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庄逸的数学与技术屋 nabla 算子运算规则的作用对象修正

1 背景和动机：不能总作为向量的算符

众所周知，nabla算子 ∇的运算规则，可以把它当做向量，套用向量的运算规则，即
令

∇ =
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)
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对于标量场 ϕ 的梯度，向量场 A 的散度、旋度，甚至旋度的散度一些复合，用向量的

运算规则都能 fit very well. 例如：

div curlA = ∇ · (∇×A) = ∇ ·

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

∂

∂x

∂

∂y

∂

∂z
∂

∂x

∂

∂y

∂

∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣∣
= 0 (2)

但是，在一些情况下，简单套用矢量运算法会产生一些问题。本篇文章的目的即为

解决以下两个问题

1. 什么时候 nabla 算符不能套用矢量运算法？

2. 当不能套用矢量运算法的时候，我们该如何做？

2 关键点 A：无简单交换律

先提一个简单的。

众所周知，向量点积是可交换的，即 a · b = b · a。但是，nabla 算符的点积是不可
交换的，其表达的意义不同。例如：

∇ · v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

(3)

而

v · ∇ = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
(4)

这并不是一个确切的数值，而仍然是一个算符。考虑其对 u 进行作用，取其结果的 x 分

量为例

((v · ∇)u)x = vx
∂ux

∂x
+ vy

∂ux

∂y
+ vz

∂ux

∂z
(5)

作为对比，有

((∇ · v)u)x = ux
∂vx
∂x

+ ux
∂vy
∂y

+ ux
∂vz
∂z

(6)

同理，梯度也是不可交换的，即 ∇ϕ 和 ϕ∇ 不同，但是遇到的不多，迷惑性也不如
点积的大。旋度即使用向量反交换律法则也不成立，即 ∇× v 和 −v×∇ 不同。从性质
上来说，nabla 置于前的式子，都是一个具体的向量或数，而 nabla 置于后的式子，都还
只是一个算符，不能将 nabla 之前的向量或标量直接放入偏导数内。
在解决问题 B之后，可以很直观地理解这里的关键原因，并重建良好的交换律。见原

理解释 A：重建交换律
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3 问题 B 引入：隐藏的错误

下面这个表达式是正确的。

(∇× v)× v = −1

2
∇(v2) + (v · ∇)v (7)

请试着用公式

a× (b× c) = b(a · c)− c(a · b) (8)

对左端展开以验证。

你将很有可能得到：

(∇× v)× v = −v × (∇× v) (9)

= −∇(v · v) + v(v · ∇) (10)

= −∇(v2) + (v · ∇)v (11)

你可能会经历以下心路历程。

1. 发现得到的结果，和前面所谓正确的公式差了一半。

2. 于是你开始检查你的推导过程。

3. 很有可能你在很多地方见过式 81，因此不会怀疑它的正确性。

4. 在对照了十几遍之后，仍然找不出推导过程半点不对劲的地方。

5. 你开始对我给你所谓的正确方程产生严重的怀疑。

请相信我。我给你的方程是完全正确的，而你的推导过程确实存在问题。这确实非

常隐蔽，可能看个几十遍都看不出来。于是你打算直接拿行列式进行一通爆算来找问题

到底出在哪儿。但是为了极大地节约你的时间，我还是直接告诉你结论。

4 关键点 B：作用对象

nabla 算符有固定作用对象
nabla 算符有固定作用对象
nabla 算符有固定作用对象

意思是，在 ∇× v× v 中，nabla 算符只对一个向量 v 产生作用。而在 ∇(v · v) 中，
nabla 算符相当于对两个向量都进行了一次作用。因此，要注意区分。

1此式由于其类似”bac(k)-cab” 而得名“后面的出租车”，是使用非常频繁的三重矢积公式。
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5 解决办法 B：费曼脚标和默认约定

引入“费曼脚标算符”2，以指示 nabla 算符的作用对象。例如

∇(a · b) = ∇a(a · b) +∇b(a · b) (12)

等号左边的 nabla 算符表示对两个向量都进行作用，右边的第一项表示只对 a 向量作

用，把 b 视为常数（常向量）。第二项则相反。其原理类似于乘法求导法则。

∂

∂x
(ab) = b

∂a

∂x
+ a

∂b

∂x
(13)

然后我们再来进行运算。在最开始的式子中，nabla 后接哪个向量，下标就标上哪
个向量。即默认约定：nabla算符作用对象就是其后的向量或标量。为了清晰起见，先用
v1 = v2 = v 区分。(其实不区分也行，只需要牢记有下标时只对其中一个 v 进行运算即

可。)

(∇× v1)× v2 = −v2 × (∇1 × v1) (14)

= −∇1(v2 · v1) + v1(v2 · ∇1) (15)

(∵ v1 = v2) = −1

2
(∇1(v2 · v1) +∇2(v2 · v1)) + v1(v2 · ∇1) (16)

= −1

2
∇(v1 · v2) + (v2 · ∇1)v1 (17)

= −1

2
∇(v2) + (v · ∇)v (18)

可以看到，这次的式子是正确的。其中最后一步第二项的处理，注意到 v2 ·∇1 去掉

脚标后（只要不瞎用交换律，见关键点 A：无简单交换律）也不会产生“算符作用到前
面一个向量上”的歧义即可。

6 原理解释 A：重建交换律

现在可以解释关键点 A：无简单交换律中内在的原因。根据默认约定：nabla 算符
作用的对象就是其后跟着的向量或标量，即

∇ϕ = ∇ϕϕ ∇ · v = ∇v · v ∇× v = ∇v × v (19)

但是将 nabla 算符后置时，其后的作用对象可能暂时还未给出。例如

v · ∇ = v · ∇? (20)

因此，考虑任意向量 u，我们有

(∇ · v)u = (∇v · v)u (v · ∇)u = (v · ∇u)u (21)
2可在《费曼物理学讲义》第二卷 §27-3 中找到
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在用下标指定作用对象后，利用向量的运算规则（梯度、散度交换律，旋度反交换

律）理论上是被允许的，因为它们表达的意义很明确，即作用对象之外的向量或标量都

被明确禁止进入偏导数内。

∇v · v = v · ∇v ∇u · v = v · ∇u (22)

显然，对 u ̸= v，由于 ∇v ̸= ∇u，可知 ∇v · v ̸= ∇u · v (v ̸= 0)，于是显然有

∇v · v ̸= v · ∇u。这就是为什么一般默认记法 ∇ · v ̸= v · ∇。
特殊的情况，考虑“左右旋度”，虽然 nabla 算符置于不同的位置，但是可以理解成

已经显式指明作用的对象（就是你要求旋度的那个矢量，偏导数都是对它求），就可以套

用反交换律了。

∇v × v = −v ×∇v (23)

7 注意点：向量规则和默认约定

在上面的运算过程中，考虑 (v2 · ∇1)v1 一项。既然 ∇1 对 v2 是完全不理睬的，那

么似乎能把 v2 独立出来，然后 nabla 算符和后面的 v1 粘上，即

(v2 · ∇1)v1 = v2(∇1 · v1) = (∇ · v)v (24)

而正确的项为 (v · ∇)v。如果不注意区分，会误解为是因为交换律而引起的问题，但事

实上就算强行交换，意义也不对。

进行区分，正确的答案为 (v2 · ∇1)v1，上面最后一项为 (∇1 · v1)v2。注意默认约定，

(∇1 · v1)v2 = (v1 · ∇1)v2 ̸= (v1 · ∇)v2 = (v1 · ∇2)v2 (25)

在 v1 = v2 的条件下，上式最右端轮换指标可以化为正确答案。两端根本的不同之处在

于 ∇ 的作用对象，一个是在括号外，一个是在括号内。这使得即使 v1 = v2 = v 也无济

于事。

根源是第一步就出了错。其实，写成普通向量形式是好理解的，即一般

a(b · c) ̸= (a · b)c (26)

即使指明了作用对象，nabla 的运算相对“自由”了一些，但仍然不能为所欲为，由于
指出了 nabla 算符和向量的不同之处，就发明不符合向量基本运算规则的 nabla 运算规
则，强行去粘作用对象。脚标和作用对象的引入，目标是使得将 nabla 算符能够适用向
量运算的规则，而不是让 nabla 算符超越现有的规则。

8 一劳永逸的解决方案：张量与求和约定

以后不学张量的非数学物理力学系同学其实大概可以跳过此段。
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8.1 爱因斯坦求和约定

首先引入爱因斯坦求和约定：凡是成对出现的指标，都认为是要从 1到 3进行求和。

于是向量可以表为

a = a1e1 + a2e2 + a3e3 =
3∑

i=1

aiei = aiei (27)

8.2 两个符号

再引入 kronecker 和 levi-civita 符号

δij =

1 i = j

0 i ̸= j
εijk =


1 ijk = 123, 231, 312

− 1 ijk = 132, 213, 321

0 other

(28)

它们分别具有以下性质

f(i, j)δi,j = f(i, i) (29)

证明：

left =
3∑

i=1

3∑
j=1

f(i, j)δi,j =
3∑

i,j=1
i=j

f(i, j)δi,j +
3∑

i,j=1
i ̸=j

f(i, j)δi,j (30)

(use definition) =
3∑

i,j=1
i=j

f(i, j) =
3∑

i=1

f(i, i) = right (31)

以及

εijk = εkij = εjki = −εikj = −εkji = −εjik (32)

证明：只需要理解 εijk 只返回 ijk 的排列性质（偶排列为 1，奇排列为-1）即可，因此
交换奇数次下标会改变符号，交换偶数次下标不改变符号。

8.3 基矢运算

定义基矢的点乘和叉乘分别为

ei · ej = δij ei × ej = εijkek (33)

于是我们就有了向量的点乘和叉乘

a · b = (aiei) · (bjej) = aibj(ei · ej) = aibjδij = aibi (34)

a× b = (aiei)× (bjej) = aibj(ei × ej) = aibjεijkek (35)

其中叉乘的 e1 方向分量为 aibjεij1 = a2b3 − a3b2，和行列式传统定义计算结果相同。
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另外还有基矢的并矢计算，得到的是一个只在 i 行 j 列为 1 的矩阵。

Aijei ⊗ ej =
3∑

i=1

3∑
j=1

Aijei ⊗ ej = A (36)

其他高级的张量计算等在此不作介绍。

8.4 nabla 算子及运算

现在，只要把 x, y, z 三个方向记为 x1, x2, x3 三个方向，令 nabla 算子为

∇ =
∂

∂xi

ei (37)

即可像正常向量一样参与运算。例如

∇ · v =
∂

∂xi

ei · vjej =
∂vi
∂xi

∇× v =
∂

∂xi

ei × vjej =
∂vj
∂xi

εijkek (38)

此时也需要注意作用对象。作用对象和非作用对象的区别，在此很明显地体现为在

偏导数中是视为常数直接提出，还是需要参与偏导运算。

v ×∇ = viei ×
∂

∂xj

ej = εijkvi
∂

∂xj

ek (39)

∇(a · b) = ∂(ajbj)

∂xi

ei =

(
aj

∂bj
∂xi

+ bj
∂aj
∂xi

)
ei (40)

∇a(a · b) = ∂a(ajbj)

∂xi

ei = bj
∂aj
∂xi

ei (41)

可见，写在 nabla 算符之前的向量，其写成这种形式时也位于偏导左边，因此一般粘在
偏导左边作为系数。而写在算符之后的向量，位于偏导右边，而粘在偏导右边的量一般

就被认为是需要进行偏导运算。这也许就是默认约定的来源。

8.5 对前面问题的解释

现在再计算前面产生问题的式子，就不会产生问题。

(∇× v)× v =

(
∂

∂xi

ei × vjej

)
× v (42)

=
∂vj
∂xi

εijkek × vlel (43)

= vl
∂vj
∂xi

εijkεklmem (44)

= vl
∂vj
∂xi

εijkεlmkem (45)

然后我们来考察一下两个 Levi-civita 符号的乘积。注意到它们下标 ijk 和 lmk 中，在

相同的位置出现了 k。那么，要使得它们都不为零，i, j 和 l,m 都分别只能在除 k 外的

两个数中选。于是，要么 i = l, j = m，要么 i = m, j = l。

f(i, j, k, l,m)εijkεlmk = f(i, j, k, i, j)εijkεijk + f(i, j, k, j, i)εijkεjik (46)
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交换最后一个符号的 ij 下标，由于 εjik = −εijk，增加一个负号。

f(i, j, k, l,m)εijkεlmk = (f(i, j, k, i, j)− f(i, j, k, j, i))ε2ijk (47)

由于出现了平方，ε2ijk 在三个下标都互不相等的情况下总为 1，即有

ε2ijk = (1− δij)(1− δjk)(1− δki) (48)

考虑 δij 项，

(f(i, j, k, i, j)− f(i, j, k, j, i))δij = f(i, i, k, i, i)− f(i, i, k, i, i) = 0 (49)

于是这一项可以去掉。

f(i, j, k, l,m)εijkεlmk = (f(i, j, k, i, j)− f(i, j, k, j, i))(1− δjk)(1− δki) (50)

要使得表达式不为零，必须要 i, j ̸= k。之前已经证明 i = j 的情况会得到无用的零，因此

此处可以认为 i ̸= j。如果前面的函数不含 k，即可以用四元函数 g表示 f，f(i, j, k, l,m) =

g(i, j, l,m)，那么每次求和，k 就可以不受影响地选且只能选 i, j 之外的那一个值，使得

表达式不为零。也就是

g(i, j, l,m)εijkεlmk = g(i, j, i, j)− g(i, j, j, i) (51)

回到最开始的计算，我们有

(∇× v)× v = vl
∂vj
∂xi

εijkεlmkem (52)

此处两个 k 位置对齐，且没有在别的地方出现，因此有

(∇× v)× v = vi
∂vj
∂xi

ej − vj
∂vj
∂xi

ei (53)

= vi
∂

∂xi

vjej −
1

2

∂

∂xi

ei(vj · vj) (54)

= (v · ∇)v − 1

2
∇v2 (55)

按照爱因斯坦求和约定进行推算，一路都很顺利，没有遇到什么坎（两个 ε 乘积那

个理解了就很容易）。

9 总结：when&how

回到开头提出的两个问题。

什么时候 nabla 算符不能简单套用向量运算规则？ 对于一个完整的表达式（v · ∇ 等
不算，它们只能作为一个算符），如果牵扯到了两个及以上的向量（相同的也算），并且使
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用了一些矢量运算公式，使得 nabla 算符 从括号内移至括号外（不指明作用对象的话，
受到 nabla 算符作用的向量数量可能增加，如

a · (∇× b) = ∇b · (b× a) ̸= ∇ · (b× a) (56)

从括号外移至括号内，则此时简单套用向量运算规则会导致作用对象发生转移，因

此不能简单套用。

显然，如果式子中只有一个向量的话，无论怎么变，作用对象都是明确的。有多个

向量，甚至是相同向量时，具有较大迷惑性，需要小心。

应该怎么办？ 只需要记住 nabla算符有作用对象即可。可以通过加费曼脚标以标明，然
后可依照向量运算规则。对于表达式中有向量相同的情况，先用不同符号代替区分，最

后再将它们都代回原来的符号。

当然，也可以直接采用张量和爱因斯坦求和约定，直接按照运算顺序一步步来，但

也需要注意作用对象。

声明

1. 博客内容仅为经验之谈，如认为有问题请带着批判性思维自行辨别或与我讨论，本
人不负责因盲目应用博客内容导致的任何损失。

2. 虽然文章的思想不一定是原创的，但是写作一定是原创的，如有雷同纯属巧合。
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