𝑘=𝑡𝑡−𝑛𝑛

�𝑥𝑥𝑡𝑡
2𝑛𝑛

𝑡𝑡=𝑛𝑛+1

 

=
②新𝑡𝑡=2𝑛𝑛−旧𝑡𝑡
①新𝑘𝑘=旧𝑘𝑘−𝑡𝑡+𝑛𝑛 ���𝑎𝑎𝑘𝑘𝑏𝑏𝑡𝑡−𝑘𝑘

𝑡𝑡

𝑘𝑘=0

�𝑥𝑥𝑡𝑡
𝑛𝑛

𝑡𝑡=0

+ ���𝑎𝑎𝑘𝑘+𝑛𝑛−𝑡𝑡𝑏𝑏𝑛𝑛−𝑘𝑘

𝑡𝑡

𝑘𝑘=0

�𝑥𝑥2𝑛𝑛−𝑡𝑡
𝑛𝑛−1

𝑡𝑡=0

 

 

𝑎𝑎𝑝𝑝+1 − 𝑏𝑏𝑝𝑝+1 = (𝑎𝑎 − 𝑏𝑏)�𝑎𝑎𝑝𝑝−𝑘𝑘𝑏𝑏𝑘𝑘
𝑝𝑝

𝑘𝑘=0

     (𝑝𝑝 ∈ 𝐍𝐍) 

证明： 

右边 = �𝑎𝑎𝑝𝑝+1−𝑘𝑘𝑏𝑏𝑘𝑘
𝑝𝑝

𝑘𝑘=0

−�𝑎𝑎𝑝𝑝−𝑘𝑘𝑏𝑏𝑘𝑘+1
𝑝𝑝

𝑘𝑘=0

 



= �𝑎𝑎𝑝𝑝+1−𝑘𝑘𝑏𝑏𝑘𝑘
𝑝𝑝

𝑘𝑘=0

−�𝑎𝑎𝑝𝑝−𝑘𝑘+1𝑏𝑏𝑘𝑘
𝑝𝑝+1

𝑘𝑘=1

 

= 𝑎𝑎p+1 − 𝑏𝑏𝑝𝑝+1 

 

 



4.1 阿贝尔分部求和定理 

�𝑎𝑎𝑘𝑘𝑏𝑏𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

=𝑛𝑛≥2 𝑎𝑎1𝑏𝑏1 + �𝑎𝑎𝑘𝑘𝑏𝑏𝑘𝑘

𝑛𝑛

𝑘𝑘=2

 

= 𝑎𝑎1𝑏𝑏1 + � �� 𝑎𝑎𝑘𝑘2

𝑘𝑘1

𝑘𝑘2=1

− � 𝑎𝑎𝑘𝑘2

𝑘𝑘1−1

𝑘𝑘2=1

�𝑏𝑏𝑘𝑘1

𝑛𝑛

𝑘𝑘1=2

 

= 𝑎𝑎1𝑏𝑏1 + � �𝑏𝑏𝑘𝑘1 � 𝑎𝑎𝑘𝑘2

𝑘𝑘1

𝑘𝑘2=1

�
𝑛𝑛

𝑘𝑘1=2

− � �𝑏𝑏𝑘𝑘1 � 𝑎𝑎𝑘𝑘2

𝑘𝑘1−1

𝑘𝑘2=1

�
𝑛𝑛

𝑘𝑘1=2

 

= 𝑎𝑎1𝑏𝑏1 + � �𝑏𝑏𝑘𝑘1 � 𝑎𝑎𝑘𝑘2

𝑘𝑘1

𝑘𝑘2=1

�
𝑛𝑛

𝑘𝑘1=2

− � �𝑏𝑏𝑘𝑘1+1 � 𝑎𝑎𝑘𝑘2

𝑘𝑘1

𝑘𝑘2=1

�
𝑛𝑛−1

𝑘𝑘1=1

 

= 𝑎𝑎1𝑏𝑏1 + � �𝑏𝑏𝑘𝑘1 � 𝑎𝑎𝑘𝑘2

𝑘𝑘1

𝑘𝑘2=1

�
𝑛𝑛−1

𝑘𝑘1=1

+ 𝑏𝑏𝑛𝑛 � 𝑎𝑎𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

− 𝑏𝑏1 � 𝑎𝑎𝑘𝑘2

1

𝑘𝑘2=1

− � �𝑏𝑏𝑘𝑘1+1 � 𝑎𝑎𝑘𝑘2

𝑘𝑘1

𝑘𝑘2=1

�
𝑛𝑛−1

𝑘𝑘1=1

 

= � �(𝑏𝑏𝑘𝑘1 − 𝑏𝑏𝑘𝑘1+1) � 𝑎𝑎𝑘𝑘2

𝑘𝑘1

𝑘𝑘2=1

�
𝑛𝑛−1

𝑘𝑘1=1

+ 𝑏𝑏𝑛𝑛 � 𝑎𝑎𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

 

 

 



记�𝑎𝑎𝑘𝑘

𝑚𝑚

𝑘𝑘=1

= 𝐴𝐴𝑚𝑚,�𝑏𝑏𝑘𝑘

𝑚𝑚

𝑘𝑘=1

= 𝐵𝐵𝑚𝑚,𝑎𝑎𝑘𝑘+1 − 𝑎𝑎𝑘𝑘 = 𝛼𝛼𝑘𝑘 ,𝑏𝑏𝑘𝑘+1 − 𝑏𝑏𝑘𝑘 = 𝛽𝛽𝑘𝑘 

�𝑎𝑎𝑘𝑘𝑏𝑏𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

= 𝐴𝐴𝑛𝑛𝑏𝑏𝑛𝑛 −�𝐴𝐴𝑘𝑘𝛽𝛽𝑘𝑘

𝑛𝑛−1

𝑘𝑘=1

 

= 𝑎𝑎𝑛𝑛𝐵𝐵𝑛𝑛 −�𝛼𝛼𝑘𝑘𝐵𝐵𝑘𝑘

𝑛𝑛−1

𝑘𝑘=1

 

= 𝐴𝐴𝑛𝑛𝑏𝑏𝑛𝑛+1 −�𝐴𝐴𝑘𝑘𝛽𝛽𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

= 𝑎𝑎𝑛𝑛+1𝐵𝐵𝑛𝑛 −�𝛼𝛼𝑘𝑘𝐵𝐵𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

 



4.2 定义计算积分 

闭区间[𝑎𝑎, 𝑏𝑏](𝑎𝑎 < 𝑏𝑏)的分划𝑃𝑃指的是由这个区间的有限多个点

𝑥𝑥0, … , 𝑥𝑥𝑛𝑛组成的点组，其中𝑎𝑎 = 𝑥𝑥0 < 𝑥𝑥1 < ⋯ < 𝑥𝑥𝑛𝑛 = 𝑏𝑏. 

区间[𝑥𝑥𝑖𝑖−1,𝑥𝑥𝑖𝑖](𝑖𝑖 = 1, … ,𝑛𝑛)叫做分划𝑃𝑃的区间. 

分划𝑃𝑃的最大区间长𝜆𝜆(𝑃𝑃)叫做分划𝑃𝑃的参数. 

𝜉𝜉𝑖𝑖 ∈ [𝑥𝑥𝑖𝑖−1,𝑥𝑥𝑖𝑖](𝑖𝑖 = 1, … ,𝑛𝑛)为每个区间中选定的一个点. 

积分的定义为 

� 𝑓𝑓(𝑥𝑥)d𝑥𝑥
𝑏𝑏

𝑎𝑎
≔ lim

𝜆𝜆(𝑃𝑃)→0
�𝑓𝑓(𝜉𝜉𝑖𝑖)∆𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

以上内容节选自《数学分析》
1
 

 

为了计算上面的求和式，作一些具体的设定。 

确定分划𝑃𝑃,令𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1 =
𝑏𝑏 − 𝑎𝑎
𝑛𝑛

, 𝑘𝑘 ∈ 𝐙𝐙[1,𝑛𝑛] 

则每个区间长相等，𝜆𝜆(𝑃𝑃) = ∆𝑥𝑥𝑘𝑘 =
𝑏𝑏 − 𝑎𝑎
𝑛𝑛

 

此时𝑛𝑛 → +∞ ⇒  𝜆𝜆(𝑃𝑃) → 0 

每个区间的点𝜉𝜉𝑘𝑘选为左端点𝑥𝑥𝑘𝑘 = 𝑎𝑎 +
𝑘𝑘
𝑛𝑛

(𝑏𝑏 − 𝑎𝑎) 

于是得到计算式 

                             

1 (B.A.卓里奇, 2006 页 299-301)  



� 𝑓𝑓[𝑥𝑥]d𝑥𝑥
𝑏𝑏

𝑎𝑎
= lim

𝑛𝑛→+∞
�𝑓𝑓 �𝑎𝑎 +

𝑘𝑘
𝑛𝑛

(𝑏𝑏 − 𝑎𝑎)�
𝑏𝑏 − 𝑎𝑎
𝑛𝑛

𝑛𝑛

𝑘𝑘=1

 

= (𝑏𝑏 − 𝑎𝑎) lim
𝑛𝑛→+∞

�
1
𝑛𝑛
𝑓𝑓 �

(𝑏𝑏 − 𝑎𝑎)
𝑛𝑛

𝑘𝑘 + 𝑎𝑎�
𝑛𝑛

𝑘𝑘=1

 

= (𝑏𝑏 − 𝑎𝑎) lim
𝑛𝑛→+∞

�
1
𝑛𝑛
𝑓𝑓 �
𝑘𝑘
𝑛𝑛�

𝑛𝑛𝑛𝑛

𝑘𝑘=(𝑏𝑏−𝑎𝑎)+𝑛𝑛𝑛𝑛
∆(𝑏𝑏−𝑎𝑎)

 

第二、三行都是可用的计算式，但有时它们其中一种会更简单一

些。 

下面是一些例子。 

� 𝑥𝑥2d𝑥𝑥
2

1
= lim

𝑛𝑛→+∞
��1 +

𝑘𝑘
𝑛𝑛
�
2 1
𝑛𝑛

𝑛𝑛

𝑘𝑘=1

 

= lim
𝑛𝑛→+∞

�
𝑛𝑛2 + 2𝑛𝑛𝑛𝑛 + 𝑘𝑘2

𝑛𝑛3

𝑛𝑛

𝑘𝑘=1

 

= lim
𝑛𝑛→+∞

𝑛𝑛3 + 𝑛𝑛2(𝑛𝑛 + 1) + 1
6𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)
𝑛𝑛3

 

= 1 + 1 +
1
3

=
7
3
 

 

� 𝑥𝑥2d𝑥𝑥
2

1
= lim

𝑛𝑛→+∞
�

1
𝑛𝑛
�
𝑘𝑘
𝑛𝑛
�
22𝑛𝑛

𝑘𝑘=1+𝑛𝑛
∆1

= lim
𝑛𝑛→+∞

1
𝑛𝑛3
��𝑘𝑘2
2𝑛𝑛

𝑘𝑘=1

−�𝑘𝑘2
𝑛𝑛

𝑘𝑘=1

� 

= lim
𝑛𝑛→+∞

2𝑛𝑛(2𝑛𝑛 + 1)(4𝑛𝑛 + 1)− 𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)
6𝑛𝑛3

=
7
3
 



求� cos𝑥𝑥 d𝑥𝑥 

计算� cos 𝑡𝑡 d𝑡𝑡
𝑥𝑥

0
，然后将常数用𝐶𝐶换掉。 

� cos 𝑡𝑡 d𝑡𝑡
𝑥𝑥

0
= lim

𝑛𝑛→+∞
�

𝑥𝑥
𝑛𝑛

cos
𝑥𝑥𝑥𝑥
𝑛𝑛

𝑛𝑛

𝑘𝑘=1

 

=(5.3) lim
𝑛𝑛→+∞

𝑥𝑥 cos �𝑛𝑛 + 1
2𝑛𝑛 𝑥𝑥� sin𝑥𝑥2

𝑛𝑛 sin 𝑥𝑥
2𝑛𝑛

 

=
lim
𝑛𝑛→+∞

𝑥𝑥 cos �𝑛𝑛 + 1
2𝑛𝑛 𝑥𝑥� sin𝑥𝑥2

lim
𝑛𝑛→+∞

𝑛𝑛 � 𝑥𝑥2𝑛𝑛 + 𝑂𝑂 � 𝑥𝑥
3

8𝑛𝑛3��
 

=
𝑥𝑥 cos �𝑥𝑥2� sin𝑥𝑥2

𝑥𝑥
2

= sin 𝑥𝑥 

于是� cos𝑥𝑥 d𝑥𝑥 = sin 𝑥𝑥 + 𝐶𝐶 

 

当然这样计算定积分效率很低，一般不会这么算。不过这个公式

还有别的用处。 

其一是利用积分求和式极限。只要确定了对应的参数，就可以计

算定积分来求形如 

lim
𝑛𝑛→+∞

�𝑓𝑓[𝑘𝑘,𝑛𝑛]
𝑛𝑛

𝑘𝑘=1

 

的极限。 



例：求 lim
𝑛𝑛→+∞

1
𝑛𝑛𝛼𝛼+1

�𝑘𝑘𝛼𝛼
𝑛𝑛

𝑘𝑘=1

 

对比式子 

� 𝑓𝑓[𝑥𝑥]d𝑥𝑥
𝑏𝑏

𝑎𝑎
= lim

𝑛𝑛→+∞
�𝑓𝑓 �𝑎𝑎 +

𝑘𝑘
𝑛𝑛

(𝑏𝑏 − 𝑎𝑎)�
𝑏𝑏 − 𝑎𝑎
𝑛𝑛

𝑛𝑛

𝑘𝑘=1

 

取𝑎𝑎 = 0,𝑓𝑓[𝑥𝑥] = 𝑥𝑥𝛼𝛼，得𝑏𝑏 = 1 

于是 lim
𝑛𝑛→+∞

1
𝑛𝑛𝛼𝛼+1

�𝑘𝑘𝛼𝛼
𝑛𝑛

𝑘𝑘=1

= � 𝑥𝑥𝛼𝛼d𝑥𝑥
1

0
=

1
𝛼𝛼 + 1

 

 

例：求 lim
𝑛𝑛→+∞

1
𝑛𝑛
� ln �1 +

𝑘𝑘
𝑛𝑛
�

𝑛𝑛

𝑘𝑘=1

 

取𝑎𝑎 = 1,𝑏𝑏 = 2,𝑓𝑓[𝑥𝑥] = ln𝑥𝑥 

lim
𝑛𝑛→+∞

1
𝑛𝑛
� ln �1 +

𝑘𝑘
𝑛𝑛
�

𝑛𝑛

𝑘𝑘=1

= � ln𝑥𝑥 d𝑥𝑥
2

1
= 2 ln 2 − 2 − ln 1 + 1 

= 2 ln 2 − 1 

 

例：求 lim
𝑛𝑛→+∞

�
(−1)𝑘𝑘−1

𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

取𝑎𝑎 = 0,𝑏𝑏 = 𝑛𝑛, 𝑓𝑓[𝑥𝑥] =
(−1)𝑥𝑥−1

𝑥𝑥
，发现无法计算。 

事实上，尝试各种𝑎𝑎,𝑏𝑏,𝑓𝑓[𝑥𝑥]组合均以失败告终。怎么办呢？ 

这里可以用到一个变换消去交错项。.3 



lim
𝑛𝑛→+∞

�
(−1)𝑘𝑘−1

𝑘𝑘

𝑛𝑛

𝑘𝑘=1

= lim
𝑛𝑛→+∞

�
(−1)𝑘𝑘−1

𝑘𝑘

2𝑛𝑛

𝑘𝑘=1

 

= lim
𝑛𝑛→+∞

��
(−1)2𝑘𝑘−1

2𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ �
(−1)2𝑘𝑘−1−1

2𝑘𝑘 − 1

𝑛𝑛

𝑘𝑘=1

� 

= lim
𝑛𝑛→+∞

��
1

2𝑘𝑘 − 1

𝑛𝑛

𝑘𝑘=1

−�
1

2𝑘𝑘

𝑛𝑛

𝑘𝑘=1

� 

= lim
𝑛𝑛→+∞

��
1

2𝑘𝑘 − 1

𝑛𝑛

𝑘𝑘=1

+ �
1

2𝑘𝑘

𝑛𝑛

𝑘𝑘=1

− 2�
1

2𝑘𝑘

𝑛𝑛

𝑘𝑘=1

� 

= lim
𝑛𝑛→+∞

��
1
𝑘𝑘

2𝑛𝑛

𝑘𝑘=1

−�
1
𝑘𝑘

𝑛𝑛

𝑘𝑘=1

� = lim
𝑛𝑛→+∞

�
1
𝑘𝑘

2𝑛𝑛

𝑘𝑘=𝑛𝑛+1

= lim
𝑛𝑛→+∞

�
1

𝑘𝑘 + 𝑛𝑛

𝑛𝑛

𝑘𝑘=1

 

取𝑎𝑎 = 1,𝑏𝑏 = 2,𝑓𝑓[𝑥𝑥] =
1
𝑥𝑥
 

lim
𝑛𝑛→+∞

�
1

𝑘𝑘 + 𝑛𝑛

𝑛𝑛

𝑘𝑘=1

= �
1
𝑥𝑥

d𝑥𝑥
2

1
= ln 2 

在本节最后，提出三个问题： 

1、 是否能归纳出上面利用积分求极限的一般过程，并且找出它的

局限性（即什么形式的极限无法求）？ 

2、 有一些难以计算的积分，是否能通过求和极限简单解决（即公

式的第二个用处）？ 

3、 本节是在划分𝑃𝑃为均匀划分情况下建立的。对于别的划分𝑃𝑃，

如指数划分，黄金划分等等，情况又会如何呢？ 

 



4.3 无穷级数性质 

本书中几乎全部其他的讨论都没有涉及无穷求和的内容。这一节 

将简要讨论在无穷的情况下一些定理是否还可使用。 

本节参考资料： 

[1]张筑生《数学分析新讲》第三册，第十八章 

[2]B.A.卓里奇《数学分析》第一卷，第三章 

 

定义 4.3.1 无穷级数及其收敛性 

�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=𝑎𝑎

≔ lim
𝑛𝑛→+∞

� 𝑓𝑓[𝑘𝑘]
𝑛𝑛

𝑘𝑘=𝑎𝑎

 

若存在𝑆𝑆，对∀𝜀𝜀 > 0,∃𝑁𝑁,当𝑛𝑛 > 𝑁𝑁时成立 

�� 𝑓𝑓[𝑘𝑘]
𝑛𝑛

𝑘𝑘=𝑎𝑎

− 𝑆𝑆� < 𝜀𝜀 

则称无穷级数�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=𝑎𝑎

收敛，并记�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=𝑎𝑎

= 𝑆𝑆 

否则称无穷级数�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=𝑎𝑎

发散。 

 

定义 4.3.2 正项无穷级数、绝对收敛和条件收敛 

对于无穷级数�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=𝑎𝑎

,若𝑓𝑓[𝑎𝑎 + 𝑡𝑡] > 0 对任意𝑡𝑡 ∈ 𝐍𝐍成立， 



则称无穷级数�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=𝑎𝑎

为正项无穷级数。 

若无穷级数�|𝑓𝑓[𝑘𝑘]|
∞

𝑘𝑘=𝑎𝑎

收敛，则称�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=𝑎𝑎

绝对收敛。 

绝对收敛蕴含收敛，证明略。 

显然，正项级数收敛等价于正项级数绝对收敛。 

若无穷级数�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=𝑎𝑎

收敛，但�|𝑓𝑓[𝑘𝑘]|
∞

𝑘𝑘=𝑎𝑎

发散， 

则称�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=𝑎𝑎

条件收敛。 

 

讨论 4.3.3 换元 

在有限求和中，常见的换元有𝑘𝑘2 = 𝑘𝑘1 + 𝑚𝑚,𝑘𝑘2 = 𝑚𝑚 − 𝑘𝑘1两种形式。 

对无穷级数应用第一种换元。 

� 𝑓𝑓[𝑘𝑘1]
∞

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑘𝑘2 − 𝑚𝑚]
∞

𝑘𝑘2=𝑎𝑎+𝑚𝑚

 

发现实际参与求和的项(𝑓𝑓[𝑎𝑎],𝑓𝑓[𝑎𝑎 + 1], … )没有任何变化。 

因此第一种换元是可行的。 

如�𝑞𝑞𝑘𝑘
∞

𝑘𝑘=1

= �𝑞𝑞𝑘𝑘+1
∞

𝑘𝑘=0

= 𝑞𝑞�𝑞𝑞𝑘𝑘
∞

𝑘𝑘=0

=
𝑞𝑞

1 − 𝑞𝑞
 

应用第二种换元， 



� 𝑓𝑓[𝑘𝑘1]
∞

𝑘𝑘1=𝑎𝑎

= � 𝑓𝑓[𝑚𝑚− 𝑘𝑘2]
𝑚𝑚−𝑎𝑎

𝑘𝑘2=−∞

 

虽然参与求和的项事实上没有变化，但是右端的式子并不容易计

算，因此这一种换元在无穷级数中基本不用。 

利用换元，我们总能把从𝑓𝑓[𝑎𝑎]开始的无穷级数转化为𝑔𝑔[1]开始的

无穷级数。 

� 𝑓𝑓[𝑘𝑘1]
∞

𝑘𝑘1=𝑎𝑎

=(𝑘𝑘≔𝑘𝑘1−𝑎𝑎+1)= �𝑓𝑓[𝑘𝑘 + 𝑎𝑎 − 1]
∞

𝑘𝑘=1

=𝑔𝑔[𝑘𝑘]≔𝑓𝑓[𝑘𝑘+𝑎𝑎−1] �𝑔𝑔[𝑘𝑘]
∞

𝑘𝑘=1

 

函数𝑓𝑓的任意性对应函数𝑔𝑔的任意性， 

因此讨论无穷级数 � 𝑓𝑓[𝑘𝑘1]
∞

𝑘𝑘1=𝑎𝑎

相当于讨论无穷级数�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=1

 

简洁起见，下文将不再讨论前一种级数。 

*此段仍存疑 

 

讨论 4.3.4 分组求和 

分组求和即分配律的应用，对于收敛的级数是确定可行的。 

在 1,2, …中选无穷个分点，即取𝑏𝑏0,𝑏𝑏1, … ∈ 𝐙𝐙 

且  (1 = 𝑏𝑏0 < 𝑏𝑏1 < ⋯ ) 

即𝑓𝑓[1] + 𝑓𝑓[2] + ⋯ 

= (𝑓𝑓[𝑏𝑏0] +⋯+ 𝑓𝑓[𝑏𝑏1 − 1]) + (𝑓𝑓[𝑏𝑏1] + ⋯+ 𝑓𝑓[𝑏𝑏2 − 1]) + ⋯ 

写成分组求和形式。 



�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=1

= � � 𝑓𝑓[𝑘𝑘2]

𝑏𝑏𝑘𝑘1+1−1

𝑘𝑘2=𝑏𝑏𝑘𝑘1

∞

𝑘𝑘1=0

 

证明参见参考资料[1]。另外，选取有限个分点，令最后一组有无

穷项显然也是可行的。 

 

对于发散的级数，一般不能这么操作。如： 

�(−1)𝑘𝑘
∞

𝑘𝑘=0

是一发散级数， 

若取𝑏𝑏𝑚𝑚 = 2𝑚𝑚,则会得到 � � 𝑓𝑓[𝑘𝑘2]

𝑏𝑏𝑘𝑘1+1−1

𝑘𝑘2=𝑏𝑏𝑘𝑘1

∞

𝑘𝑘1=0

= � � (−1)𝑘𝑘2
2𝑘𝑘1+1

𝑘𝑘2=2𝑘𝑘1

∞

𝑘𝑘1=0

 

= � ((−1)2𝑘𝑘1 + (−1)2𝑘𝑘1+1)
∞

𝑘𝑘1=0

= � 0
∞

𝑘𝑘1=0

= 0 

这显然是不对的。 

 

讨论 4.3.5 乘积嵌套交换 

对于两个绝对收敛的级数，乘积嵌套交换成立。 

柯西定理：若级数�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=1

，�𝑔𝑔[𝑘𝑘]
∞

𝑘𝑘=1

绝对收敛，并且 

�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=1

= 𝑆𝑆1，�𝑔𝑔[𝑘𝑘]
∞

𝑘𝑘=1

= 𝑆𝑆2,则 

𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2](𝑘𝑘1,𝑘𝑘2 ∈ 𝐍𝐍+)按任意方式排列成的级数都绝对收敛， 



并且其和等于𝑆𝑆1𝑆𝑆2.  

证明参见参考资料[1]。 

两种嵌套求和自然也是在“任意方式”中，因而 

在级数�𝑓𝑓[𝑘𝑘]
∞

𝑘𝑘=1

，�𝑔𝑔[𝑘𝑘]
∞

𝑘𝑘=1

绝对收敛的条件下， 

� � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
∞

𝑘𝑘2=1

∞

𝑘𝑘1=1

= � � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
∞

𝑘𝑘1=1

∞

𝑘𝑘2=1

 

显然如果只有一个是无穷级数，嵌套交换也成立。 

� � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
𝑏𝑏

𝑘𝑘2=𝑎𝑎

∞

𝑘𝑘1=1

= � � 𝑓𝑓[𝑘𝑘1]𝑔𝑔[𝑘𝑘2]
∞

𝑘𝑘1=1

𝑏𝑏

𝑘𝑘2=𝑎𝑎

 

 

 

 



5.1 一排原子转动惯量 

设有质量为𝑚𝑚𝑘𝑘,𝑘𝑘 ∈ 𝐙𝐙[1,𝑛𝑛]的𝑛𝑛个原子排列在一条直线上，坐标为

𝑥𝑥𝑘𝑘 ,𝑘𝑘 ∈ 𝐙𝐙[1,𝑛𝑛]，求绕质心的转动惯量𝐼𝐼. 

 

首先有质心坐标𝑥𝑥𝑐𝑐 =
∑ 𝑚𝑚𝑘𝑘𝑥𝑥𝑘𝑘𝑛𝑛
𝑘𝑘=1
∑ 𝑚𝑚𝑘𝑘
𝑛𝑛
𝑘𝑘=1

 

结合转动惯量定义式𝐼𝐼 = �𝑚𝑚𝑘𝑘(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑐𝑐)2
𝑛𝑛

𝑘𝑘=1

 

记𝑀𝑀 = �𝑚𝑚𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

得到𝐼𝐼 = � 𝑚𝑚𝑘𝑘1 �𝑥𝑥𝑘𝑘1 −
∑ 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2
𝑛𝑛
𝑘𝑘2=1

𝑀𝑀
�
2𝑛𝑛

𝑘𝑘1=1

 

下面我们就化简这个式子。 

𝐼𝐼 =通分 � 𝑚𝑚𝑘𝑘1 �
𝑥𝑥𝑘𝑘1𝑀𝑀 − ∑ 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛
𝑘𝑘2=1

𝑀𝑀
�
2𝑛𝑛

𝑘𝑘1=1

 

=提出分母 �
𝑚𝑚𝑘𝑘1
𝑀𝑀2 �𝑀𝑀𝑥𝑥𝑘𝑘1 − � 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

�

2𝑛𝑛

𝑘𝑘1=1

 



=平方展开 �
𝑚𝑚𝑘𝑘1
𝑀𝑀2

𝑛𝑛

𝑘𝑘1=1

�𝑀𝑀2𝑥𝑥𝑘𝑘1
2 − 2𝑀𝑀𝑥𝑥𝑘𝑘1 � 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

+ �� 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

�

2

� 

=分配求和 � 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1
2

𝑛𝑛

𝑘𝑘1=1

−
2
𝑀𝑀
� 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1 � 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

𝑛𝑛

𝑘𝑘1=1

+
1
𝑀𝑀2 � 𝑚𝑚𝑘𝑘1 �� 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

�

2𝑛𝑛

𝑘𝑘1=1

 

=
直接求和

嵌套交换 � 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1
2

𝑛𝑛

𝑘𝑘1=1

−
2
𝑀𝑀
� 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1

𝑛𝑛

𝑘𝑘1=1

� 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

+
𝑀𝑀
𝑀𝑀2 �� 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

�

2

 

 

=嵌套交换 � 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1
2

𝑛𝑛

𝑘𝑘1=1

−
2
𝑀𝑀� � 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1

�

+
1
𝑀𝑀� � 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1

� 

=合并 � 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1
2

𝑛𝑛

𝑘𝑘1=1

−
1
𝑀𝑀

� 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1

 



= 
通分

1
𝑀𝑀
��� 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1

2
𝑛𝑛

𝑘𝑘1=1

��� 𝑚𝑚𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

� − � 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1

� 

=
线性合并

嵌套交换 1
𝑀𝑀� � 𝑚𝑚𝑘𝑘1𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘1�𝑥𝑥𝑘𝑘1 − 𝑥𝑥𝑘𝑘2�

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1

� 

=
对换𝑘𝑘1𝑘𝑘2

加倍 1
2𝑀𝑀

⎝

⎜
⎛

� 𝑚𝑚𝑘𝑘1𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘1
2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2

+ � 𝑚𝑚𝑘𝑘1𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2
2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2

− 2 � 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2 ⎠

⎟
⎞
 

=线性合并
1

2𝑀𝑀

⎝

⎜
⎛

� 𝑚𝑚𝑘𝑘1𝑚𝑚𝑘𝑘2�𝑥𝑥𝑘𝑘1
2 − 2𝑥𝑥𝑘𝑘1𝑥𝑥𝑘𝑘2 + 𝑥𝑥𝑘𝑘2

2 �
𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2 ⎠

⎟
⎞
 

=
1

2𝑀𝑀

⎝

⎜
⎛

� 𝑚𝑚𝑘𝑘1𝑚𝑚𝑘𝑘2�𝑥𝑥𝑘𝑘1 − 𝑥𝑥𝑘𝑘2�
2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2 ⎠

⎟
⎞
 

=2.4.7 1
𝑀𝑀

⎝

⎜
⎛

� 𝑚𝑚𝑘𝑘1𝑚𝑚𝑘𝑘2�𝑥𝑥𝑘𝑘1 − 𝑥𝑥𝑘𝑘2�
2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1>𝑘𝑘2 ⎠

⎟
⎞
 

 



注：朗道《力学》书上公式相差系数 2，原因应当在于朗道书中带

有𝑎𝑎 ≠ 𝑏𝑏的求和对相同的{𝑎𝑎,𝑏𝑏}只计算一次，而本书中定义为计算两

次。 

 

于是一排原子{(𝑥𝑥𝑘𝑘,𝑚𝑚𝑘𝑘)|𝑘𝑘 ∈ 𝐙𝐙[1,𝑛𝑛]} 

转动惯量𝐼𝐼 =
1
𝑀𝑀

⎝

⎜
⎛

� 𝑚𝑚𝑘𝑘1𝑚𝑚𝑘𝑘2�𝑥𝑥𝑘𝑘1 − 𝑥𝑥𝑘𝑘2�
2

𝑛𝑛

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1>𝑘𝑘2 ⎠

⎟
⎞
 

若记𝑀𝑀𝑡𝑡 = �𝑚𝑚𝑘𝑘𝑥𝑥𝑘𝑘𝑡𝑡
𝑛𝑛

𝑘𝑘=1

 

𝐼𝐼 = � 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1
2

𝑛𝑛

𝑘𝑘1=1

−
2
𝑀𝑀
� 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1

𝑛𝑛

𝑘𝑘1=1

� 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

+
𝑀𝑀
𝑀𝑀2 �� 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

�

2

 

= � 𝑚𝑚𝑘𝑘1𝑥𝑥𝑘𝑘1
2

𝑛𝑛

𝑘𝑘1=1

−
1
𝑀𝑀�� 𝑚𝑚𝑘𝑘2𝑥𝑥𝑘𝑘2

𝑛𝑛

𝑘𝑘2=1

�

2

 

= 𝑀𝑀2 −
𝑀𝑀1
2

𝑀𝑀0
=
𝑀𝑀2𝑀𝑀0 −𝑀𝑀1

2

𝑀𝑀0
 



5.2 平行轴、垂直轴定理 

本节只讨论质点系的情况。 

定理 5.2.1 平行轴定理 

设有𝑛𝑛个质点在空间直角坐标系中，每个质点𝑘𝑘 ∈ 𝐙𝐙[1,𝑛𝑛], 

质量为𝑚𝑚𝑘𝑘,位矢𝑟𝑟𝑘𝑘���⃑ = (𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘 , 𝑧𝑧𝑘𝑘); 

总质量记为𝑀𝑀,质心坐标为𝑟𝑟𝑐𝑐��⃑ = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 , 𝑧𝑧𝑐𝑐), 

另有一点𝑇𝑇, 𝑟𝑟𝑡𝑡��⃑ = (𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 , 𝑧𝑧𝑡𝑡). 

则绕直线 �
𝑥𝑥 = 𝑥𝑥𝑐𝑐
𝑦𝑦 = 𝑦𝑦𝑐𝑐 的转动惯量𝐼𝐼𝑐𝑐与绕直线 �

𝑥𝑥 = 𝑥𝑥𝑡𝑡
𝑦𝑦 = 𝑦𝑦𝑡𝑡的转动惯量𝐼𝐼𝑡𝑡 

有如下关系： 

𝐼𝐼𝑡𝑡 = 𝐼𝐼𝑐𝑐 + 𝑀𝑀((𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑡𝑡)2 + (𝑦𝑦𝑐𝑐 − 𝑦𝑦𝑡𝑡)2) ≔ 𝐼𝐼𝑐𝑐 + 𝑀𝑀𝑑𝑑2 

 

证明： 

𝐼𝐼𝑡𝑡 = �𝑚𝑚𝑘𝑘𝑟𝑟𝑘𝑘𝑘𝑘2
𝑛𝑛

𝑘𝑘=1

= �𝑚𝑚𝑘𝑘((𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑡𝑡)2 + (𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑡𝑡)2)
𝑛𝑛

𝑘𝑘=1

 

𝐼𝐼𝑐𝑐 = �𝑚𝑚𝑘𝑘((𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑐𝑐)2)
𝑛𝑛

𝑘𝑘=1

 

𝐼𝐼𝑡𝑡 − 𝐼𝐼𝑐𝑐 = �𝑚𝑚𝑘𝑘((𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑡𝑡)2 + (𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑡𝑡)2 − (𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑐𝑐)2
𝑛𝑛

𝑘𝑘=1

− (𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑐𝑐)2) 

= �𝑚𝑚𝑘𝑘((𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑡𝑡)(2𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑡𝑡) + (𝑦𝑦𝑐𝑐 − 𝑦𝑦𝑡𝑡)(2𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑐𝑐 − 𝑦𝑦𝑡𝑡))
𝑛𝑛

𝑘𝑘=1

 



= (𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑡𝑡)�� 2𝑚𝑚𝑘𝑘𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

− (𝑥𝑥𝑐𝑐 + 𝑥𝑥𝑡𝑡)�𝑚𝑚𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�

+ (𝑦𝑦𝑐𝑐 − 𝑦𝑦𝑡𝑡)�� 2𝑚𝑚𝑘𝑘𝑦𝑦𝑘𝑘

𝑛𝑛

𝑘𝑘=1

− (𝑦𝑦𝑐𝑐 + 𝑦𝑦𝑡𝑡)�𝑚𝑚𝑘𝑘

𝑛𝑛

𝑘𝑘=1

� 

我们不把𝑥𝑥𝑐𝑐用质心定义代掉，而是考虑利用质心定义消去恼人的 

�𝑚𝑚𝑘𝑘𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

项。注意到�𝑚𝑚𝑘𝑘𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

= 𝑀𝑀𝑥𝑥𝑐𝑐 

𝐼𝐼𝑡𝑡 − 𝐼𝐼𝑐𝑐 = (𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑡𝑡)(2𝑀𝑀𝑥𝑥𝑐𝑐 − (𝑥𝑥𝑐𝑐 + 𝑥𝑥𝑡𝑡)𝑀𝑀)

+ (𝑦𝑦𝑐𝑐 − 𝑦𝑦𝑡𝑡)(2𝑀𝑀𝑦𝑦𝑐𝑐 − (𝑦𝑦𝑐𝑐 + 𝑦𝑦𝑡𝑡)𝑀𝑀) 

= 𝑀𝑀(𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑡𝑡)2 + 𝑀𝑀(𝑦𝑦𝑐𝑐 − 𝑦𝑦𝑡𝑡)2 

= 𝑀𝑀𝑀𝑀2.      证毕 

 

如果两平行旋转轴不平行于𝑧𝑧轴，则可旋转坐标系使它们平行于𝑧𝑧

轴。因为上面的讨论对每个质点没有特别的规定，因此旋转之后

平行轴定理当然成立。又因为转动惯量是质点系的固有属性，与

坐标轴的选取无关，则平行轴定理在原始状态下也成立。此时式

中的𝑑𝑑为两轴间距离。 

 

 

 

 

 



定理 5.2.2 垂直轴定理 

设𝑛𝑛个质点组成的质点系分布在一个平面上， 

𝑂𝑂为该平面上一点，有三条直线互相垂直相交于𝑂𝑂， 

其中两条在面内，记为𝑙𝑙𝑥𝑥, 𝑙𝑙𝑦𝑦;一条垂直于面,记为𝑙𝑙𝑧𝑧 

质点系绕轴𝑙𝑙𝑥𝑥, 𝑙𝑙𝑦𝑦, 𝑙𝑙𝑧𝑧的转动惯量记为𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦 , 𝐼𝐼𝑧𝑧 

则𝐼𝐼𝑧𝑧 = 𝐼𝐼𝑥𝑥 + 𝐼𝐼𝑦𝑦 

 

证：取𝑂𝑂为坐标原点，𝑙𝑙𝑥𝑥 , 𝑙𝑙𝑦𝑦, 𝑙𝑙𝑧𝑧分别为𝑥𝑥, 𝑦𝑦, 𝑧𝑧轴，正方向任意选定， 

则得到空间直角坐标系。 

设质点系各点(𝑘𝑘 ∈ 𝐙𝐙[1,𝑛𝑛])，质量为𝑚𝑚𝑘𝑘，坐标为(𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘 , 0) 

由转动惯量定义， 

𝐼𝐼𝑥𝑥 = �𝑚𝑚𝑘𝑘𝑦𝑦𝑘𝑘2
𝑛𝑛

𝑘𝑘=1

, 𝐼𝐼𝑦𝑦 = �𝑚𝑚𝑘𝑘𝑥𝑥𝑘𝑘2
𝑛𝑛

𝑘𝑘=1

, 

𝐼𝐼𝑧𝑧 = �𝑚𝑚𝑘𝑘(𝑥𝑥𝑘𝑘2 + 𝑦𝑦𝑘𝑘2) =
𝑛𝑛

𝑘𝑘=1

�𝑚𝑚𝑘𝑘𝑥𝑥𝑘𝑘2
𝑛𝑛

𝑘𝑘=1

+ �𝑚𝑚𝑘𝑘𝑦𝑦𝑘𝑘2
𝑛𝑛

𝑘𝑘=1

= 𝐼𝐼𝑥𝑥 + 𝐼𝐼𝑦𝑦 

证毕。



5.3 正余弦等差求和 

正余弦等差求和有一套模式化的流程： 

乘以半公差正弦→积化和差→相邻相消→（可选）和差化积 

 

� sin[𝑚𝑚𝑚𝑚]
𝑛𝑛

𝑘𝑘=1

 

=
1

sin𝑚𝑚2
 � sin[𝑚𝑚𝑚𝑚] sin

𝑚𝑚
2

𝑛𝑛

𝑘𝑘=1

 

=
1

sin𝑚𝑚2
 �−

1
2
�cos ��𝑘𝑘 +

1
2
�𝑚𝑚� − cos ��𝑘𝑘 −

1
2
�𝑚𝑚��

𝑛𝑛

𝑘𝑘=1

 

=
−1

2 sin𝑚𝑚2
�� cos ��𝑘𝑘 +

1
2
�𝑚𝑚� −� cos ��𝑘𝑘 −

1
2
�𝑚𝑚�

𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑘𝑘=1

� 

=
−1

2 sin𝑚𝑚2
�� cos ��𝑘𝑘 +

1
2
�𝑚𝑚� −� cos ��𝑘𝑘 +

1
2
�𝑚𝑚�

𝑛𝑛−1

𝑘𝑘=0

𝑛𝑛

𝑘𝑘=1

� 

=
−1

2 sin𝑚𝑚2
�cos ��𝑛𝑛 +

1
2
�𝑚𝑚� − cos

𝑚𝑚
2
� 

=
sin �𝑛𝑛 + 1

2 𝑚𝑚� sin �𝑛𝑛2𝑚𝑚�

sin𝑚𝑚2
 

  



� cos[𝑚𝑚𝑚𝑚]
𝑛𝑛

𝑘𝑘=1

 

=
1

sin𝑚𝑚2
 � cos[𝑚𝑚𝑚𝑚] sin

𝑚𝑚
2

𝑛𝑛

𝑘𝑘=1

 

=
1

sin𝑚𝑚2
 �

1
2
�sin ��𝑘𝑘 +

1
2
�𝑚𝑚� − sin ��𝑘𝑘 −

1
2
�𝑚𝑚��

𝑛𝑛

𝑘𝑘=1

 

=
1

2 sin𝑚𝑚2
�� sin ��𝑘𝑘 +

1
2
�𝑚𝑚� −� sin ��𝑘𝑘 −

1
2
�𝑚𝑚�

𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑘𝑘=1

� 

=
1

2 sin𝑚𝑚2
�� sin ��𝑘𝑘 +

1
2
�𝑚𝑚� −� sin ��𝑘𝑘 +

1
2
�𝑚𝑚�

𝑛𝑛−1

𝑘𝑘=0

𝑛𝑛

𝑘𝑘=1

� 

=
1

2 sin𝑚𝑚2
�sin ��𝑛𝑛 +

1
2
�𝑚𝑚� − sin

𝑚𝑚
2
� 

=
cos �𝑛𝑛 + 1

2 𝑚𝑚� sin �𝑛𝑛2𝑚𝑚�

sin𝑚𝑚2
 

 

� sin[𝑚𝑚𝑚𝑚]
𝑛𝑛

𝑘𝑘=1

=
sin �𝑛𝑛 + 1

2 𝑚𝑚� sin �𝑛𝑛2𝑚𝑚�

sin𝑚𝑚2
 

� cos[𝑚𝑚𝑚𝑚]
𝑛𝑛

𝑘𝑘=1

=
cos �𝑛𝑛 + 1

2 𝑚𝑚� sin �𝑛𝑛2𝑚𝑚�

sin𝑚𝑚2
 

 



5.4 1234567×7654321 

我们试图找一种方法来计算 1234567×7654321（非竖式乘法） 

注意，该方法并不比竖式乘法简单。 

首先需要把这两个数字表示出来。显然，如果令𝑎𝑎 = 1234567, 

𝑏𝑏 = 7654321然后算𝑎𝑎 × 𝑏𝑏，并没有从本质上解决问题。 

 

观察这两个数字的特点，注意到数位与该数位上的数有关系，而

数位又是由10𝑘𝑘所控制。因此可将 7654321 写成下面的形式。 

7654321 = 7 × 106 + 6 × 105 + 5 × 104 + 4 × 103 + 3 × 102

+ 2 × 101 + 1 × 100 

从中归纳出一般项的模板，用求和符号记为 

7654321 = �(𝑘𝑘 + 1)10𝑘𝑘
6

𝑘𝑘=0

 

同理，1234567 = �(7− 𝑘𝑘)10𝑘𝑘
6

𝑘𝑘=0

 

现在可以进行乘法了。 

𝑟𝑟 = ��(𝑘𝑘 + 1)10𝑘𝑘
6

𝑘𝑘=0

���(7− 𝑘𝑘)10𝑘𝑘
6

𝑘𝑘=0

� 

 

 

 



利用多项式乘法的结论 

��𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘
𝑛𝑛

𝑘𝑘=0

���𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘
𝑛𝑛

𝑘𝑘=0

� 

= ���𝑎𝑎𝑘𝑘𝑏𝑏𝑡𝑡−𝑘𝑘

𝑡𝑡

𝑘𝑘=0

�𝑥𝑥𝑡𝑡
𝑛𝑛

𝑡𝑡=0

+ ���𝑎𝑎𝑘𝑘+𝑛𝑛−𝑡𝑡𝑏𝑏𝑛𝑛−𝑘𝑘

𝑡𝑡

𝑘𝑘=0

�𝑥𝑥2𝑛𝑛−𝑡𝑡
𝑛𝑛−1

𝑡𝑡=0

 

令𝑎𝑎𝑘𝑘 = 𝑘𝑘 + 1,𝑏𝑏𝑘𝑘 = 7 − 𝑘𝑘,𝑛𝑛 = 6,𝑥𝑥 = 10，结果记为𝑟𝑟 

𝑟𝑟 = ���(𝑘𝑘 + 1)(7− 𝑡𝑡 + 𝑘𝑘)
𝑡𝑡

𝑘𝑘=0

�10𝑡𝑡
6

𝑡𝑡=0

+ ���(𝑘𝑘 + 7 − 𝑡𝑡)(𝑘𝑘 + 1)
𝑡𝑡

𝑘𝑘=0

�1012−𝑡𝑡
5

𝑡𝑡=0

 

注意到两部分系数恰好一样。（想想是什么原因？） 

 

 

下面计算系数，也就是求函数 

𝑓𝑓[𝑡𝑡] ≔�(𝑘𝑘 + 1)(7− 𝑡𝑡 + 𝑘𝑘)
𝑡𝑡

𝑘𝑘=0

 

= �(𝑘𝑘2 + (8− 𝑡𝑡)𝑘𝑘 + 7 − 𝑡𝑡)
𝑡𝑡

𝑘𝑘=0

 

=
𝑡𝑡(𝑡𝑡 + 1)(2𝑡𝑡 + 1)

6
+
𝑡𝑡(𝑡𝑡 + 1)(8− 𝑡𝑡)

2
+ (7− 𝑡𝑡)(𝑡𝑡 + 1) 

 

 



接下来只需要将𝑡𝑡从 0到 6逐个代入，求出的值就是对应数位上的

数字。化简一下： 

𝑓𝑓[𝑡𝑡] =
−𝑡𝑡3 + 18𝑡𝑡2 + 61𝑡𝑡

6
+ 7 = −

1
6
𝑡𝑡3 + 3𝑡𝑡2 +

61
6
𝑡𝑡 + 7 

利用霍纳法求值。以 5为例，先打好表格，然后计算。 

 −
1
6

3
61
6

7

5     
     

 

 −
1
6

3
61
6

7

5 = −
1
6

= −
1
6

× 5 + 3 =
13
6

× 5 +
61
6

= 21 × 5 + 7

  =
13
6

= 21 = 112

 

 

最后得到 

𝑓𝑓[0] = 7;   𝑓𝑓[1] = 20;   𝑓𝑓[2] = 38;   𝑓𝑓[3] = 60; 

𝑓𝑓[4] = 85;   𝑓𝑓[5] = 112;   𝑓𝑓[6] = 140 

 

𝑟𝑟 = �𝑓𝑓[𝑡𝑡]10𝑡𝑡
6

𝑡𝑡=0

+ �𝑓𝑓[𝑡𝑡]1012−𝑡𝑡
5

𝑡𝑡=0

= �𝑓𝑓[𝑡𝑡]10𝑡𝑡
6

𝑡𝑡=0

+ �𝑓𝑓[12− 𝑡𝑡]10𝑡𝑡
12

𝑡𝑡=7

 

于是𝑟𝑟 = 𝑓𝑓[0]𝑓𝑓[1]𝑓𝑓[2]𝑓𝑓[3]𝑓𝑓[4]𝑓𝑓[5]𝑓𝑓[6]𝑓𝑓[5]𝑓𝑓[4]𝑓𝑓[3]𝑓𝑓[2]𝑓𝑓[1]𝑓𝑓[0]������������������������������������������������������������������������ 

= 7 20 38 60 85 112 140 112 85 60 38 20 7�����������������������������������������������������  �并不规范的写法� 

利用进位原则，最终得到 

𝑟𝑟 = 9449772114007



5.5 正整数方幂和 

12 + 22 + ⋯+ 𝑛𝑛2称作正整数的平方和， 

我们知道它等于
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6
 

而
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6
=

1
3
𝑛𝑛3 +

1
2
𝑛𝑛2 +

1
6
𝑛𝑛是一个三次多项式。 

对于一般的情况， �𝑚𝑚𝑝𝑝
𝑛𝑛

𝑚𝑚=1

 (𝑝𝑝 ∈ 𝐍𝐍) 

我们假设它是一个𝑝𝑝 + 1 次多项式， 

令 �𝑚𝑚𝑝𝑝
𝑛𝑛

𝑚𝑚=1

= �𝑎𝑎𝑝𝑝,𝑟𝑟

𝑝𝑝+1

𝑟𝑟=0

𝑛𝑛𝑟𝑟，来求系数矩阵�𝑎𝑎𝑝𝑝,𝑟𝑟�. 

 

方法一 

以求平方和利用立方差公式为例。 

在𝑎𝑎3 − 𝑏𝑏3 = (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎2 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏2)中， 

令𝑎𝑎 = 𝑚𝑚, 𝑏𝑏 = 𝑚𝑚− 1 

(𝑚𝑚)3 − (𝑚𝑚− 1)3 = �𝑚𝑚 − (𝑚𝑚− 1)�(𝑚𝑚2 + 𝑚𝑚(𝑚𝑚− 1) + (𝑚𝑚− 1)2) 

= (3𝑚𝑚2 − 3𝑚𝑚 + 1) 

再令𝑚𝑚从1到𝑛𝑛,两边求和得 

𝑛𝑛3 = 3 �𝑚𝑚2
𝑛𝑛

𝑚𝑚=1

− 3 �𝑚𝑚
𝑛𝑛

𝑚𝑚=1

+ � 1
𝑛𝑛

𝑚𝑚=1

 

其中零次、一次项求和的结果已经预先知道，代入并移项即得 



�𝑚𝑚2
𝑛𝑛

𝑚𝑚=1

=
1
3

(𝑛𝑛3 − 𝑛𝑛) +
𝑛𝑛2 + 𝑛𝑛

2
=

2𝑛𝑛3 + 3𝑛𝑛2 + 𝑛𝑛
6

 

 

对于 �𝑚𝑚𝑝𝑝
𝑛𝑛

𝑚𝑚=1

，我们要利用高次方差公式。 

𝑎𝑎𝑝𝑝+1 − 𝑏𝑏𝑝𝑝+1 = (𝑎𝑎 − 𝑏𝑏)�𝑎𝑎𝑝𝑝−𝑘𝑘𝑏𝑏𝑘𝑘
𝑝𝑝

𝑘𝑘=0

    （证明见第三章） 

仍然令𝑎𝑎 = 𝑚𝑚, 𝑏𝑏 = 𝑚𝑚− 1 

𝑚𝑚𝑝𝑝+1 − (𝑚𝑚− 1)𝑝𝑝+1 = �𝑚𝑚𝑝𝑝−𝑘𝑘(𝑚𝑚− 1)𝑘𝑘
𝑝𝑝

𝑘𝑘=0

 

两边令𝑚𝑚从 1 到𝑛𝑛求和 

𝑛𝑛𝑝𝑝+1 = � �𝑚𝑚𝑝𝑝−𝑘𝑘(𝑚𝑚− 1)𝑘𝑘
𝑝𝑝

𝑘𝑘=0

𝑛𝑛

𝑚𝑚=1

 

我们只需要找出右边𝑛𝑛的系数并与左边一一对应即可。 

为此，必须先利用0 到𝑝𝑝次的求和公式消去右端的𝑚𝑚. 

先二项展开： 

� �𝑚𝑚𝑝𝑝−𝑘𝑘(𝑚𝑚− 1)𝑘𝑘
𝑝𝑝

𝑘𝑘=0

𝑛𝑛

𝑚𝑚=1

 

= � ��𝑚𝑚𝑝𝑝−𝑘𝑘𝐶𝐶𝑘𝑘𝑡𝑡𝑚𝑚𝑘𝑘−𝑡𝑡(−1)𝑡𝑡
𝑘𝑘

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=0

𝑛𝑛

𝑚𝑚=1

 

求和变量𝑘𝑘, 𝑡𝑡不受𝑚𝑚限制，最外层求和可以换到最里。 



= ���� 𝑚𝑚𝑝𝑝−𝑡𝑡
𝑛𝑛

𝑚𝑚=1

�𝐶𝐶𝑘𝑘𝑡𝑡(−1)𝑡𝑡
𝑘𝑘

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=0

 

由之前所作的假定： 

= ��� � 𝑎𝑎𝑝𝑝−𝑡𝑡,𝑟𝑟

𝑝𝑝+1−𝑡𝑡

𝑟𝑟=0

𝑛𝑛𝑟𝑟�𝐶𝐶𝑘𝑘𝑡𝑡(−1)𝑡𝑡
𝑘𝑘

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=0

 

= �� � 𝑎𝑎𝑝𝑝−𝑡𝑡,𝑟𝑟𝐶𝐶𝑘𝑘𝑡𝑡(−1)𝑡𝑡𝑛𝑛𝑟𝑟
𝑝𝑝+1−𝑡𝑡

𝑟𝑟=0

𝑘𝑘

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=0

 

我们想把以𝑟𝑟为求和变量的求和号放至最外，以方便寻找系数。 

利用三角嵌套交换定理，省略函数。 

� �  
𝑝𝑝+1−𝑡𝑡

𝑟𝑟=0

𝑘𝑘

𝑡𝑡=0

= ��  
𝑝𝑝−𝑘𝑘

𝑟𝑟=0

𝑘𝑘

𝑡𝑡=0

+ � �  
𝑝𝑝+1−𝑡𝑡

𝑟𝑟=𝑝𝑝+1−𝑘𝑘

𝑘𝑘

𝑡𝑡=0

 

= ��  
𝑘𝑘

𝑡𝑡=0

𝑝𝑝−𝑘𝑘

𝑟𝑟=0

+ � �  
𝑘𝑘−𝑡𝑡

𝑟𝑟−𝑝𝑝−1+𝑘𝑘=0

𝑘𝑘

𝑡𝑡=0

 

这一步用了简略的换元记法，可以如此理解： 

𝑅𝑅 ≔ 𝑟𝑟 − 𝑝𝑝 − 1 + 𝑘𝑘, 

 𝑟𝑟 ∈ 𝐙𝐙[p + 1 − k, p + 1 − t] ⇒ 𝑅𝑅 ∈ 𝐙𝐙[0,𝑘𝑘 − 𝑡𝑡] 

= ��  
𝑘𝑘

𝑡𝑡=0

𝑝𝑝−𝑘𝑘

𝑟𝑟=0

+ � �  
𝑘𝑘−(𝑟𝑟−𝑝𝑝−1+𝑘𝑘)

𝑡𝑡=0

𝑘𝑘

𝑟𝑟−𝑝𝑝−1+𝑘𝑘=0

 

= ��  
𝑘𝑘

𝑡𝑡=0

𝑝𝑝−𝑘𝑘

𝑟𝑟=0

+ � �  
𝑝𝑝+1−𝑟𝑟

𝑡𝑡=0

𝑝𝑝+1

𝑟𝑟=𝑝𝑝+1−𝑘𝑘

 

这一步将𝑟𝑟还原:𝑅𝑅 ∈ 𝐙𝐙[0,𝑘𝑘] ⇒  𝑟𝑟 ∈ 𝐙𝐙[p + 1 − k, p + 1] 



于是 

�� �  
𝑝𝑝+1−𝑡𝑡

𝑟𝑟=0

𝑘𝑘

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=0

= ���  
𝑘𝑘

𝑡𝑡=0

𝑝𝑝−𝑘𝑘

𝑟𝑟=0

𝑝𝑝

𝑘𝑘=0

+ � � �  
𝑝𝑝+1−𝑟𝑟

𝑡𝑡=0

𝑝𝑝+1

𝑟𝑟=𝑝𝑝+1−𝑘𝑘

𝑝𝑝

𝑘𝑘=0

 

再对外层两求和进行交换。 

��  
𝑝𝑝−𝑘𝑘

𝑟𝑟=0

𝑝𝑝

𝑘𝑘=0

= ��  
𝑝𝑝−𝑟𝑟

𝑘𝑘=0

𝑝𝑝

𝑟𝑟=0

 

� �  
𝑝𝑝+1

𝑟𝑟=𝑝𝑝+1−𝑘𝑘

𝑝𝑝

𝑘𝑘=0

= � �  
𝑝𝑝

𝑟𝑟−1=𝑝𝑝−𝑘𝑘

𝑝𝑝

𝑘𝑘=0

= � �  
𝑝𝑝

𝑘𝑘=𝑝𝑝−(𝑟𝑟−1)

𝑝𝑝

𝑟𝑟−1=0

= � �  
𝑝𝑝

𝑘𝑘=𝑝𝑝+1−𝑟𝑟

𝑝𝑝+1

𝑟𝑟=1

 

于是 

�� �  
𝑝𝑝+1−𝑡𝑡

𝑟𝑟=0

𝑘𝑘

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=0

= ���  
𝑘𝑘

𝑡𝑡=0

 
𝑝𝑝−𝑟𝑟

𝑘𝑘=0

𝑝𝑝

𝑟𝑟=0

+ � � �  
𝑝𝑝+1−𝑟𝑟

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=𝑝𝑝+1−𝑟𝑟

𝑝𝑝+1

𝑟𝑟=1

 

即 

𝑛𝑛𝑝𝑝+1 = ���𝑎𝑎𝑝𝑝−𝑡𝑡,𝑟𝑟𝐶𝐶𝑘𝑘𝑡𝑡(−1)𝑡𝑡𝑛𝑛𝑟𝑟
𝑘𝑘

𝑡𝑡=0

 
𝑝𝑝−𝑟𝑟

𝑘𝑘=0

𝑝𝑝

𝑟𝑟=0

            

               +� � � 𝑎𝑎𝑝𝑝−𝑡𝑡,𝑟𝑟𝐶𝐶𝑘𝑘𝑡𝑡(−1)𝑡𝑡𝑛𝑛𝑟𝑟
𝑝𝑝+1−𝑟𝑟

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=𝑝𝑝+1−𝑟𝑟

𝑝𝑝+1

𝑟𝑟=1

 

此时可以很方便的读出各次项系数，设𝑛𝑛𝑟𝑟的系数为𝑓𝑓[𝑟𝑟]，则有方程 

𝑓𝑓[0] = 𝑓𝑓[1] = 𝑓𝑓[2] = ⋯ = 𝑓𝑓[𝑝𝑝] = 0,𝑓𝑓[𝑝𝑝 + 1] = 1 

考虑𝑓𝑓[0] = 0，即 

��𝑎𝑎𝑝𝑝−𝑡𝑡,0𝐶𝐶𝑘𝑘𝑡𝑡(−1)𝑡𝑡
𝑘𝑘

𝑡𝑡=0

 
𝑝𝑝

𝑘𝑘=0

= �𝑎𝑎𝑝𝑝−𝑡𝑡,0(−1)𝑡𝑡 ��𝐶𝐶𝑘𝑘𝑡𝑡
𝑝𝑝

𝑘𝑘=𝑡𝑡

� 
𝑝𝑝

𝑡𝑡=0

 



= �𝑎𝑎𝑝𝑝−𝑡𝑡,0𝐶𝐶𝑝𝑝+1𝑡𝑡+1(−1)𝑡𝑡 
𝑝𝑝

𝑡𝑡=0

= �𝑎𝑎𝑡𝑡,0𝐶𝐶𝑝𝑝+1𝑡𝑡 (−1)𝑝𝑝−𝑡𝑡 
𝑝𝑝

𝑡𝑡=0

= 0 

此式应对𝑝𝑝 = 0,1,2, …均成立，但代入𝑝𝑝 = 0 得𝑎𝑎0,0 = 0, 

代入𝑝𝑝 = 1，结合𝑎𝑎0,0 = 0 又可得𝑎𝑎1,0 = 0 

如此可知𝑎𝑎𝑝𝑝,0 = 0. 

 

考虑𝑓𝑓[𝑝𝑝 + 1] = 1，即 

��𝑎𝑎𝑝𝑝−𝑡𝑡,𝑝𝑝+1𝐶𝐶𝑘𝑘𝑡𝑡(−1)𝑡𝑡
0

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=0

= (𝑝𝑝 + 1)𝑎𝑎𝑝𝑝,𝑝𝑝+1 = 1 

可得𝑎𝑎𝑝𝑝,𝑝𝑝+1 =
1

𝑝𝑝 + 1
， 

这说明正整数的𝑝𝑝次方求和后𝑝𝑝 + 1 次方的系数为
1

𝑝𝑝 + 1
 

 
而对𝑟𝑟 ∈ 𝐙𝐙[1,𝑝𝑝]而言，方程表现为 

��𝑎𝑎𝑝𝑝−𝑡𝑡,𝑟𝑟𝐶𝐶𝑘𝑘𝑡𝑡(−1)𝑡𝑡
𝑘𝑘

𝑡𝑡=0

 
𝑝𝑝−𝑟𝑟

𝑘𝑘=0

+ � � 𝑎𝑎𝑝𝑝−𝑡𝑡,𝑟𝑟𝐶𝐶𝑘𝑘𝑡𝑡(−1)𝑡𝑡
𝑝𝑝+1−𝑟𝑟

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=𝑝𝑝+1−𝑟𝑟

= 0 

注意到求和点组成直角 + 45°梯形，在𝑘𝑘 − 𝑡𝑡坐标系中四个顶点分

别为(0,0), (𝑝𝑝, 0), (𝑝𝑝, 𝑝𝑝 + 1 − 𝑟𝑟), (𝑝𝑝 + 1 − 𝑟𝑟,𝑝𝑝 + 1 − 𝑟𝑟) 

可通过嵌套交换合并。 

� �𝑎𝑎𝑝𝑝−𝑡𝑡,𝑟𝑟𝐶𝐶𝑘𝑘𝑡𝑡(−1)𝑡𝑡
𝑝𝑝

𝑘𝑘=𝑡𝑡

𝑝𝑝+1−𝑟𝑟

𝑡𝑡=0

= � 𝑎𝑎𝑝𝑝−𝑡𝑡,𝑟𝑟𝐶𝐶𝑝𝑝+1𝑡𝑡+1(−1)𝑡𝑡
𝑝𝑝+1−𝑟𝑟

𝑡𝑡=0

= 0 



� (−1)𝑝𝑝−𝑡𝑡𝐶𝐶𝑝𝑝+1𝑡𝑡 𝑎𝑎𝑡𝑡,𝑟𝑟

𝑝𝑝

𝑡𝑡=𝑟𝑟−1

= 0 

来计算一些具体情况，令𝑟𝑟 = 1 

�(−1)𝑝𝑝−𝑡𝑡𝐶𝐶𝑝𝑝+1𝑡𝑡 𝑎𝑎𝑡𝑡,1

𝑝𝑝

𝑡𝑡=0

= 0 

也许我们还是想代入𝑝𝑝 = 0，但是注意到𝑝𝑝 ≥ 𝑟𝑟，只能从 1开始代。 

�(−1)1−𝑡𝑡𝐶𝐶2𝑡𝑡𝑎𝑎𝑡𝑡,1

1

𝑡𝑡=0

= −𝑎𝑎0,1 + 2𝑎𝑎1,1 = 0 

其中𝑎𝑎0,1只能由𝑎𝑎𝑝𝑝,𝑝𝑝+1 =
1

𝑝𝑝 + 1
计算，得𝑎𝑎0,1 = 1,𝑎𝑎1,1 =

1
2
 

再令𝑝𝑝 = 2，𝑎𝑎0,1 − 3𝑎𝑎1,1 + 3𝑎𝑎2,1 = 0,𝑎𝑎2,1 =
1
6
 

回去看一看平方求和后一次项的系数，确实没错。 

 

这里我们不讨论如何解这个递推方程，因为下面这个方法可以直

接得到通项公式，结果显示通项公式中含有第一类斯特林数，而

多方查找均未得第一类斯特林数的通项公式，也就是说结果并不

是初等的。 

 

方法二 

注意，此方法需要用到斯特林数及下降阶乘，不了解的读者请先

阅读附录一。 

此方法的关键是利用下降阶乘便于求和的特点。 



� (𝑚𝑚)𝑘𝑘

𝑛𝑛

𝑚𝑚=1

 

= �
(𝑚𝑚 + 1)− (𝑚𝑚− 𝑘𝑘)

𝑘𝑘 + 1
(𝑚𝑚)𝑘𝑘

𝑛𝑛

𝑚𝑚=1

 

= �
1

𝑘𝑘 + 1
((𝑚𝑚 + 1)𝑘𝑘+1 − (𝑚𝑚)𝑘𝑘+1)

𝑛𝑛

𝑚𝑚=1

 

=
1

𝑘𝑘 + 1
�� (𝑚𝑚 + 1)𝑘𝑘+1

𝑛𝑛

𝑚𝑚=1

− � (𝑚𝑚)𝑘𝑘+1

𝑛𝑛

𝑚𝑚=1

� 

=
(𝑛𝑛 + 1)𝑘𝑘+1 − (1)𝑘𝑘+1

𝑘𝑘 + 1
 

当𝑘𝑘 ≥ 1 时，(1)𝑘𝑘+1 = 0,因此 

� (𝑚𝑚)𝑘𝑘

𝑛𝑛

𝑚𝑚=1

=
(𝑛𝑛 + 1)𝑘𝑘+1
𝑘𝑘 + 1

 

注：此结论可进一步用于证明组合等式 

� 𝐶𝐶𝑘𝑘𝑚𝑚 = 𝐶𝐶𝑛𝑛+1𝑚𝑚+1
𝑛𝑛

𝑘𝑘=𝑚𝑚

 

 

由第二类斯特林数的性质： 

𝑥𝑥𝑛𝑛 = �𝑆𝑆2[𝑛𝑛, 𝑘𝑘](𝑥𝑥)𝑘𝑘

𝑛𝑛

𝑘𝑘=0

       

得 �𝑚𝑚𝑝𝑝
𝑛𝑛

𝑚𝑚=1

= � �𝑆𝑆2[𝑝𝑝,𝑘𝑘](𝑚𝑚)𝑘𝑘

𝑝𝑝

𝑘𝑘=0

𝑛𝑛

𝑚𝑚=1

 



不考虑𝑝𝑝 = 0的情况，则此时𝑆𝑆2[𝑝𝑝, 0] = 0 

因此 �𝑚𝑚𝑝𝑝
𝑛𝑛

𝑚𝑚=1

= � �𝑆𝑆2[𝑝𝑝, 𝑘𝑘](𝑚𝑚)𝑘𝑘

𝑝𝑝

𝑘𝑘=1

𝑛𝑛

𝑚𝑚=1

 

现在我们保证了𝑘𝑘 ≥ 1，嵌套交换对(𝑚𝑚)𝑘𝑘求和： 

� �𝑆𝑆2[𝑝𝑝, 𝑘𝑘](𝑚𝑚)𝑘𝑘

𝑝𝑝

𝑘𝑘=1

𝑛𝑛

𝑚𝑚=1

= �𝑆𝑆2[𝑝𝑝,𝑘𝑘]
(𝑛𝑛 + 1)𝑘𝑘+1
𝑘𝑘 + 1

𝑝𝑝

𝑘𝑘=1

 

 

再由第一类斯特林数的性质： 

(𝑥𝑥)𝑛𝑛 = �𝑆𝑆1[𝑛𝑛,𝑘𝑘]𝑥𝑥𝑘𝑘
𝑛𝑛

𝑘𝑘=0

 

得�𝑆𝑆2[𝑝𝑝,𝑘𝑘]
(𝑛𝑛 + 1)𝑘𝑘+1
𝑘𝑘 + 1

𝑝𝑝

𝑘𝑘=1

= �
𝑆𝑆2[𝑝𝑝,𝑘𝑘]
𝑘𝑘 + 1

𝑝𝑝

𝑘𝑘=1

�𝑆𝑆1[𝑘𝑘 + 1, 𝑡𝑡](𝑛𝑛 + 1)𝑡𝑡
𝑘𝑘+1

𝑡𝑡=0

 

二项展开： 

= �
𝑆𝑆2[𝑝𝑝, 𝑘𝑘]
𝑘𝑘 + 1

𝑝𝑝

𝑘𝑘=1

�𝑆𝑆1[𝑘𝑘 + 1, 𝑡𝑡]�𝐶𝐶𝑡𝑡𝑟𝑟𝑛𝑛𝑟𝑟
𝑡𝑡

𝑟𝑟=0

𝑘𝑘+1

𝑡𝑡=0

 

= ���
𝑆𝑆2[𝑝𝑝, 𝑘𝑘]𝑆𝑆1[𝑘𝑘 + 1, 𝑡𝑡]𝐶𝐶𝑡𝑡𝑟𝑟

𝑘𝑘 + 1
𝑛𝑛𝑟𝑟

𝑡𝑡

𝑟𝑟=0

𝑘𝑘+1

𝑡𝑡=0

𝑝𝑝

𝑘𝑘=1

 

= ���
𝑆𝑆2[𝑝𝑝,𝑘𝑘 − 1]𝑆𝑆1[𝑘𝑘, 𝑡𝑡]𝐶𝐶𝑡𝑡𝑟𝑟

𝑘𝑘
𝑛𝑛𝑟𝑟

𝑡𝑡

𝑟𝑟=0

𝑘𝑘

𝑡𝑡=0

𝑝𝑝+1

𝑘𝑘=2

 

同样地，我们想把求和变量为𝑟𝑟的求和号交换到最外层。 



内二层：��  
𝑡𝑡

𝑟𝑟=0

𝑘𝑘

𝑡𝑡=0

= ��  
𝑘𝑘

𝑡𝑡=𝑟𝑟

𝑘𝑘

𝑟𝑟=0

 

外二层：��  
𝑘𝑘

𝑟𝑟=0

𝑝𝑝+1

𝑘𝑘=2

= ��  
𝑝𝑝+1

𝑘𝑘=2

1

𝑟𝑟=0

+ ��  
𝑝𝑝+1

𝑘𝑘=𝑟𝑟

𝑝𝑝+1

𝑟𝑟=2

 

最终得到 

���
𝑆𝑆2[𝑝𝑝,𝑘𝑘 − 1]𝑆𝑆1[𝑘𝑘, 𝑡𝑡]𝐶𝐶𝑡𝑡𝑟𝑟

𝑘𝑘
𝑛𝑛𝑟𝑟

𝑡𝑡

𝑟𝑟=0

𝑘𝑘

𝑡𝑡=0

𝑝𝑝+1

𝑘𝑘=2

 

= ����  
𝑘𝑘

𝑡𝑡=𝑟𝑟

𝑝𝑝+1

𝑘𝑘=2

1

𝑟𝑟=0

+ ���  
𝑘𝑘

𝑡𝑡=𝑟𝑟

𝑝𝑝+1

𝑘𝑘=𝑟𝑟

𝑝𝑝+1

𝑟𝑟=2

�
𝑆𝑆2[𝑝𝑝, 𝑘𝑘 − 1]𝑆𝑆1[𝑘𝑘, 𝑡𝑡]𝐶𝐶𝑡𝑡𝑟𝑟

𝑘𝑘
𝑛𝑛𝑟𝑟 

很容易读出系数 

𝑓𝑓[0] = ��
𝑆𝑆2[𝑝𝑝, 𝑘𝑘 − 1]𝑆𝑆1[𝑘𝑘, 𝑡𝑡]

𝑘𝑘

𝑘𝑘

𝑡𝑡=0

𝑝𝑝+1

𝑘𝑘=2

 

注意到这里𝑘𝑘 ≥ 2,由第一类斯特林数的性质得 

�𝑆𝑆1[𝑘𝑘, 𝑡𝑡]
𝑘𝑘

𝑡𝑡=0

= 0， 因而𝑓𝑓[0] = 0 

𝑓𝑓[1] = ��  
𝑘𝑘

𝑡𝑡=1

𝑆𝑆2[𝑝𝑝,𝑘𝑘 − 1]𝑆𝑆1[𝑘𝑘, 𝑡𝑡]𝐶𝐶𝑡𝑡1

𝑘𝑘

𝑝𝑝+1

𝑘𝑘=2

 

𝑓𝑓[𝑟𝑟] = ��
𝑆𝑆2[𝑝𝑝, 𝑘𝑘 − 1]𝑆𝑆1[𝑘𝑘, 𝑡𝑡]𝐶𝐶𝑡𝑡𝑟𝑟

𝑘𝑘

𝑘𝑘

𝑡𝑡=𝑟𝑟

𝑝𝑝+1

𝑘𝑘=𝑟𝑟

    (𝑟𝑟 ∈ 𝐙𝐙[2,𝑝𝑝 + 1]) 

经验证对𝑟𝑟 = 1 亦成立。 

待求的系数矩阵𝑎𝑎𝑝𝑝,𝑟𝑟即为𝑓𝑓[𝑟𝑟] 



𝑎𝑎𝑝𝑝,𝑟𝑟 = ���
𝑆𝑆2[𝑝𝑝, 𝑘𝑘 − 1]𝑆𝑆1[𝑘𝑘, 𝑡𝑡]𝐶𝐶𝑡𝑡𝑟𝑟

𝑘𝑘

𝑘𝑘

𝑡𝑡=𝑟𝑟

𝑝𝑝+1

𝑘𝑘=𝑟𝑟

, 𝑟𝑟 ∈ 𝐙𝐙[1,𝑝𝑝 + 1]

0, 𝑟𝑟 = 0

 

令𝑟𝑟 = 𝑝𝑝 + 1,同样可得𝑎𝑎𝑝𝑝,𝑝𝑝+1 =
1

𝑝𝑝 + 1
 

令 r = p,𝑎𝑎𝑝𝑝,𝑝𝑝 = ��
𝑆𝑆2[𝑝𝑝, 𝑘𝑘 − 1]𝑆𝑆1[𝑘𝑘, 𝑡𝑡]𝐶𝐶𝑡𝑡

𝑝𝑝

𝑘𝑘

𝑘𝑘

𝑡𝑡=𝑝𝑝

𝑝𝑝+1

𝑘𝑘=𝑝𝑝

 

= �
𝑆𝑆2[𝑝𝑝, 𝑝𝑝 − 1]𝑆𝑆1[𝑝𝑝, 𝑡𝑡]𝐶𝐶𝑡𝑡

𝑝𝑝

𝑝𝑝

𝑝𝑝

𝑡𝑡=𝑝𝑝

+ �
𝑆𝑆2[𝑝𝑝,𝑝𝑝]𝑆𝑆1[𝑝𝑝 + 1, 𝑡𝑡]𝐶𝐶𝑡𝑡

𝑝𝑝

𝑝𝑝 + 1

𝑝𝑝+1

𝑡𝑡=𝑝𝑝

 

=
𝐶𝐶𝑝𝑝2

𝑝𝑝
−
𝐶𝐶𝑝𝑝+12

𝑝𝑝 + 1
+
𝐶𝐶𝑝𝑝+11

𝑝𝑝 + 1
=
𝑝𝑝 − 1

2
−
𝑝𝑝
2

+ 1 =
1
2
 

这意味着正整数𝑝𝑝(> 0)次方幂和结果中𝑝𝑝次方的系数恒为
1
2
 

第一个参数表示行数，第二个参数表示列数， 

矩阵�𝑎𝑎𝑝𝑝,𝑟𝑟�如下所示。 

0 1 0 0 0 0 0 0

0
1
2

1
2

0 0 0 0 0

0
1
6

1
2

1
3

0 0 0 0

0 0
1
4

1
2

1
4

0 0 0

0 −
1

30
0

1
3

1
2

1
5

0 0

0 0 −
1

12
0

5
12

1
2

1
6

0

0
1

42
0 −

1
6

0
1
2

1
2

1
7

 



在之前的步骤中，有 

�𝑚𝑚𝑝𝑝
𝑛𝑛

𝑚𝑚=1

= �𝑆𝑆2[𝑝𝑝,𝑘𝑘]
(𝑛𝑛 + 1)𝑘𝑘+1
𝑘𝑘 + 1

𝑝𝑝

𝑘𝑘=1

 

在𝑛𝑛 > 𝑝𝑝的条件下，(𝑛𝑛 + 1)𝑘𝑘+1不会为零，可用组合数表示。 

�𝑚𝑚𝑝𝑝
𝑛𝑛

𝑚𝑚=1

= �𝑆𝑆2[𝑝𝑝,𝑘𝑘]
(𝑘𝑘 + 1)!𝐶𝐶𝑛𝑛+1𝑘𝑘+1

𝑘𝑘 + 1

𝑝𝑝

𝑘𝑘=1

= �𝑆𝑆2[𝑝𝑝, 𝑘𝑘]𝑘𝑘!𝐶𝐶𝑛𝑛+1𝑘𝑘+1

𝑝𝑝

𝑘𝑘=1

 

这是正整数方幂和的组合数表示法，如 

�𝑚𝑚3
𝑛𝑛

𝑚𝑚=1

= �𝑆𝑆2[3,𝑘𝑘]𝑘𝑘!𝐶𝐶𝑛𝑛+1𝑘𝑘+1
3

𝑘𝑘=1

= 𝐶𝐶𝑛𝑛+12 + 6𝐶𝐶𝑛𝑛+13 + 6𝐶𝐶𝑛𝑛+14  

 



附录一 阶乘与斯特林数 

Ap1.1 递升与递降阶乘 

Ap1.1.1 定义 

递升阶乘𝑥𝑥(𝑛𝑛) ≔ 𝑥𝑥(𝑥𝑥 + 1) … (𝑥𝑥 + 𝑛𝑛 − 1),𝑛𝑛 ∈ 𝐍𝐍+ 

表示首项为𝑥𝑥，末项为𝑥𝑥 + 𝑛𝑛 − 1，步长为 1 的𝑛𝑛项之积 

递降阶乘(𝑥𝑥)𝑛𝑛 ≔ 𝑥𝑥(𝑥𝑥 − 1) … (𝑥𝑥 − 𝑛𝑛 + 1),𝑛𝑛 ∈ 𝐍𝐍+ 

表示首项为𝑥𝑥，末项为𝑥𝑥 − 𝑛𝑛 + 1，步长为− 1 的𝑛𝑛项之积 

特别地，当𝑛𝑛 = 0 时，规定𝑥𝑥(𝑛𝑛) = (𝑥𝑥)𝑛𝑛 = 1 

 

Ap1.1.2 表示 

阶乘：𝑥𝑥(𝑛𝑛) =
(𝑥𝑥 + 𝑛𝑛 − 1)!

(𝑥𝑥 − 1)!
     (𝑥𝑥)𝑛𝑛 =

(𝑥𝑥)!
(𝑥𝑥 − 𝑛𝑛)!

 

-阶乘表示需要阶乘数为非负整数，而原定义无此限制，即因式中

有负数或非整数亦可。 

排列数：𝑥𝑥(𝑛𝑛) = 𝐴𝐴𝑥𝑥+𝑛𝑛−1𝑛𝑛     (𝑥𝑥)𝑛𝑛 = 𝐴𝐴𝑥𝑥𝑛𝑛 

-排列数表示的限制与阶乘类似。 

连乘号：𝑥𝑥(𝑛𝑛) = �(𝑥𝑥 + 𝑘𝑘)
𝑛𝑛−1

𝑘𝑘=0

    (𝑥𝑥)𝑛𝑛 = �(𝑥𝑥 − 𝑘𝑘)
𝑛𝑛−1

𝑘𝑘=0

 

-连乘号表示不能表示𝑛𝑛 = 0的情况。 

 

 



Ap1.1.3 性质 

两种阶乘的联系： 

𝑥𝑥(𝑛𝑛) = (−𝑥𝑥)𝑛𝑛(−1)𝑛𝑛    (𝑥𝑥)𝑛𝑛 = (−𝑥𝑥)(𝑛𝑛)(−1)𝑛𝑛 

递推关系： 

𝑥𝑥(𝑥𝑥)(𝑛𝑛) = (𝑥𝑥)(𝑛𝑛+1) − 𝑛𝑛(𝑥𝑥)(𝑛𝑛)     𝑥𝑥(𝑥𝑥)𝑛𝑛 = (𝑥𝑥)𝑛𝑛+1 + 𝑛𝑛(𝑥𝑥)𝑛𝑛 

 

Ap1.2 第一类斯特林数 

Ap1.2.1 定义 

无符号第一类斯特林数|𝑆𝑆1[𝑛𝑛,𝑚𝑚]|表示𝑛𝑛个不同元素构成𝑚𝑚个圆排

列的数目,其中𝑚𝑚,𝑛𝑛 ∈ 𝐍𝐍+,𝑛𝑛 ≥ 𝑚𝑚. 

特别地，当𝑚𝑚 > 𝑛𝑛时规定|𝑆𝑆1[𝑛𝑛,𝑚𝑚]| = 0, 

当𝑚𝑚 = 0,𝑛𝑛 ≠ 0 时规定|𝑆𝑆1[𝑛𝑛,𝑚𝑚]| = 0, |𝑆𝑆1[0,0]| = 1 

 

带符号第一类斯特林数𝑆𝑆1[𝑛𝑛,𝑚𝑚] ≔ (−1)𝑚𝑚+𝑛𝑛|𝑆𝑆1[𝑛𝑛,𝑚𝑚]| 

 

Ap1.2.2 值列表 

𝑆𝑆1[𝑛𝑛,𝑚𝑚] 𝑚𝑚 = 0 1 2 3 4 5 6
𝑛𝑛 = 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0
2 0 −1 1 0 0 0 0
3 0 2 −3 1 0 0 0
4 0 −6 11 −6 1 0 0
5 0 24 −50 35 −10 1 0
6 0 −120 274 −225 85 −15 1

 

 



Ap1.2.3 性质 

递推关系： 

𝑆𝑆1[𝑛𝑛 + 1,𝑚𝑚] = 𝑆𝑆1[𝑛𝑛,𝑚𝑚 − 1]− 𝑛𝑛 𝑆𝑆1[𝑛𝑛,𝑚𝑚], 1 ≤ 𝑚𝑚 ≤ 𝑛𝑛 

𝑆𝑆1[𝑛𝑛,𝑚𝑚] = � 𝑛𝑛𝑘𝑘−𝑚𝑚𝑆𝑆1[𝑛𝑛 + 1,𝑘𝑘 + 1]
𝑛𝑛

𝑘𝑘=𝑚𝑚

 

横行和为零：�𝑆𝑆1[𝑛𝑛, 𝑘𝑘] = 0
𝑛𝑛

𝑘𝑘=1

,𝑛𝑛 ≥ 2 

 

利用第一类斯特林数可以分解递升或递降阶乘为多项式形式。 

𝑥𝑥(𝑛𝑛) = �|𝑆𝑆1[𝑛𝑛, 𝑘𝑘]|𝑥𝑥𝑘𝑘
𝑛𝑛

𝑘𝑘=0

    (𝑥𝑥)𝑛𝑛 = �𝑆𝑆1[𝑛𝑛,𝑘𝑘]𝑥𝑥𝑘𝑘
𝑛𝑛

𝑘𝑘=0

 

 

Ap1.2.4 特殊值 

S1[𝑛𝑛, 1] = (−1)𝑛𝑛−1(𝑛𝑛 − 1)! 

S1[𝑛𝑛,𝑛𝑛 − 1] = −𝐶𝐶𝑛𝑛2 

 

Ap1.3 第二类斯特林数 

Ap1.3.1 定义 

第二类斯特林数𝑆𝑆2[𝑛𝑛,𝑚𝑚]表示将𝑛𝑛个不同的元素拆分成𝑚𝑚个集合的

方案数，其中𝑚𝑚,𝑛𝑛 ∈ 𝐍𝐍+,𝑛𝑛 ≥ 𝑚𝑚. 

特别地，当𝑚𝑚 > 𝑛𝑛时规定𝑆𝑆2[𝑛𝑛,𝑚𝑚] = 0, 

当𝑚𝑚 = 0,𝑛𝑛 ≠ 0 时规定𝑆𝑆2[𝑛𝑛,𝑚𝑚] = 0, 𝑆𝑆2[0,0] = 1 



Ap1.3.2 值列表 

𝑆𝑆2[𝑛𝑛,𝑚𝑚] 𝑚𝑚 = 0 1 2 3 4 5 6 7 8
𝑛𝑛 = 0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0
3 0 1 3 1 0 0 0 0 0
4 0 1 7 6 1 0 0 0 0
5 0 1 15 25 10 1 0 0 0
6 0 1 31 90 65 15 1 0 0
7 0 1 63 301 350 140 21 1 0
8 0 1 127 966 1701 1050 266 28 1

 

 

Ap1.3.3 性质 

第二类斯特林数有通项公式： 

𝑆𝑆2[𝑛𝑛,𝑚𝑚] =
1
𝑚𝑚!

�(−1)𝑘𝑘𝐶𝐶𝑚𝑚𝑘𝑘 (𝑚𝑚− 𝑘𝑘)𝑛𝑛
𝑚𝑚

𝑘𝑘=0

=
1
𝑚𝑚!

�(−1)𝑚𝑚−𝑘𝑘𝐶𝐶𝑚𝑚𝑘𝑘 𝑘𝑘𝑛𝑛
𝑚𝑚

𝑘𝑘=0

 

递推关系： 

𝑆𝑆2[𝑛𝑛,𝑚𝑚] = 𝑆𝑆2[𝑛𝑛 − 1,𝑚𝑚 − 1] + 𝑚𝑚 𝑆𝑆2[𝑛𝑛 − 1,𝑚𝑚] 

𝑆𝑆2[𝑛𝑛,𝑚𝑚] = � 𝑚𝑚𝑛𝑛−𝑘𝑘𝑆𝑆2[𝑘𝑘 − 1,𝑚𝑚− 1]
𝑛𝑛

𝑘𝑘=𝑚𝑚

 

第二类斯特林数可以将方幂拆分为递降阶乘和： 

𝑥𝑥𝑛𝑛 = �𝑆𝑆2[𝑛𝑛, 𝑘𝑘](𝑥𝑥)𝑘𝑘

𝑛𝑛

𝑘𝑘=0

 

两类斯特林数形成的等大方阵互为逆矩阵。 

 

 



本节参考资料： 

http://mathworld.wolfram.com/RisingFactorial.html 

http://mathworld.wolfram.com/FallingFactorial.html 

http://mathworld.wolfram.com/StirlingNumberoftheFirstKin

d.html 

http://mathworld.wolfram.com/StirlingNumberoftheSecondKi

nd.html 

https://baike.baidu.com/item/斯特林数 
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