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庄逸的数学与技术屋 组合求和对偶定理及其应用

1 写在前面

这个定理是在高中就发现的，并且逐渐也在三个排列组合的应用中嗅到了它的独特

价值和玄幻的内在含义。然而定理本身一直没有证明出来。直到一年多后有了一些经验

的积累，机缘巧合之下（上概率论与数理统计课）又翻起了这个定理并成功的将其证明。

证明的过程并不一帆风顺，关键部分还是靠猜出来的。这当然十分有意思，因此我把和

此定理相关的所有内容都写下来。先呈现完整的证明过程，再说一说其中的技巧是如何

想到的，接着再举出三个应用，最后探讨一下其中的原理。

没错，定理名字又是我自己取的，因为我还没在什么资料上见过。

注：本项目仅供交流，未经允许请勿用于盈利目的，且作者保留版权。

2 组合求和对偶定理

对于 N ∈ N，设 {an}, {bn}为两定义在 {0, . . . , N}上的数列，则对 ∀n ∈ {0, . . . , N}，
有

n∑
i=0

Ci
nai ≡ bn ⇔

n∑
i=0

Ci
n(−1)n−ibi ≡ an (1)

3 定理的证明

从左到右，先采用直接代入法验证。

对 ∀n ∈ {0, . . . , N}，已知
n∑

i=0

Ci
nai = bn (2)

换用符号将其改写为
i∑

j=0

Cj
i aj = bi (3)

代入右式等号左端

n∑
i=0

Ci
n(−1)n−ibi (4a)

=
n∑

i=0

Ci
n(−1)n−i

(
i∑

j=0

Cj
i aj

)
(4b)

整理多重求和式

=
n∑

i=0

i∑
j=0

Cj
iC

i
n(−1)n−iaj (4c)
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用求和的嵌套交换定理，
∑n

i=0

∑i
j=0 f(i, j) =

∑n
j=0

∑n
i=j f(i, j)，证略

=
n∑

j=0

n∑
i=j

Cj
iC

i
n(−1)n−iaj (4d)

用组合数的恒等式，证略，可见小节4

=
n∑

j=0

n∑
i=j

Cj
nC

n−i
n−j(−1)n−iaj (4e)

将与内部求和无关的变量提到外层，并对内部求和变量进行平移替换

=
n∑

j=0

Cj
naj

(
n−j∑
i=0

Cn−i−j
n−j (−1)n−i−j1i

)
(4f)

外部对 j = n 的情况单独提出一项，易验证就是 an; 内部则显然是二项式的展开，
将其收回

=
n−1∑
j=0

Cj
naj(1 + (−1))n−j + an (4g)

对每一个求和项而言 n− j 均大于零，故系数均为零

= an (4h)

然后来考虑解的唯一性。对于给定的 N，等价式(1)左端是一个函数恒等式，相当于
N + 1 个普通等式： 

C0
0a0 = b0

C0
1a0 + C1

1a1 = b1

C0
2a0 + C1

2a1 + C2
2a2 = b2

...

C0
Na0 + C1

Na1 + · · ·+ CN
N aN = bN

(5)

其中的系数矩阵为



C0
0 0 0 · · · 0

C0
1 C1

1 0 · · · 0

C0
2 C1

2 C2
2 · · · 0

...
...

... . . . ...
C0

N C1
N C2

N · · · CN
N


显然系数矩阵是满秩的，另外也可从消元法易知 a0, . . . , aN 只有一组解，也就是(1)等

价式中右端的表达式。

由右至左的证明同理。
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4 我是如何得出这个定理并证明的

一句话，全靠罗列然后找规律猜。

得到定理本身：对每个具体的 N，直接通过代入法解方程组。如当 N = 3 时，方程

组为 

a0 = b0

a0 + a1 = b1

a0 + 2a1 + a2 = b2

a0 + 3a1 + 3a2 + a3 = b3

(6)

用代入消元法，很容易就依次得到以下等式

a0 = b0

a1 = b1 − b0

a2 = b2 − 2b1 + b0

a3 = b3 − 3b2 + 3b1 − b0

(7)

显然很容易猜出定理(1)，并且由后面应用（见小节5）的正确性（和用别的方法算
出来一样）、数学的优美性 也可知定理的正确性。

证明定理：验证唯一性后只需直接代入验证。关键步骤是(4c),(4d)和(4e)
在拿到(4c)的二重求和式后，发现 aj 的下标 j 作为求和变量在内层，因此我们需要

将它换到外层来，使得式子具有 ?a0+?a1 + · · ·+?aN 的形式，这样由于 a0, . . . , aN 是互

相独立的，要满足等式就只需要验证 a0, . . . , aN−1 的系数均为零，而 aN 的系数为 1 即

可。这里的嵌套交换是三角型的，是之前 Σ の艺术研究的结果。
交换后得到(4d)式，稍加观察可知只需要证明每一项的系数

n∑
i=j

Cj
iC

i
n(−1)n−i (8)

对 j = 0, . . . , n− 1 均为零即可。当 j = n 时易知其为 1，是符合要求的。

然而从这里并不能直接看出证明过程(4d)到(4e)中使用的组合数等式，因此证明起
来十分头疼。想不出很好的办法，我就只好先按照 n 和 j 列了一下表，看看是否能找出

运算结果为零的内在机理。

n = 1 :− C0
1 + C1

1

n = 2 :C0
2 − C1

2 + C2
2 , −C1

2C
1
1 + C2

2C
1
2

n = 3 :− C0
3 + C1

3 − C2
3 + C3

3 , C1
3C

1
1 − C2

3C
1
2 + C3

3C
1
3 , −C2

3C
2
2 + C3

3C
2
3

n = 4 :C0
4 − C1

4 + C2
4 − C3

4 + C4
4 , −C1

4C
1
1 + C2

4C
1
2 − C3

4C
1
3 + C4

4C
1
4 ,

C2
4C

2
2 − C3

4C
2
3 + C4

4C
2
4 , −C3

4C
3
3 + C4

4C
3
4
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由于篇幅的原因，组合数的形式只能列四行，事实上我写到第六行才发现规律。对

于项数为偶数的式子，发现对称的项可以消去，用通项代入亦然，不过这个办法对奇数

项没有用。真正通用的是下面的方法。首先，把组合数计算出来，写成数字相加减的形

式。这次省去每行没什么意思的第一项和最后一项，可以写到第六行。

. . .

3− 6 + 3

− 4 + 12− 12 + 4, 6− 12 + 6

5− 20 + 30− 20 + 5, −10 + 30− 30 + 10, 10− 20 + 10

− 6 + 30− 60 + 60− 30 + 6, 15− 60 + 90− 60 + 15, −20 + 60− 60 + 20, 15− 30 + 15

发现每个式子都可以分别提出一个倍数，即

3(1− 2 + 1)

4(−1 + 3− 3 + 1), 6(1− 2 + 1)

5(1− 4 + 6− 4 + 1), 10(−1 + 3− 3 + 1), 10(1− 2 + 1)

6(−1 + 5− 10 + 10− 5 + 1), 15(1− 4 + 6− 4 + 1), 20(−1 + 3− 3 + 1), 15(1− 2 + 1)

显然，括号里面都是二项式的展开，将其收回后显然是零。为了在通项中让二项式展开

的形式显露出来，只需要把前面的倍数给除掉。继续观察倍数，不难发现是关于 n, j 的

组合数，更确切地说就是 Cj
n。

那么就试着除一下看看是否能化简

Cj
iC

i
n

Cj
n

=

i!
j!(i−j)!

n!
i!(n−i)!

n!
j!(n−j)!

=
(n− j)!

(i− j)!(n− i)!
= Cn−i

n−j (9)

于是我们得到了组合数的一个性质

Cj
iC

i
n = Cj

nC
n−i
n−j (10)

将其代入到(8)式中，得到
n∑

i=j

Cj
iC

i
n(−1)n−i =

n∑
i=j

Cj
nC

n−i
n−j(−1)n−i (11)

此时 Cj
n 在求和过程中是一个常数，可以直接提出；对求和变量进行平移，内部就

可用二项式定理。即(4f)式及之后过程。

5 在排列组合中的三个重要应用

5.1 全错位问题

问题：有 N 个球和 N 个盒子，均从 1 到 N 编号。向每个盒子中各放一个球，求

每个球的编号都与所在的盒子编号不同的情况总数。
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假设对于 n 个球而言所求情况总数为 Tn，显然，每个盒子中放一个球，总共的情

况就是 N 个球全排列，有 AN
N = N ! 种。这 N ! 种可以分成这么几类：

·所有球均放错，即球的编号与盒子的编号均不同的种数为 TN；

·N 个球中有一个球没有放错，其余 N − 1 个球放错。相当于从 N 个球中选出 N − 1

个放错，剩余的一个放对。放对的一个只有一种情况。所以根据我们的符号约定，总的

种数为 CN−1
N TN−1；

·同理，只有两个球没有放错的种数为 CN−2
N TN−2；

...
·虽然只有一个球放错的种数为 0，即这种情况是不存在的。但我们还是可以单独定义

T1 = 0 以保持形式的连续性，总种数为 C1
NT1；

·没有球放错的种数为 T0 = 1，总种数为 C0
NT0

这些情况互不重叠地覆盖了所有的可能，于是有

N∑
i=0

Ci
NTi = AN

N = N ! (12)

若把 N 看作在正整数上取值的变量，则式(12)可视为恒等式。由式(1)直接可得

TN =
N∑
i=0

Ci
N (−1)N−ii! =

N∑
i=0

(−1)N−iAi
N (13)

5.2 分配问题

问题：N 个盒子分别从 1 到 N 编号，有 M(M ≥ N) 个球，任意向盒子内放球，求

每个盒子至少有一个球的情况总数。

设对于有 n 个盒子而言每个盒子至少有一球总数为 Sn。类比之前的思路，先求所

有情况的数量。每个球都有 N 种选择，故总共有 NM 种情况。可以分为以下几类：

·向 N 个盒子里放球，每个盒子至少有一个球，共有 SN 种;
·选出 N − 1 个盒子使其不为空，这正是 SN−1，剩下的一个盒子为空，空盒子只有一种

情况。故这一情况的总数为 CN−1
N SN−1；

选出 N − 2 个盒子不为空，剩下两个盒子为空，共有 CN−2
N SN−2 种；

...
选出 0个盒子不为空，虽然这种情况不存在，但同样为了形式的连续性单独定义 S0 = 0，

则这种情况共有 C0
NS0 种。

同样，这些情况不重叠地覆盖了所有可能性，于是有

N∑
i=0

Ci
NSi = NM (14)

根据式(1)，得到
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SN =
N∑
i=0

Ci
N (−1)N−iiM (15)

5.3 涂色问题

问题：对于某一个图，已知用 N 种颜色（可以不用完所有的颜色）对其上色，总共

有 f(N) 种方法。即已知函数 f(N)，试求用 N 种颜色（需要用完所有的颜色）对其上

色，总共的方法数。

设用完 N 种颜色进行上色总共有 g(N) 种方法，将总共的 f(N) 种方法进行分类。

·N 种全用完，共有 g(N) 种方法。

·在 N 种颜色中选出 N − 1 种颜色用尽涂色，共有 CN−1
N g(N − 1) 种方法。

...
当选出的颜色数目过少时，可能无法完成涂色任务，即可认为有零种办法。同样，为

了形式的连续性我们可以单独规定相应的 g(n) = 0

于是也成立有

N∑
i=0

Ci
Ng(i) = f(N) (16)

由式(1)即得

g(N) =
N∑
i=0

Ci
N (−1)N−if(i) (17)

6 思考与总结

通过对这三个例子的应用，可以看到式(1)在排列组合中具有独特的地位。这三类问
题都是用一般方法做十分令人头疼的题目，纵观几个过程，我们都是先找出总情况数，然

后发现所有的情况可以分解为（在其中选出一部分对象进行子问题的方案种数）之和。这

有一些分形或者说是数学归纳法的意味，即问题 Q(N) 可以通过 Q(0), . . . , Q(N − 1) 结

合组合选择系数 Ci
N 拼凑得出，并且由于式(1)的存在，求解过程中的其余部分都变得十

分简单。

相信它的应用和含义不止于此。

彩蛋

刚刚想验证一下涂色问题得到的公式的正确性，设想只有两个格子，用 N 种颜色

涂，于是 f(N) = N(N −1)。而 N 大的时候显然是涂不完的，即当 N 比较大时 g(N) =∑N
i=0 C

i
N (−1)N−ii(i− 1) 应当全为零。

然而这看着好悬啊？拿 Mathematica 看看。
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图 1: mma 给出的结果

结果还真的是……只有 g(2) = 2，想了想还确实应该是这样。这实实在在是很神奇

了。

参考资料

我以前自己写过的东西。
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1. 博客内容仅为经验之谈，如认为有问题请带着批判性思维自行辨别或与我讨论，本
人不负责因盲目应用博客内容导致的任何损失。

2. 虽然文章的思想不一定是原创的，但是写作一定是原创的，如有雷同纯属巧合。

3. 本作品采用知识共享署名-相同方式共享 4.0 国际许可协议进行许可。

博客信息 此文章的博客来源：https://vortexer99.github.io/
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