
⚫ 矢量分析 

场的分类：数量场𝑢(𝑥, 𝑦, 𝑧),矢量场𝑢⃗ (𝑥, 𝑦, 𝑧) = 𝑃(𝑥, 𝑦, 𝑧)𝑖 + 𝑄(𝑥, 𝑦, 𝑧)𝑗 + 𝑅(𝑥, 𝑦, 𝑧)𝑘⃗  

后请注意区分 

Nabla算符 ∇  若记为向量
∂

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘⃗ = (

𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
),则各运算法则与矢量运算相同 

方向导数：数量场𝑢(𝑥, 𝑦, 𝑧)沿某一方向𝑙 = (cos𝛼 , cos𝛽 , cos 𝛾)的增减情况和速度 

𝜕𝑢

𝜕𝑙 
=
𝜕𝑢

𝜕𝑥
cos𝛼 +

𝜕𝑢

𝜕𝑦
cos𝛽 +

𝜕𝑢

𝜕𝑧
cos 𝛾 

梯度：数量场→矢量场，方向表示该点方向导数最大的方向（增加最快的方向），大小表示

增加最快方向导数的值（增加的速度） 

grad 𝑢 = ∇𝑢 = (
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,
𝜕𝑢

𝜕𝑧
)  

注：
∂𝑢

𝜕𝑙 
= ∇𝑢 ⋅ 𝑙 = |∇𝑢||𝑙 | cos 𝜃 , |𝑙 | = 1, cos 𝜃 ∈ [−1,1] 

∴ ∇𝑢与𝑙方向相同时方向导数有最大值 (
∂𝑢

𝜕𝑙 
)
𝑀

= |∇𝑢| = √(
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑢

𝜕𝑦
)
2

+ (
𝜕𝑢

𝜕𝑧
)
2

 

方向相反时有负的最大值,垂直时
∂𝑢

𝜕𝑙 
= 0 

散度：矢量场→数量场，定义为通量与体积比的极限（定义了解即可） 

div 𝑢⃗ = ∇ ⋅ 𝑢⃗ =
𝜕𝑃

𝜕𝑥
+
𝜕𝑄

𝜕𝑦
+
𝜕𝑅

𝜕𝑧
, div 𝑢⃗ ≡ 0的场称为无源场 

旋度：矢量场→矢量场 

方向旋量：取定一点及一个方向𝑛⃗ = (cos𝛼 , cos 𝛽 , cos 𝛾)，在过该点的垂面上作闭路环绕该

点，环量与面积比的极限称为该点绕该方向的方向旋量。（定义了解即可） 

设𝑢⃗ = (𝑃(𝑥, 𝑦, 𝑧),𝑄(𝑥, 𝑦, 𝑧), 𝑅(𝑥, 𝑦, 𝑧)) 

𝑅𝑛 = ||

cos𝛼 cos𝛽 cos 𝛾
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑃 𝑄 𝑅

|| = 𝑛⃗ ⋅ (∇ × 𝑢⃗ ) 

旋度的方向定义为使方向旋量达到最大的方向，大小为此时的方向旋量 

rot 𝑢⃗ = ∇ × 𝑢⃗ = ||

𝑖 𝑗 𝑘⃗ 

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑃 𝑄 𝑅

||若 rot 𝑢⃗ ≡ 0,称𝑢⃗ 为无旋场 

注：𝑅𝑛 = 𝑛⃗ ⋅ rot 𝑢⃗ ,故 𝑛⃗ 与 rot 𝑢⃗ 方向相同时𝑅𝑛有最大值|rot 𝑢⃗ |  



保守场：沿任一闭路的环量为零。 

在单连通区域内，保守场与无旋场等价。 

➢ 例 1 

𝑢 = 2𝑥 + 3𝑦 + 4𝑧 

grad 𝑢 = ∇𝑢 = (
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,
𝜕𝑢

𝜕𝑧
) = (2,3,4) = 2𝑖 + 3𝑗 + 4𝑘⃗  

div grad 𝑢 = ∇ ⋅ (∇𝑢) =
𝜕𝑃

𝜕𝑥
+
𝜕𝑄

𝜕𝑦
+
𝜕𝑅

𝜕𝑧
,其中𝑃 =

𝜕𝑢

𝜕𝑥
= 2，𝑄 =

𝜕𝑢

𝜕𝑦
= 3，𝑅 =

𝜕𝑢

𝜕𝑧
= 4 

于是div grad 𝑢 = 0 + 0 + 0 = 0 

div grad 𝑢 = ∇ ⋅ (∇𝑢),记为 Δ𝑢 =
∂2𝑢

𝜕𝑥2
+
∂2𝑢

𝜕𝑧2
+
∂2𝑢

𝜕𝑧2
 

rot grad𝑢 = ∇ × (∇𝑢) =
|

|

𝑖 𝑗 𝑘⃗ 

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

|

|
= 0 

此式对任意数量场均成立，即梯度场是无旋场 

➢ 例 2 

𝑢⃗ = (𝑥 + 𝑦)𝑖 + (𝑦 + 𝑧)𝑗 + (𝑧 + 𝑥)𝑘⃗  

div 𝑢⃗ = ∇ ⋅ 𝑢⃗ =
𝜕𝑃

𝜕𝑥
+
𝜕𝑄

𝜕𝑦
+
𝜕𝑅

𝜕𝑧
= 1 + 1 + 1 = 3 

rot 𝑢⃗ = ∇ × 𝑢⃗ = ||

𝑖 𝑗 𝑘⃗ 

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑃 𝑄 𝑅

|| = (−1,−1,−1) 

div rot 𝑢⃗ = ∇ ⋅ (∇ × 𝑢⃗ ) =
|

|

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑃 𝑄 𝑅

|

|
= 0 

此式对任意矢量场均适用，即旋度场是无源场。 

 

梯度，散度，旋度的复合运算，可依照矢量运算和求导法则推导 

以下函数𝑓为从数量到数量的函数, 𝑢, 𝑣为数量场函数, 𝑢⃗ , 𝑣 为矢量场函数, 𝑎, 𝑏为常数 

 



线性性质： 

𝑎1)∇(𝑎𝑢 + 𝑏𝑣) = 𝑎∇𝑢 + 𝑏∇𝑣  

𝑏1)∇ ⋅ (𝑎𝑢⃗ + 𝑏𝑣 ) = 𝑎∇ ⋅ 𝑢⃗ + 𝑏∇ ⋅ 𝑣  

𝑐1)∇ × (𝑎𝑢⃗ + 𝑏𝑣 ) = 𝑎∇ × 𝑢⃗ + 𝑏∇ × 𝑣  

数量函数乘法性质： 

𝑎2)∇(𝑢𝑣) = 𝑣(∇𝑢) + 𝑢(∇𝑣) 

𝑏2)∇ ⋅ (𝑢𝑣 ) = 𝑢∇ ⋅ 𝑣 + 𝑣 ⋅ ∇𝑢 

𝑐2)∇ × (𝑢𝑣 ) = 𝑢(∇ × 𝑣 ) + (∇𝑢) × 𝑣  

注：可直接按照乘法求导的微分法记，注意验证最后的结果是矢量还是数量。 

复合性质： 

𝑎3)∇(𝑓(𝑢)) = 𝑓′(𝑢)∇𝑢 

矢量函数乘法性质： 

𝑏3)∇ ⋅ (𝑢⃗ × 𝑣 ) = 𝑣 ⋅ (∇ × 𝑢⃗ ) − 𝑢⃗ ⋅ (∇ × 𝑣 ) 

𝑐3)∇ × (𝑢⃗ × 𝑣 ) = (∇ ⋅ 𝑣 )𝑢⃗ − (∇ ⋅ 𝑢⃗ )𝑣  

推导示范： 

𝑏2)∇ ⋅ (𝑢𝑣 ) = 𝑢∇ ⋅ 𝑣 + 𝑣 ⋅ ∇𝑢 

证:设𝑣 = (𝑣𝑥, 𝑣𝑦 , 𝑣𝑧),其中𝑣𝑥, 𝑣𝑦, 𝑣𝑧均是𝑥, 𝑦, 𝑧的数量函数 

∇ ⋅ (𝑢𝑣 ) =
𝜕𝑢𝑣𝑥
𝜕𝑥

+
𝜕𝑢𝑣𝑥
𝜕𝑦

+
𝜕𝑢𝑣𝑧
𝜕𝑧

= (
𝜕𝑢

𝜕𝑥
𝑣𝑥 +

𝜕𝑣𝑥
𝜕𝑥

𝑢) + (
𝜕𝑢

𝜕𝑦
𝑣𝑦 +

𝜕𝑣𝑦
𝜕𝑦

𝑢) + (
𝜕𝑢

𝜕𝑧
𝑣𝑧 +

𝜕𝑣𝑧
𝜕𝑧

𝑢) 

= (
𝜕𝑣𝑥
𝜕𝑥

𝑢 +
𝜕𝑣𝑦

𝜕𝑦
𝑢 +

𝜕𝑣𝑧
𝜕𝑧

𝑢) + (
𝜕𝑢

𝜕𝑥
𝑣𝑥 +

𝜕𝑢

𝜕𝑦
𝑣𝑦 +

𝜕𝑢

𝜕𝑧
𝑣𝑧) 

= 𝑢∇ ⋅ 𝑣 + 𝑣 ⋅ (∇𝑢) 

 

 𝑐3)∇ × (𝑢⃗ × 𝑣 ) = (∇ ⋅ 𝑣 )𝑢⃗ − (∇ ⋅ 𝑢⃗ )𝑣  

证:需要用到公式 𝑎 × (𝑏⃗ × 𝑐 ) = (𝑎 ⋅ 𝑐 )𝑏⃗ − (𝑎 ⋅ 𝑏⃗ )𝑐 ,此式证略（其实是不会） 

代入即可得到∇ × (𝑢⃗ × 𝑣 ) = (∇ ⋅ 𝑣 )𝑢⃗ − (∇ ⋅ 𝑢⃗ )𝑣  

 

 

 

 



➢ 例 3 

𝑐 为常向量, 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘⃗ , 𝑟 = |𝑟 | 

div(𝑐 × 𝑓(𝑟)𝑟 ) = ∇ ⋅ (𝑐 × (𝑓(𝑟)𝑟 )) = (𝑓(𝑟)𝑟 ) ⋅ (∇ × 𝑐 ) − 𝑐 ⋅ (∇ × (𝑓(𝑟)𝑟 )) 

= (𝑓(𝑟)𝑟 ) ⋅ 0⃗ − 𝑐 ⋅ (𝑓(𝑟)(∇ × 𝑟 ) + 𝑟 × (∇𝑓(𝑟)))   

∇ × 𝑟 = ∇ × (𝑥, 𝑦, 𝑧) = 0⃗  

∇𝑓(𝑟) = 𝑓′(𝑟)∇(𝑟) 

∇𝑟 = ∇(√𝑥2 + 𝑦2 + 𝑧2) = (
𝑥

𝑟
,
𝑦

𝑟
,
𝑧

𝑟
) =

𝑟 

𝑟
 

原式 = 𝑐 ⋅ (𝑟 × (𝑓′(𝑟)
𝑟 

𝑟
)) = 0      [∵ 𝑟 × 𝑟 = 0⃗ ] 

注：一些重要结论 

∇𝑟 = (
𝑥

𝑟
,
𝑦

𝑟
,
𝑧

𝑟
) =

𝑟 

𝑟
 

∇ × 𝑟 = ∇ × (𝑥, 𝑦, 𝑧) = 0⃗  

∇ × 𝑐 = 0⃗  

 

⚫ 各类积分 

➢ 第一型曲线积分 

𝐿: (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), 𝑎 ≤ 𝑡 ≤ 𝑏 

∫𝑓(𝑥, 𝑦, 𝑧)
𝐿

d𝑠 = ∫ 𝑓[𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)]
𝑏

𝑎

√𝑥′2(𝑡) + 𝑦′2(𝑡) + 𝑧′2(𝑡)d𝑡 

即 d𝑠 = √𝑥′2(𝑡) + 𝑦′2(𝑡) + 𝑧′2(𝑡)d𝑡      [∵ d𝑠 = √d𝑥2 + d𝑦2 + d𝑧2] 

➢ 第二型曲线积分 

𝑓 = 𝑃(𝑥, 𝑦, 𝑧)𝑖 + 𝑄(𝑥, 𝑦, 𝑧)𝑗 + 𝑅(𝑥, 𝑦, 𝑧)𝑘⃗  

∫ 𝑃d𝑥 + 𝑄d𝑦 + 𝑅d𝑧
𝐴𝐵̂

= ∫ [𝑃𝑥′(𝑡) + 𝑄𝑦′(𝑡) + 𝑅𝑧′(𝑡)]d𝑡
𝑏

𝑎

  

即 d𝑥 = 𝑥′(𝑡)d𝑡, d𝑦 = 𝑦′(𝑡)d𝑡, d𝑧 = 𝑧′(𝑡)d𝑡 

➢ 第一型曲面积分 

𝑆: (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)), (𝑢, 𝑣) ∈ Ω 



𝑟𝑢′⃗⃗  ⃗ = (
∂𝑥

𝜕𝑢
,
∂𝑦

𝜕𝑢
,
∂𝑧

𝜕𝑢
)   𝑟𝑣′⃗⃗  ⃗ = (

∂𝑥

𝜕𝑣
,
∂𝑦

𝜕𝑣
,
∂𝑧

𝜕𝑣
) 

𝐴 =
𝜕(𝑦, 𝑧)

𝜕(𝑢, 𝑣)
, 𝐵 =

𝜕(𝑧, 𝑥)

𝜕(𝑢, 𝑣)
, 𝐶 =

𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)
 

𝐸 = 𝑟𝑢′⃗⃗  ⃗ ⋅ 𝑟𝑢′⃗⃗  ⃗, 𝐹 = 𝑟𝑢′⃗⃗  ⃗ ⋅ 𝑟𝑣′⃗⃗  ⃗, 𝐺 = 𝑟𝑣′⃗⃗  ⃗ ⋅ 𝑟𝑣′⃗⃗  ⃗ 

∬𝑓(𝑥, 𝑦, 𝑧)d𝑆
𝑆

=∬𝑓(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣))√𝐸𝐺 − 𝐹2

Ω

d𝑢d𝑣 

注: √𝐸𝐺 − 𝐹2其实就是|𝑟𝑢′⃗⃗  ⃗ × 𝑟𝑣′⃗⃗  ⃗| = |𝑟𝑢′⃗⃗  ⃗||𝑟𝑣′⃗⃗  ⃗| sin 𝜃 

➢ 第二型曲面积分 

𝑓 = 𝑃(𝑥, 𝑦, 𝑧)𝑖 + 𝑄(𝑥, 𝑦, 𝑧)𝑗 + 𝑅(𝑥, 𝑦, 𝑧)𝑘⃗  

∬𝑃d𝑦d𝑧 + 𝑄d𝑧d𝑥 + 𝑅d𝑥d𝑦
𝑆

= ±∬(𝑃𝐴 + 𝑄𝐵 + 𝑅𝐶)d𝑢d𝑣
Ω

 

正负号由取定曲面的侧决定。 

注:∬𝑃d𝑦d𝑧 + 𝑄d𝑧d𝑥 + 𝑅d𝑥d𝑦
𝑆

可拆成三个积分之和 

∬𝑃d𝑦d𝑧
𝑆

可化为在𝑆的𝑦𝑂𝑧面上投影区域上的积分,并用𝑦, 𝑧表示𝑥,即 

∬𝑃d𝑦d𝑧
𝑆

= ±∬ 𝑃(𝑥(𝑦, 𝑧), 𝑦, 𝑧)d𝑦d𝑧
𝑆𝑥

  

 

➢ 例 1 

计算∫(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥)
𝐿

d𝑠, 𝐿为球面𝑥2 + 𝑦2 + 𝑧2 = 𝑎2与平面𝑥 + 𝑦 + 𝑧 = 0的交线 

联立可得 2𝑥2 + 2𝑥𝑦 + 2𝑦2 = 𝑎2 ⇒ (√2𝑥 +
𝑦

√2
)
2

+ (√
3

2
𝑦)

2

= 𝑎2 

设√2𝑥 +
𝑦

√2
= 𝑎 cos𝜃 ,√

3

2
𝑦 = 𝑎 sin 𝜃 

{
 
 
 

 
 
 𝑥 =

𝑎(√3cos𝜃 − sin 𝜃)

√6

𝑦 =
𝑎 sin 𝜃 √2

√3

𝑧 = −
𝑎(√3cos 𝜃 + sin 𝜃)

√6

,

{
 
 
 

 
 
 𝑥′ =

𝑎(−√3sin 𝜃 − cos𝜃)

√6

𝑦′ =
𝑎 cos𝜃 √2

√3

𝑧′ = −
𝑎(−√3sin 𝜃 + cos𝜃)

√6

 

原式 = ∫ −
𝑎2

2
√𝑎2d𝜃

2π

0

= −𝜋𝑎3 

 



➢ 例 2 

计算∮(𝑥2 + 𝑦2)d𝑥 + (𝑥 + 𝑦)2d𝑦 ,积分路径𝐿为𝑥2 + 𝑦2 = 𝑎𝑥,逆时针方向 

极坐标换元, 𝑟2 = 𝑎𝑟 cos𝜃 ⇒ 𝑟 = 𝑎 cos𝜃 ⇒ {
𝑥 = 𝑎 cos2 𝜃
𝑦 = 𝑎 cos𝜃 sin 𝜃

  

原式 = ∫ (−2𝑎3 cos3 𝜃 sin 𝜃 + 𝑎3 cos2 𝜃 (1 + 2 sin 𝜃 cos𝜃)(cos2 𝜃 − sin2 𝜃))d𝜃

π
2

−
π
2

 

= 𝑎3∫ (−2cos3 𝜃 sin 𝜃 + cos4 𝜃 + 2 cos5 𝜃 sin 𝜃 − cos2 𝜃 sin2 𝜃 − 2 cos3 𝜃 sin3 𝜃)d𝜃

π
2

−
π
2

 

=
1

4
𝜋𝑎3 

➢ 例 3 

计算∬|𝑥𝑦𝑧|d𝑆
𝐷

, 𝑆为曲面𝑧 = 𝑥2 + 𝑦2被平面𝑧 = 1截下的部分 

参数化表示 {
𝑥 = 𝑢
𝑦 = 𝑣

𝑧 = 𝑢2 + 𝑣2
, √𝐸𝐺 − 𝐹2 = √4𝑢2 + 4𝑣2 + 1 

原式 = 4∬(𝑢3𝑣 + 𝑢𝑣3)√4𝑢2 + 4𝑣2 + 1d𝑢d𝑣
𝐷

,可知投影𝐷为四分之一圆 

再用极坐标换元得原式 = 4 ×∫ cos𝜃 sin 𝜃 d𝜃

π
2

0

∫ 𝑟5
1

0

√4𝑟2 + 1d𝑟 =
125√5 − 1

420
 

➢ 例 4 

计算∬𝑥3d𝑦d𝑧 + 𝑦3d𝑧d𝑥 + 𝑧3d𝑥d𝑦
𝑆

, 𝑆为球面𝑥2 + 𝑦2 + 𝑧2 = 𝑅2的外侧 

先算∬𝑧3d𝑥d𝑦
𝑆

= 2∬𝑧3d𝑥d𝑦
𝐷

= 2∬(𝑅2 − 𝑥2 − 𝑦2)
3
2d𝑥d𝑦

𝐷

,投影𝐷为𝑥2 + 𝑦2 = 𝑅2圆 

极坐标换元得到∬(𝑅2 − 𝑥2 − 𝑦2)
3
2d𝑥d𝑦

𝐷

= ∫ d𝜃
2π

0

∫ (𝑅2 − 𝑟2)
3
2𝑟d𝑟

𝑅

0

=
2

5
𝜋𝑅5 

由对称性得到原式 = 3 × 2 ×
2

5
𝜋𝑅5 =

12

5
𝜋𝑅5 

 

 

 

 

 

 



⚫ 三个公式 

格林公式: 𝑃, 𝑄连续可微∫ 𝑃d𝑥 + 𝑄d𝑦
𝜕𝐷+

=∬ (
𝜕𝑄

𝜕𝑥
−
𝜕𝑃

𝜕𝑦
)d𝑥d𝑦

𝐷

=∬ |

𝜕

𝜕𝑥

𝜕

𝜕𝑦
𝑃 𝑄

| d𝑥d𝑦
𝐷

  

或∫ (𝑃 cos⟨𝑛⃗ , 𝑥⟩ + 𝑄 cos⟨𝑛⃗ , 𝑦⟩)d𝑠
𝜕𝐷+

=∬ (
𝜕𝑃

𝜕𝑥
+
𝜕𝑄

𝜕𝑦
)d𝑥d𝑦

𝐷

, 𝑛⃗ 为外法线方向  

𝜕𝐷+正方向的规定:沿着曲线行进时区域在左边 

高斯公式:∬ 𝑃d𝑦d𝑧 + 𝑄d𝑧d𝑥 + 𝑅d𝑥d𝑦
∂V

=∭ (
𝜕𝑃

𝜕𝑥
+
𝜕𝑄

𝜕𝑦
+
𝜕𝑅

𝜕𝑧
)d𝑥d𝑦d𝑧

𝑉

=∭div 𝑢⃗ d𝑥d𝑦d𝑧
𝑉

 

斯托克斯公式:∫ 𝑃d𝑥 + 𝑄d𝑦 + 𝑅d𝑧
𝜕𝑆

=∬ ||

d𝑦d𝑧 d𝑧d𝑥 d𝑥d𝑦
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑃 𝑄 𝑅

||
𝑆

 

𝜕𝑆的方向由𝑆的定向通过右手螺旋准则确定 

➢ 例 1 

计算∬𝑥3d𝑦d𝑧 + 𝑦3d𝑧d𝑥 + 𝑧3d𝑥d𝑦
𝑆

, 𝑆为球面𝑥2 + 𝑦2 + 𝑧2 = 𝑅2的外侧 

利用高斯公式,原式 =∭3(𝑥2 + 𝑦2 + 𝑧2)d𝑉
𝑉

, 𝑉为球𝑥2 + 𝑦2 + 𝑧2 = 𝑅2 

于是原式 = 3 × 2π∫ 𝑟4d𝑟
𝑅

0

∫ sin𝜃 d𝜃
𝜋

0

=
12

5
𝜋𝑅5 

➢ 例 2 

计算∫(𝑦 − 𝑧)d𝑥 + (𝑧 − 𝑥)d𝑦 + (𝑥 − 𝑦)d𝑧
𝐿

, 𝐿为𝑥2 + 𝑦2 = 𝑅2与
𝑥

𝑎
+
𝑧

ℎ
= 1的交线 

从𝑂𝑥轴正向看去,椭圆是逆时针方向进行的 

利用斯托克斯公式,原式 = −2∬d𝑦d𝑧 + d𝑧d𝑥 + d𝑥d𝑦
𝑆

,取𝑆为该椭圆 

利用投影计算∬d𝑦d𝑧
𝑆

= 𝜋
𝑅ℎ

𝑎
𝑅 =

𝜋𝑅2ℎ

𝑎
,∬d𝑧d𝑥

𝑆

= 0,∬d𝑥d𝑦
𝑆

= 𝜋𝑅2 

原式 = −2𝜋𝑅2
ℎ + 𝑎

𝑎
 

 

⚫ 极限过渡 

(𝑎1)𝐹𝑡在𝐵𝑡上一致收敛  (𝑎2)𝐹𝑡在𝐵𝑥上极限存在⇒ lim
𝐵𝑥
lim
𝐵𝑡
𝐹𝑡(𝑥) = lim

𝐵𝑡
lim
𝐵𝑥
𝐹𝑡(𝑥) 

(𝑏1)𝐹𝑡在𝐵𝑡上一致收敛  (𝑏2)𝐹𝑡在𝑥0连续 ⇒ 𝐹在𝑥0连续 



(𝑐1)𝐹𝑡在𝐵𝑡上一致收敛  (𝑐2)𝐹𝑡在某区间上可积 ⇒ 𝐹在该区间上也可积 

(𝑑1)𝑭𝒕
′在𝐵𝑡上一致收敛于𝑔  (𝑑2)𝐹𝑡至少在一点𝑥0收敛 ⇒ 𝐹𝑡一致收敛于𝐹,且𝐹

′ = 𝑔 

 

⚫ 另外两个例子 

➢ 例 1 

求曲面围成的体积𝑥2 + 𝑦2 + 𝑧2 = 𝑎2, 𝑥2 + 𝑦2 ≤ 𝑎|𝑥|  

𝑟2 sin2 𝜃 ≤ 𝑎𝑟 sin 𝜃 cos𝜑 ⇒ 𝑟 sin 𝜃 ≤ 𝑎 cos𝜑 

𝑉 = 8∫ d𝜃

𝜋
2

0

(∫ d𝜑

𝜋
2

𝜋
2−𝜃

∫ 𝑟2 sin 𝜃 d𝑟

𝑎cos𝜑
sin𝜃

0

+∫ d𝜑

𝜋
2
−𝜃

0

∫ 𝑟2 sin 𝜃 d𝑟
𝑎

0

) 

= 8∫ d𝜃

𝜋
2

0

(∫
𝑎3 cos3𝜑

3 sin2 𝜃
d𝜑

𝜋
2

𝜋
2−𝜃

+∫
1

3
𝑎3 sin 𝜃 d𝜑

𝜋
2
−𝜃

0

)  

= 8∫ (
𝑎3(

2
3 − cos𝜃 +

1
3 cos

3 𝜃)

3 sin2 𝜃
+
1

3
𝑎3 (

𝜋

2
− 𝜃) sin 𝜃)

𝜋
2

0

d𝜃 

=
8

3
𝑎3∫ (

2
3 − cos𝜃 +

1
3 cos

3 𝜃

sin2 𝜃
+
𝜋

2
sin 𝜃 − 𝜃 sin 𝜃)

𝜋
2

0

d𝜃 

=
8

3
𝑎3((−

2

3
cot 𝜃 +

1

sin 𝜃 
−

1

3 sin 𝜃
−
sin 𝜃

3
)│0

𝜋
2 +

𝜋

2
− (−𝜃 cos𝜃 │0

𝜋
2 +∫ cos𝜃 d𝜃

𝜋
2

0

)) 

=
8

3
𝑎3 ((

2(1 − cos𝜃)

3 sin 𝜃
)│0

𝜋
2 −

1

3
+
𝜋

2
− 1) 

=
8

3
𝑎3 (

2

3
−
1

3
+
𝜋

2
− 1) 

=
8

3
𝑎3 (

𝜋

2
−
2

3
) 

 

 

 

 

 

 



➢ 例 2 

𝐼 = ∫ d𝑥
1

0

∫ d𝑦
1

𝑥

∫ 𝑦√1 + 𝑧4d𝑧
1

𝑦

= ∫ d𝑧
1

0

∫ d𝑦
𝑧

0

∫ 𝑦√1 + 𝑧4
z

0

d𝑥 

= ∫ d𝑧
1

0

∫ 𝑧𝑦√1 + 𝑧4d𝑦
𝑧

0

 

= ∫
1

2
𝑧3√1+ 𝑧4d𝑧

1

0

 

=
1

8
∫ √1 + 𝑧4d(1 + 𝑧4)
2

1

=
1

12
(1 + 𝑧4)

3
2│0

1 =
1

12
(2√2 − 1) 

 

⚫ 反常积分极限过渡 

(𝑎1)𝑓(𝑥, 𝑦)在𝐵𝑦上一致收敛于𝑔(𝑥) 

(𝑎2)𝑓(𝑥, 𝑦)关于𝑥反常积分一致收敛 

⇒ 𝑔(𝑥)反常可积， lim
𝐵𝑦
∫ 𝑓(𝑥, 𝑦)
𝑤

𝑎

d𝑥 = ∫ 𝑔(𝑥)d𝑥
𝑤

𝑎

 

(𝑏1)𝑓(𝑥, 𝑦)连续 

(𝑏2)𝑓(𝑥, 𝑦)关于𝑥反常积分一致收敛 

⇒ 𝑓可积且𝑓(𝑥, 𝑦) = ∫ d𝑥
𝑤

𝑎

∫ 𝑓(𝑥, 𝑦)d𝑦
𝑑

𝑐

 

(𝑐1)𝑓(𝑥, 𝑦), 𝑓𝑦
′(𝑥, 𝑦)连续 

(𝑐2)𝑓𝑦
′(𝑥, 𝑦)关于𝑥反常积分一致收敛 

(𝑐3)𝑓(𝑥, 𝑦)关于𝑥反常积分至少在一点𝑦0收敛 

⇒ 𝑓(𝑥, 𝑦)关于𝑥反常积分收敛于𝐹(𝑦)且𝐹′(𝑦) = ∫ 𝑓𝑦
′(𝑥, 𝑦)

𝑤

𝑎

d𝑥 

(𝑑1)𝑓(𝑥, 𝑦)连续 

(𝑑2)𝑓(𝑥, 𝑦)关于每个变量的反常积分都一致收敛 

(𝑑3)∫ d𝑥
𝑤

𝑎

∫ |𝑓(𝑥, 𝑦)|d𝑦
𝑤̃

𝑐

或∫ d𝑦
𝑤̃

𝑐

∫ |𝑓(𝑥, 𝑦)|d𝑥
𝑤

𝑎

存在 

⇒ ∫ d𝑥
𝑤

𝑎

∫ 𝑓(𝑥, 𝑦)d𝑦
𝑤̃

𝑐

= ∫ d𝑦
𝑤̃

𝑐

∫ |𝑓(𝑥, 𝑦)|d𝑥
𝑤

𝑎

反常积分可交换 

 

 


