
【悬赏 001】 
求证： 

�(−1)𝑛𝑛−𝑘𝑘C𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛
𝑛𝑛

𝑘𝑘=0

= 𝑛𝑛!   (n ∈ 𝐍𝐍∗) 

请找出纯代数证法。 

【等价命题】 

A:�(−1)𝑛𝑛−𝑘𝑘C𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛
𝑛𝑛

𝑘𝑘=1

= 𝑛𝑛!   (n ∈ 𝐍𝐍∗) 

B:�(−1)𝑘𝑘C𝑛𝑛𝑘𝑘(𝑛𝑛 − 𝑘𝑘)𝑛𝑛
𝑛𝑛

𝑘𝑘=0

= 𝑛𝑛!   (n ∈ 𝐍𝐍∗) 

C:�
(−1)𝑛𝑛−𝑘𝑘𝑘𝑘𝑛𝑛

𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)!

𝑛𝑛

𝑘𝑘=0

= 1  (n ∈ 𝐍𝐍∗) 

【说明】 

很神奇，利用正整数的幂次和组合数表示出了阶乘。 

举几个例子：1! = C1111 = 1 

2! = −C2112 + C2222 = −2 + 4 = 2 

3! = C3113 − C3223 + C3333 = 3 − 24 + 27 = 6 

4! = −C4114 + C4224 − C4334 + C4444 

     = −4 + 96− 324 + 256 = 24 

【问题背景】 

① m 个不同的球放进 n 个不同的盒子里， 

要求每个盒子至少有一个球，方案总数 

𝑓𝑓(𝑚𝑚,𝑛𝑛) = �(−1)𝑛𝑛−𝑘𝑘C𝑛𝑛𝑘𝑘𝑘𝑘𝑚𝑚
𝑛𝑛

𝑘𝑘=0

 

当 m=n 时，每个盒子里只能装一个球， 

显然方案总数为 n!，于是 

𝑓𝑓(𝑛𝑛,𝑛𝑛) = �(−1)𝑛𝑛−𝑘𝑘C𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛
𝑛𝑛

𝑘𝑘=0

= 𝑛𝑛! 

注：这是一种证法，但比较好奇有没有 

不构造实际情景，纯代数的证法。 

② 一号数学研究指出，n 次幂可以分解成阶乘和 

𝑛𝑛𝑚𝑚 = � 𝑥𝑥𝑚𝑚,𝑠𝑠�(𝑛𝑛 − 𝑞𝑞)
𝑠𝑠

𝑞𝑞=0

𝑚𝑚−1

𝑠𝑠=0

 

其中𝑥𝑥𝑚𝑚,𝑠𝑠为第二类斯特林数 

𝑥𝑥𝑚𝑚,𝑠𝑠 =
1
𝑠𝑠!
�(−1)𝑘𝑘
𝑠𝑠

𝑘𝑘=0

C𝑠𝑠𝑘𝑘(𝑠𝑠 − 𝑘𝑘)𝑚𝑚 

命题等价于求证𝑥𝑥𝑚𝑚,𝑚𝑚 = 1 



③ 一号数学研究指出，n 次幂可以分解成阶乘和 

而所需证明的等式是用阶乘和合成 n 次幂， 

似乎有互逆关系。 

 

【悬赏 001 解】 
【证】 

引理 

范德蒙行列式 �

1 1 ⋯ 1
𝑥𝑥1 𝑥𝑥2 ⋯ 𝑥𝑥𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑥1𝑛𝑛−1 𝑥𝑥2𝑛𝑛−1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛−1
� = � �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖�

1≤𝑖𝑖<𝑗𝑗≤𝑛𝑛

 

证略。 

 

断言 �(−1)𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�𝐶𝐶𝑛𝑛
𝑗𝑗

𝑛𝑛

𝑗𝑗=0

= (−1)𝑛𝑛𝑎𝑎𝑛𝑛𝑛𝑛!𝑑𝑑𝑛𝑛 

其中 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 + ⋯+ 𝑎𝑎0, {𝑏𝑏𝑛𝑛}是公差为𝑑𝑑的等差数列,𝑑𝑑 ≠ 0 

令𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛,𝑏𝑏𝑛𝑛 = 𝑛𝑛,则𝑑𝑑 = 1 

即得到�(−1)𝑗𝑗𝑗𝑗𝑛𝑛𝐶𝐶𝑛𝑛
𝑗𝑗

𝑛𝑛

𝑗𝑗=0

= (−1)𝑛𝑛𝑛𝑛! 

 

断言的证明： 

记𝐷𝐷 = �

1 1 ⋯ 1
𝑏𝑏1 𝑏𝑏2 ⋯ 𝑏𝑏𝑛𝑛+1
⋮ ⋮ ⋱ ⋮
𝑏𝑏1𝑛𝑛 𝑏𝑏2𝑛𝑛 ⋯ 𝑏𝑏𝑛𝑛+1𝑛𝑛

� ,由引理,𝐷𝐷 = � �𝑏𝑏𝑗𝑗 − 𝑏𝑏𝑖𝑖�
1≤𝑖𝑖<𝑗𝑗≤𝑛𝑛+1

 

记𝐷𝐷第𝑛𝑛 + 1 行𝑗𝑗列位置�即𝑏𝑏𝑗𝑗𝑛𝑛�的余子式为𝐷𝐷𝑗𝑗（非代数余子式） 

𝐷𝐷𝑗𝑗 = ��

1 ⋯ 1� ⋯ 1
𝑏𝑏1 ⋯ 𝑏𝑏𝚥𝚥� ⋯ 𝑏𝑏𝑛𝑛+1
⋮ ⋮ ⋮

𝑏𝑏1𝑛𝑛−1 ⋯ 𝑏𝑏𝚥𝚥𝑛𝑛−1� ⋯ 𝑏𝑏𝑛𝑛+1𝑛𝑛−1

�� ,其中

⎝

⎜
⎛

1�
𝑏𝑏𝚥𝚥�
⋮

𝑏𝑏𝚥𝚥𝑛𝑛−1�
⎠

⎟
⎞
表示行列式中除去这一列 

由引理可知𝐷𝐷𝑗𝑗 = � (𝑏𝑏𝑡𝑡 − 𝑏𝑏𝑠𝑠)
1≤𝑠𝑠<𝑡𝑡≤𝑛𝑛+1

𝑠𝑠,𝑡𝑡≠𝑗𝑗

=
(−1)𝑛𝑛+1+𝑗𝑗 ∏ (𝑏𝑏𝑡𝑡 − 𝑏𝑏𝑠𝑠)1≤𝑠𝑠<𝑡𝑡≤𝑛𝑛+1

∏ (𝑏𝑏𝑡𝑡 − 𝑏𝑏𝑠𝑠)1≤𝑠𝑠<𝑡𝑡≤𝑛𝑛+1
𝑠𝑠=𝑗𝑗

∏ (𝑏𝑏𝑡𝑡 − 𝑏𝑏𝑠𝑠)1≤𝑠𝑠<𝑡𝑡≤𝑛𝑛+1
𝑡𝑡=𝑗𝑗

 

=
𝐷𝐷

∏ �𝑏𝑏𝑡𝑡 − 𝑏𝑏𝑗𝑗�𝑗𝑗<𝑡𝑡≤𝑛𝑛+1 ∏ �𝑏𝑏𝑗𝑗 − 𝑏𝑏𝑠𝑠�1≤𝑠𝑠<𝑗𝑗
 

由𝑏𝑏𝑛𝑛的等差数列性质可知,𝑏𝑏𝑡𝑡 − 𝑏𝑏𝑗𝑗 = (𝑡𝑡 − 𝑗𝑗)𝑑𝑑,𝑏𝑏𝑗𝑗 − 𝑏𝑏𝑠𝑠 = (𝑗𝑗 − 𝑠𝑠)𝑑𝑑, 

� �𝑏𝑏𝑡𝑡 − 𝑏𝑏𝑗𝑗�
𝑗𝑗<𝑡𝑡≤𝑛𝑛+1

= � (𝑡𝑡 − 𝑗𝑗)𝑑𝑑
𝑛𝑛+1

𝑡𝑡=𝑗𝑗+1

= (𝑛𝑛 + 1 − 𝑗𝑗)! 𝑑𝑑𝑛𝑛+1−𝑗𝑗 

� �𝑏𝑏𝑗𝑗 − 𝑏𝑏𝑠𝑠�
1≤𝑠𝑠<𝑗𝑗

= �(𝑗𝑗 − 𝑠𝑠)𝑑𝑑
𝑗𝑗−1

𝑠𝑠=1

= (𝑗𝑗 − 1)! 𝑑𝑑𝑗𝑗−1 



于是𝐷𝐷𝑗𝑗 =
𝐷𝐷

(𝑛𝑛 + 1 − 𝑗𝑗)! 𝑑𝑑𝑛𝑛+1−𝑗𝑗(𝑗𝑗 − 1)! 𝑑𝑑𝑗𝑗−1
=
𝐶𝐶𝑛𝑛
𝑗𝑗−1𝐷𝐷
𝑛𝑛!  𝑑𝑑𝑛𝑛

 

考虑𝐷𝐷′ = �

1 1 ⋯ 1
𝑏𝑏1 𝑏𝑏2 ⋯ 𝑏𝑏𝑛𝑛+1
⋮ ⋮ ⋱ ⋮

𝑓𝑓(𝑏𝑏1) 𝑓𝑓(𝑏𝑏2) ⋯ 𝑓𝑓(𝑏𝑏𝑛𝑛+1)
� 

注意到𝐷𝐷′与𝐷𝐷仅有最后一行不同,将𝐷𝐷′由最后一行展开,得到 

𝐷𝐷′ = �(−1)𝑛𝑛+1+𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�𝐷𝐷𝑗𝑗

𝑛𝑛+1

𝑗𝑗=1

= �(−1)𝑛𝑛+1+𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�
𝐶𝐶𝑛𝑛
𝑗𝑗−1𝐷𝐷
𝑛𝑛!  𝑑𝑑𝑛𝑛

𝑛𝑛+1

𝑗𝑗=1

 

另一方面,由行列式的行变换,可将𝑓𝑓�𝑏𝑏𝑗𝑗�次数低于𝑛𝑛的项全部消去 

可知𝐷𝐷′ = �

1 1 ⋯ 1
𝑏𝑏1 𝑏𝑏2 ⋯ 𝑏𝑏𝑛𝑛+1
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛𝑏𝑏1𝑛𝑛 𝑎𝑎𝑛𝑛𝑏𝑏2𝑛𝑛 ⋯ 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛+1𝑛𝑛

� = 𝑎𝑎𝑛𝑛𝐷𝐷 

于是�(−1)𝑛𝑛+1+𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�
𝐶𝐶𝑛𝑛
𝑗𝑗−1𝐷𝐷
𝑛𝑛!  𝑑𝑑𝑛𝑛

𝑛𝑛+1

𝑗𝑗=1

= 𝑎𝑎𝑛𝑛𝐷𝐷 

由𝑑𝑑 ≠ 0 可知{𝑏𝑏𝑛𝑛}互不相同,由引理可知𝐷𝐷 ≠ 0 

约去𝐷𝐷,整理得到�𝐶𝐶𝑛𝑛
𝑗𝑗−1(−1)𝑛𝑛+1+𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�

𝑛𝑛+1

𝑗𝑗=1

= 𝑛𝑛! 𝑎𝑎𝑛𝑛 𝑑𝑑𝑛𝑛 

即�𝐶𝐶𝑛𝑛
𝑗𝑗(−1)𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�

𝑛𝑛

𝑗𝑗=0

= (−1)𝑛𝑛𝑛𝑛! 𝑎𝑎𝑛𝑛 𝑑𝑑𝑛𝑛       ∎ 

 

【思考】 

�(−1)𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�𝐶𝐶𝑛𝑛
𝑗𝑗

𝑛𝑛

𝑗𝑗=0

= (−1)𝑛𝑛𝑎𝑎𝑛𝑛𝑛𝑛!𝑑𝑑𝑛𝑛是一个很有用的式子，从几方面考量它的意义。 

首先,待定量是多项式𝑓𝑓(𝑥𝑥)和等差数列𝑏𝑏𝑛𝑛,这个式子将它们联系起来。 

其次，公式可以变形为𝑎𝑎𝑛𝑛 =
1

𝑛𝑛!𝑑𝑑𝑛𝑛 �
�(−1)𝑛𝑛−𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�𝐶𝐶𝑛𝑛

𝑗𝑗
𝑛𝑛

𝑗𝑗=0

� 

这就是说我们能通过多项式在𝑛𝑛 + 1 个等间隔点的值确定出多项式的首项系数。 

不过这是比插值公式相对较弱的一个结论。 

再者，对于形如�(−1)𝑗𝑗𝐶𝐶𝑛𝑛
𝑗𝑗𝑦𝑦𝑛𝑛

𝑛𝑛

𝑗𝑗=0

的式子，今后也有办法可以计算。 

只需要找𝑓𝑓(𝑥𝑥),使得𝑓𝑓在一系列等差点𝑏𝑏0, … ,𝑏𝑏𝑛𝑛上分别取到𝑦𝑦0, … , 𝑦𝑦𝑛𝑛 

由于取等差点的目的只是为了求得首项系数，可以考虑0,1, … ,𝑛𝑛 

通过插值公式，能得到𝑓𝑓(𝑥𝑥)的首项系数，则该式的值为(−1)𝑛𝑛𝑛𝑛! 𝑎𝑎𝑛𝑛 𝑑𝑑𝑛𝑛 

 

【一个推论】 

�𝐶𝐶𝑛𝑛
𝑗𝑗(−1)𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�

𝑛𝑛

𝑗𝑗=0

= (−1)𝑛𝑛𝑛𝑛! 𝑎𝑎𝑛𝑛 𝑑𝑑𝑛𝑛 



当𝑓𝑓(𝑥𝑥)最高次系数为𝑘𝑘,𝑘𝑘 < 𝑛𝑛时, 𝑎𝑎𝑛𝑛 = 0 

此时�𝐶𝐶𝑛𝑛
𝑗𝑗(−1)𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�

𝑛𝑛

𝑗𝑗=0

= 0 

特别地,取𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑘𝑘 ,𝑘𝑘 < 𝑛𝑛,𝑏𝑏𝑗𝑗 = 𝑗𝑗,�𝐶𝐶𝑛𝑛
𝑗𝑗(−1)𝑗𝑗𝑗𝑗𝑘𝑘

𝑛𝑛

𝑗𝑗=0

= 0 

这是悬赏 002 的主题。 

更多应用可见参考文献相关内容。 

 

【说明】 

这个解法已经十分巧妙，并且也算是符合了代数证法的要求。当然，如果你有其他更巧妙的方法，也欢迎分享给我。 

 

【参考文献】 

历届美国大学生数学竞赛试题集——第一卷（1938~1949）:152-156 

 

【悬赏 002】 

函数𝑓𝑓(𝑚𝑚,𝑛𝑛) = �(−1)𝑛𝑛−𝑘𝑘C𝑛𝑛𝑘𝑘𝑘𝑘𝑚𝑚
𝑛𝑛

𝑘𝑘=0

  (𝑚𝑚,𝑛𝑛 ∈ 𝑵𝑵∗) 

请从代数角度证明： 

当𝑚𝑚 < 𝑛𝑛时𝑓𝑓(𝑚𝑚,𝑛𝑛) ≡ 0 

【等价命题】 

A:函数 f 中到底是什么结构决定了这么一个性质？ 

B:能否构造出一个“正常”（如不间断，不分段，不单独定义， 

解析式不复杂，可描点，无高等函数等）的二元函数 

也具有类似的性质？ 

如果能，它们有什么共同点？ 

【说明】 

看一下函数值表。 

1 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0
1 6 6 0 0 0 0 0
1 14 36 24 0 0 0 0
1 30 150 240 120 0 0 0
1 62 540 1560 1800 720 0 0
1 126 1806 8400 16800 15120 5040 0
1 254 5796 40824 126000 191520 141120 40320

 

注意到左下角都是一般的正数，右上角却全为 0 

划重点，刚好全是 0，而不是别的什么。 

举几个例子： 



𝑓𝑓(1,2) = �(−1)2−𝑘𝑘C2𝑘𝑘𝑘𝑘1
2

𝑘𝑘=0

= −2 + 2 = 0 

𝑓𝑓(3,4) = �(−1)4−𝑘𝑘C4𝑘𝑘𝑘𝑘3
4

𝑘𝑘=0

= −4 + 48− 108 + 64 = 0 

𝑓𝑓(3,5) = �(−1)5−𝑘𝑘C5𝑘𝑘𝑘𝑘3
5

𝑘𝑘=0

= 5− 80 + 270− 320 + 125 = 0 

𝑓𝑓(4,7) = �(−1)7−𝑘𝑘C7𝑘𝑘𝑘𝑘4
7

𝑘𝑘=0

 

= 7 − 336 + 2835− 8960 + 13125− 9072 + 2401 = 0 

每一项数字有比十小的个位数，也有成百上千， 

然而到底是什么魔力使得它们之和总刚好为 0？ 

 

【问题背景】 

④ 𝑓𝑓(𝑚𝑚,𝑛𝑛)为 m 个不同的球放进 n 个不同的盒子， 

要求每个盒子至少有一个球的方案总数，显然 

当 m<n 时，找不到满足要求的方案。 

注：这是一种证法，但比较好奇有没有 

不构造实际情景，纯代数的证法。 

⑤ 第二类斯特林数 S 也有类似的性质。 

它与 f 的关系如下 

S(𝑚𝑚,𝑛𝑛) =
1
𝑛𝑛!
𝑓𝑓(𝑚𝑚,𝑛𝑛) 

 

【进展】 

在【悬赏 001·解】中，利用 

�𝐶𝐶𝑛𝑛
𝑗𝑗(−1)𝑗𝑗𝑓𝑓�𝑏𝑏𝑗𝑗�

𝑛𝑛

𝑗𝑗=0

= (−1)𝑛𝑛𝑛𝑛! 𝑎𝑎𝑛𝑛 𝑑𝑑𝑛𝑛 

得到了𝑘𝑘 < 𝑛𝑛时 

�𝐶𝐶𝑛𝑛
𝑗𝑗(−1)𝑗𝑗𝑗𝑗𝑘𝑘

𝑛𝑛

𝑗𝑗=0

= 0 

 

【悬赏 003】 

定义𝑝𝑝𝑘𝑘 ≔�𝑥𝑥𝑡𝑡𝑘𝑘
𝑛𝑛

𝑡𝑡=1

 (𝑘𝑘 ∈ 𝐙𝐙) 

试用初等对称多项式𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 

表示出𝑝𝑝𝑘𝑘 ≔�𝑥𝑥𝑡𝑡𝑘𝑘
𝑛𝑛

𝑡𝑡=1

 (𝑘𝑘 < 0 时) 



递推式亦可。 

【等价命题】 

A:试用初等对称多项式表示出��𝑥𝑥𝑟𝑟𝑘𝑘
𝑛𝑛

𝑟𝑟=1
𝑟𝑟≠𝑡𝑡

𝑛𝑛

𝑡𝑡=1

 

【说明】 

初等对称多项式形式与韦达定理相同。 

𝑠𝑠1 = 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑛𝑛 

𝑠𝑠2 = 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛−1𝑥𝑥𝑛𝑛 

… 

𝑠𝑠𝑛𝑛 = 𝑥𝑥1𝑥𝑥2 … 𝑥𝑥𝑛𝑛 

当𝑘𝑘 = −1 时，事情还比较简单。 

𝑝𝑝−1 =
1
𝑥𝑥1

+
1
𝑥𝑥2

+ ⋯+
1
𝑥𝑥𝑛𝑛

=
𝑠𝑠𝑛𝑛−1
𝑠𝑠𝑛𝑛

 

当𝑘𝑘 = −2 时，就十分困难了。 

𝑝𝑝−2 =
1
𝑥𝑥12

+
1
𝑥𝑥22

+ ⋯+
1
𝑥𝑥𝑛𝑛2

 

=
𝑥𝑥22𝑥𝑥32 …𝑥𝑥𝑛𝑛2 +⋯+ 𝑥𝑥12𝑥𝑥22 …𝑥𝑥𝑛𝑛−12

𝑠𝑠𝑛𝑛2
 

经由电脑计算找规律得到 

𝑝𝑝−2 =
𝑠𝑠𝑛𝑛−12 − 2𝑠𝑠𝑛𝑛−2𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛2
 

𝑝𝑝−3 =
𝑠𝑠𝑛𝑛−13 − 3𝑠𝑠𝑛𝑛−2𝑠𝑠𝑛𝑛−1𝑠𝑠𝑛𝑛 + 3𝑠𝑠𝑛𝑛−3𝑠𝑠𝑛𝑛2

𝑠𝑠𝑛𝑛3
 

 

【背景】 

关于𝑠𝑠𝑘𝑘和𝑝𝑝𝑘𝑘的联系，有如下的牛顿公式 

𝑝𝑝𝑘𝑘 − 𝑠𝑠1𝑝𝑝𝑘𝑘−1 + 𝑠𝑠2𝑝𝑝𝑘𝑘−2 + ⋯+ (−1)𝑘𝑘−1𝑠𝑠𝑘𝑘−1𝑝𝑝1 + (−1)𝑘𝑘𝑠𝑠𝑘𝑘𝑘𝑘 = 0, 1 ≤ k ≤ n 

𝑝𝑝𝑘𝑘 − 𝑠𝑠1𝑝𝑝𝑘𝑘−1 + 𝑠𝑠2𝑝𝑝𝑘𝑘−2 + ⋯+ (−1)𝑛𝑛−1𝑠𝑠𝑛𝑛−1𝑝𝑝𝑘𝑘−𝑛𝑛+1 + (−1)𝑛𝑛𝑠𝑠𝑛𝑛𝑝𝑝𝑘𝑘−𝑛𝑛 = 0, k ≥ n 

结合克拉默公式有 

𝑝𝑝𝑘𝑘 =
�

�

𝑠𝑠1 1 0 0 ⋯ 0
2𝑠𝑠2 𝑠𝑠1 1 0 ⋯ 0
3𝑠𝑠3 𝑠𝑠2 𝑠𝑠1 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

(𝑘𝑘 − 1)𝑠𝑠𝑘𝑘−1 𝑠𝑠𝑘𝑘−2 𝑠𝑠𝑘𝑘−3 𝑠𝑠𝑘𝑘−4 ⋯ 1
𝑘𝑘𝑠𝑠𝑘𝑘 𝑠𝑠𝑘𝑘−1 𝑠𝑠𝑘𝑘−2 𝑠𝑠𝑘𝑘−3 ⋯ 𝑠𝑠1

�

�
 

𝑠𝑠𝑘𝑘 =
1
𝑘𝑘! �

�

𝑝𝑝1 1 0 0 ⋯ 0
𝑝𝑝2 𝑝𝑝1 1 0 ⋯ 0
𝑝𝑝3 𝑝𝑝2 𝑝𝑝1 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑝𝑝𝑘𝑘−1 𝑝𝑝𝑘𝑘−2 𝑝𝑝𝑘𝑘−3 𝑝𝑝𝑘𝑘−4 ⋯ 1
𝑝𝑝𝑘𝑘 𝑝𝑝𝑘𝑘−1 𝑝𝑝𝑘𝑘−2 𝑝𝑝𝑘𝑘−3 ⋯ 𝑝𝑝1

�

�
 

在证明牛顿公式的过程中�非标准证法�， 



设𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛为方程𝑥𝑥𝑛𝑛 + 𝑎𝑎1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛 = 0 的𝑛𝑛个互不相同的根。 

则𝑠𝑠1 = −𝑎𝑎1, 𝑠𝑠𝑘𝑘 = (−1)𝑘𝑘𝑎𝑎𝑘𝑘  ,因而𝑎𝑎𝑘𝑘 = (−1)𝑘𝑘𝑠𝑠𝑘𝑘 

于是𝑥𝑥𝑛𝑛 − 𝑠𝑠1𝑥𝑥𝑛𝑛−1 + ⋯+ (−1)𝑛𝑛𝑠𝑠𝑛𝑛 = 0 

在𝑘𝑘 ≥ 𝑛𝑛时，方程两边乘𝑥𝑥𝑘𝑘−𝑛𝑛，并代入𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛求和后得到 

𝑝𝑝𝑘𝑘 − 𝑠𝑠1𝑝𝑝𝑘𝑘−1 + 𝑠𝑠2𝑝𝑝𝑘𝑘−2 + ⋯+ (−1)𝑛𝑛−1𝑠𝑠𝑛𝑛−1𝑝𝑝𝑘𝑘−𝑛𝑛+1 + (−1)𝑛𝑛𝑠𝑠𝑛𝑛𝑝𝑝𝑘𝑘−𝑛𝑛 = 0 

在𝑘𝑘 ≤ 𝑛𝑛时，先考虑𝑘𝑘 = 𝑛𝑛 − 1,方程两边除以𝑥𝑥，并代入𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛求和后得到 

𝑝𝑝n−1 − 𝑠𝑠1𝑝𝑝𝑛𝑛−2 + 𝑠𝑠2𝑝𝑝𝑛𝑛−3 +⋯+ (−1)𝑛𝑛−1𝑠𝑠𝑛𝑛−1𝑝𝑝0 + (−1)𝑛𝑛𝑠𝑠𝑛𝑛𝑝𝑝−1 = 0, 

利用𝑝𝑝−1 =
𝑠𝑠𝑛𝑛−1
𝑠𝑠𝑛𝑛

，𝑝𝑝0 = 𝑛𝑛得到 

𝑝𝑝n−1 − 𝑠𝑠1𝑝𝑝𝑛𝑛−2 + 𝑠𝑠2𝑝𝑝𝑛𝑛−3 +⋯+ (−1)𝑛𝑛−1(𝑛𝑛 − 1)𝑠𝑠𝑛𝑛−1 = 0, 

命题成立。 

在𝑘𝑘 = 𝑛𝑛 − 𝑟𝑟时，做类似的操作，则需要考虑𝑝𝑝−1,𝑝𝑝−2, … ,𝑝𝑝−𝑟𝑟 

由于𝑝𝑝𝑘𝑘(𝑘𝑘 < 0)表达式难以求得，因而这样无法证明牛顿公式第一式。 

但是牛顿公式可以用别的方法证得，也许能由牛顿公式去反推𝑝𝑝−1,𝑝𝑝−2, … , 𝑝𝑝−𝑟𝑟 

*我觉得这样至少能摆弄个递推公式出来，把这个机会留给读者。 

 

【悬赏 003 解】 
设𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛的初等对称多项式 

𝑠𝑠1 = 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑛𝑛 

𝑠𝑠2 = 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛−1𝑥𝑥𝑛𝑛 

… 

𝑠𝑠𝑛𝑛 = 𝑥𝑥1𝑥𝑥2 … 𝑥𝑥𝑛𝑛 

再类似地， 

设𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑛𝑛的初等对称多项式为 

𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛，并且规定 

𝑦𝑦𝑘𝑘 =
1
𝑥𝑥𝑘𝑘

 , 𝑘𝑘 = 1,2, … ,𝑛𝑛 

设𝑝𝑝𝑘𝑘 = �𝑥𝑥𝑛𝑛𝑘𝑘
𝑛𝑛

𝑡𝑡=1

 ,𝑞𝑞𝑘𝑘 = �𝑦𝑦𝑛𝑛𝑘𝑘
𝑛𝑛

𝑡𝑡=1

 

则𝑝𝑝−𝑘𝑘 = 𝑞𝑞𝑘𝑘 

 

当𝑘𝑘 > 0 时 

由牛顿公式等知 

𝑞𝑞𝑘𝑘可用𝑞𝑞1, … ,𝑞𝑞𝑘𝑘−1和𝑡𝑡1, … , 𝑡𝑡𝑘𝑘递推表示 

或可直接用𝑡𝑡1, … , 𝑡𝑡𝑘𝑘表示。 

因此要想用𝑠𝑠1, … , 𝑠𝑠𝑛𝑛表达𝑝𝑝−𝑘𝑘 , 

只需用𝑠𝑠1, … , 𝑠𝑠𝑛𝑛表示𝑡𝑡𝑟𝑟 , 𝑟𝑟 = 1,2, … ,𝑘𝑘 



 

作一些试验： 

𝑡𝑡1 =
1
𝑥𝑥1

+
1
𝑥𝑥2

+ ⋯+
1
𝑥𝑥𝑛𝑛

 

通分后分母显然为𝑠𝑠𝑛𝑛 ,分子为𝑛𝑛项之和， 

每一项都是𝑥𝑥1到𝑥𝑥𝑛𝑛缺一项的乘积 

刚好为𝑠𝑠𝑛𝑛−1,于是𝑡𝑡1 =
𝑠𝑠𝑛𝑛−1
𝑠𝑠𝑛𝑛

 

 

𝑡𝑡2 =
1

𝑥𝑥1𝑥𝑥2
+

1
𝑥𝑥1𝑥𝑥3

+ ⋯+
1

𝑥𝑥𝑛𝑛−1𝑥𝑥𝑛𝑛
 

通分后分母仍然为𝑠𝑠𝑛𝑛 

分子的每一项是𝑥𝑥1到𝑥𝑥𝑛𝑛缺两项的乘积 

刚好为𝑠𝑠𝑛𝑛−2 

以此类推，可得 

𝑡𝑡𝑘𝑘 =
𝑠𝑠𝑛𝑛−𝑘𝑘
𝑠𝑠𝑛𝑛

 

在牛顿公式中，将𝑝𝑝换为𝑞𝑞, 𝑠𝑠换为𝑡𝑡，𝑘𝑘换为𝑘𝑘′,即 

𝑞𝑞𝑘𝑘′ − 𝑡𝑡1𝑞𝑞𝑘𝑘′−1 + 𝑡𝑡2𝑞𝑞𝑘𝑘′−2 +⋯+ (−1)𝑘𝑘′−1𝑡𝑡𝑘𝑘′−1𝑞𝑞1 + (−1)𝑘𝑘′𝑡𝑡𝑘𝑘′𝑘𝑘′ = 0, 1 ≤ 𝑘𝑘′ ≤ 𝑛𝑛 

𝑞𝑞𝑘𝑘′ − 𝑡𝑡1𝑞𝑞𝑘𝑘′−1 + 𝑡𝑡2𝑞𝑞𝑘𝑘′−2 +⋯+ (−1)𝑛𝑛−1𝑡𝑡𝑛𝑛−1𝑞𝑞𝑘𝑘′−𝑛𝑛+1 + (−1)𝑛𝑛𝑡𝑡𝑛𝑛𝑞𝑞𝑘𝑘′−𝑛𝑛 = 0, 𝑘𝑘′ ≥ 𝑛𝑛 

并代入 

𝑡𝑡𝑘𝑘′ =
𝑠𝑠𝑛𝑛−𝑘𝑘′
𝑠𝑠𝑛𝑛

 ,𝑞𝑞𝑘𝑘′ = 𝑝𝑝−𝑘𝑘′ ,𝑘𝑘′ = −𝑘𝑘 

得到 

𝑝𝑝𝑘𝑘 −
𝑠𝑠𝑛𝑛−1
𝑠𝑠𝑛𝑛

𝑝𝑝𝑘𝑘+1 +
𝑠𝑠𝑛𝑛−2
𝑠𝑠𝑛𝑛

𝑝𝑝𝑘𝑘+2 +⋯+ (−1)𝑘𝑘−1
𝑠𝑠𝑛𝑛+𝑘𝑘+1
𝑠𝑠𝑛𝑛

𝑝𝑝−1 + (−1)𝑘𝑘
𝑠𝑠𝑛𝑛+𝑘𝑘
𝑠𝑠𝑛𝑛

(−𝑘𝑘) = 0, −𝑛𝑛 ≤ 𝑘𝑘 ≤ −1 

𝑝𝑝𝑘𝑘 −
𝑠𝑠𝑛𝑛−1
𝑠𝑠𝑛𝑛

𝑝𝑝𝑘𝑘+1 +
𝑠𝑠𝑛𝑛−2
𝑠𝑠𝑛𝑛

𝑝𝑝𝑘𝑘+2 +⋯+ (−1)𝑛𝑛−1
𝑠𝑠1
𝑠𝑠𝑛𝑛
𝑝𝑝𝑛𝑛+𝑘𝑘−1 + (−1)𝑛𝑛

𝑠𝑠0
𝑠𝑠𝑛𝑛
𝑝𝑝𝑛𝑛+𝑘𝑘 = 0, 𝑘𝑘 ≤ −𝑛𝑛 

 

关于行列式，类似有 

𝑞𝑞𝑘𝑘′ =

�

�

�

𝑠𝑠𝑛𝑛−1
𝑠𝑠𝑛𝑛

1 0 0 ⋯ 0

2
𝑠𝑠𝑛𝑛−2
𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛−1
𝑠𝑠𝑛𝑛

1 0 ⋯ 0

3
𝑠𝑠𝑛𝑛−3
𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛−2
𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛−1
𝑠𝑠𝑛𝑛

1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
(𝑘𝑘′ − 1)

𝑠𝑠𝑛𝑛−𝑘𝑘′+1
𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛−𝑘𝑘′+2
𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛−𝑘𝑘′+3
𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛−𝑘𝑘′+4
𝑠𝑠𝑛𝑛

⋯ 1

𝑘𝑘′
𝑠𝑠𝑛𝑛−𝑘𝑘′
𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛−𝑘𝑘′+1
𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛−𝑘𝑘′+2
𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛−𝑘𝑘′+3
𝑠𝑠𝑛𝑛

⋯
𝑠𝑠𝑛𝑛−1
𝑠𝑠𝑛𝑛

�

�

�

 



=
1
𝑠𝑠𝑛𝑛𝑘𝑘′ �

�

𝑠𝑠𝑛𝑛−1 𝑠𝑠𝑛𝑛 0 0 ⋯ 0
2𝑠𝑠𝑛𝑛−2 𝑠𝑠𝑛𝑛−1 𝑠𝑠𝑛𝑛 0 ⋯ 0
3𝑠𝑠𝑛𝑛−3 𝑠𝑠𝑛𝑛−2 𝑠𝑠𝑛𝑛−1 𝑠𝑠𝑛𝑛 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

(𝑘𝑘′ − 1)𝑠𝑠𝑛𝑛−𝑘𝑘′+1 𝑠𝑠𝑛𝑛−𝑘𝑘′+2 𝑠𝑠𝑛𝑛−𝑘𝑘′+3 𝑠𝑠𝑛𝑛−𝑘𝑘′+4 ⋯ 𝑠𝑠𝑛𝑛
𝑘𝑘𝑠𝑠𝑛𝑛−𝑘𝑘′ 𝑠𝑠𝑛𝑛−𝑘𝑘′+1 𝑠𝑠𝑛𝑛−𝑘𝑘′+2 𝑠𝑠𝑛𝑛−𝑘𝑘′+3 ⋯ 𝑠𝑠𝑛𝑛−1

�

�
 

于是𝑝𝑝𝑘𝑘 = 𝑠𝑠𝑛𝑛𝑘𝑘
�

�

𝑠𝑠𝑛𝑛−1 𝑠𝑠𝑛𝑛 0 0 ⋯ 0
2𝑠𝑠𝑛𝑛−2 𝑠𝑠𝑛𝑛−1 𝑠𝑠𝑛𝑛 0 ⋯ 0
3𝑠𝑠𝑛𝑛−3 𝑠𝑠𝑛𝑛−2 𝑠𝑠𝑛𝑛−1 𝑠𝑠𝑛𝑛 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

(−𝑘𝑘 − 1)𝑠𝑠𝑛𝑛+𝑘𝑘+1 𝑠𝑠𝑛𝑛+𝑘𝑘′+2 𝑠𝑠𝑛𝑛+𝑘𝑘′+3 𝑠𝑠𝑛𝑛+𝑘𝑘′+4 ⋯ 𝑠𝑠𝑛𝑛
−𝑘𝑘𝑠𝑠𝑛𝑛+𝑘𝑘 𝑠𝑠𝑛𝑛+𝑘𝑘′+1 𝑠𝑠𝑛𝑛+𝑘𝑘′+2 𝑠𝑠𝑛𝑛+𝑘𝑘′+3 ⋯ 𝑠𝑠𝑛𝑛−1

�

�
(k < 0) 

 

作为验算，考虑 

𝑝𝑝−2 =
1
𝑠𝑠𝑛𝑛2
�
𝑠𝑠𝑛𝑛−1 𝑠𝑠𝑛𝑛

2𝑠𝑠𝑛𝑛−2 𝑠𝑠𝑛𝑛−1� =
𝑠𝑠𝑛𝑛−12 − 2𝑠𝑠𝑛𝑛−2𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛2
 

𝑝𝑝−3 =
1
𝑠𝑠𝑛𝑛3
�
𝑠𝑠𝑛𝑛−1 𝑠𝑠𝑛𝑛 0

2𝑠𝑠𝑛𝑛−2 𝑠𝑠𝑛𝑛−1 𝑠𝑠𝑛𝑛
3𝑠𝑠𝑛𝑛−3 𝑠𝑠𝑛𝑛−2 𝑠𝑠𝑛𝑛−1

� =
𝑠𝑠𝑛𝑛−13 + 3𝑠𝑠𝑛𝑛2𝑠𝑠𝑛𝑛−3 − 3𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛−1𝑠𝑠𝑛𝑛−2

𝑠𝑠𝑛𝑛3
 

与之前电脑计算得到的结果相同。 

 

【悬赏 004】 
定义运算(𝑥𝑥)0 = 1 

(𝑥𝑥)𝑛𝑛 = 𝑥𝑥(𝑥𝑥 − 1) … (𝑥𝑥 − 𝑛𝑛 + 1),𝑛𝑛 ∈ 𝐍𝐍∗ 

证明： 

(𝑎𝑎 + 𝑏𝑏)𝑛𝑛 = � C𝑛𝑛𝑘𝑘  (𝑎𝑎)𝑛𝑛−𝑘𝑘(𝑏𝑏)𝑘𝑘

𝑛𝑛

𝑘𝑘=0

 

【高级目标】 

利用(𝑥𝑥)𝑛𝑛和𝑥𝑥𝑛𝑛的相似性证明上面的命题。 

【说明】 

长得特别像二项式定理， 

结合悬赏 001 还有之前的一号数学研究， 

似乎可以说(𝑥𝑥)𝑛𝑛和普通的幂𝑥𝑥𝑛𝑛有相似的性质。 

不知道有没有可能找一个群同构， 

或者类似的东西来帮助证明以上命题？ 

【例子】 

(𝑎𝑎 + 𝑏𝑏)1 = � C1𝑘𝑘 (𝑎𝑎)1−𝑘𝑘(𝑏𝑏)𝑘𝑘

1

𝑘𝑘=0

= 𝑎𝑎 + 𝑏𝑏 

(𝑎𝑎 + 𝑏𝑏)2 = (𝑎𝑎 + 𝑏𝑏)2 − (𝑎𝑎 + 𝑏𝑏) = 𝑎𝑎2 + 2𝑎𝑎𝑎𝑎 + 𝑏𝑏2 − 𝑎𝑎 − 𝑏𝑏 

� C2𝑘𝑘 (𝑎𝑎)2−𝑘𝑘(𝑏𝑏)𝑘𝑘

2

𝑘𝑘=0

= (𝑎𝑎)2 + 2𝑎𝑎𝑎𝑎 + (𝑏𝑏)2 = 𝑎𝑎2 − 𝑎𝑎 + 2𝑎𝑎𝑎𝑎 + 𝑏𝑏2 − 𝑏𝑏 

(𝑎𝑎 + 𝑏𝑏)3 = (𝑎𝑎 + 𝑏𝑏)3 − 3(𝑎𝑎 + 𝑏𝑏)2 + 2(𝑎𝑎 + 𝑏𝑏) 



= 𝑎𝑎3 + 3𝑎𝑎2𝑏𝑏 + 3𝑎𝑎𝑏𝑏2 + 𝑏𝑏3 − 3𝑎𝑎2 − 6𝑎𝑎𝑎𝑎 − 3𝑏𝑏2 + 2𝑎𝑎 + 2𝑏𝑏 

� C3𝑘𝑘 (𝑎𝑎)3−𝑘𝑘(𝑏𝑏)𝑘𝑘

3

𝑘𝑘=0

= (𝑎𝑎)3 + 3(𝑎𝑎)2(𝑏𝑏)1 + 3(𝑎𝑎)1(𝑏𝑏)2 + (𝑏𝑏)3 

= 𝑎𝑎3 − 3𝑎𝑎2 + 2𝑎𝑎 + 3𝑎𝑎2𝑏𝑏 − 3𝑎𝑎𝑎𝑎 + 3𝑎𝑎𝑏𝑏2 − 3𝑎𝑎𝑎𝑎 + 𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏 

【背景】 

① (𝑥𝑥)𝑛𝑛称为 Pochhammer 函数，在维基百科它的词条 

（亦’Falling and rising factorials’）中记载了需要证明的等式， 

但似乎没有直接给出证明。 

② 在维基百科‘Binomial type’词条中，满足关系式 

 

的多项式序列𝑝𝑝𝑛𝑛被称作具有二项式性质， 

它们形成一个集合，除了(𝑥𝑥)𝑛𝑛外， 

阿贝尔多项式𝑝𝑝𝑛𝑛(𝑥𝑥) = 𝑥𝑥(𝑥𝑥 − 𝑎𝑎𝑎𝑎)𝑛𝑛−1等也在其中。 

 

③ 一号数学研究指出 

𝑥𝑥𝑛𝑛 = � S𝑛𝑛,𝑡𝑡−1(𝑥𝑥)𝑡𝑡

𝑛𝑛

𝑡𝑡=1

，其中Sn,m为第二类斯特林数 

满足𝑆𝑆𝑛𝑛,𝑚𝑚 =
1
𝑚𝑚!

�(−1)𝑘𝑘
𝑚𝑚

𝑘𝑘=0

𝐶𝐶𝑚𝑚𝑘𝑘 (𝑚𝑚− 𝑘𝑘)𝑛𝑛 

④ 无符号的第一类斯特林数𝑐𝑐𝑛𝑛,𝑚𝑚， 

表示𝑛𝑛个不同元素构成𝑚𝑚个圆排列的数目 

带符号的第一类斯特林数𝑠𝑠𝑛𝑛,𝑘𝑘 = (−1)𝑛𝑛−𝑘𝑘𝑐𝑐𝑛𝑛,𝑘𝑘 

(𝑥𝑥)𝑛𝑛 = �𝑠𝑠𝑛𝑛,𝑘𝑘𝑥𝑥𝑘𝑘
𝑛𝑛

𝑘𝑘=0

, 

和上面的相反，把阶乘拆成了幂次和。 

 

【悬赏 005】 
结合极限严格证明： 

𝑓𝑓(𝑥𝑥) = “ lim
𝑎𝑎→0

”
𝑎𝑎

𝑥𝑥2 + 𝑥𝑥
 

是方程𝑓𝑓�𝑓𝑓(𝑥𝑥)� = 𝑥𝑥2 + 𝑥𝑥的解 

或 

𝑓𝑓(𝑥𝑥) = “ lim
𝑎𝑎→0

”
𝑎𝑎

𝑥𝑥2 + 𝑥𝑥
 

不是方程𝑓𝑓�𝑓𝑓(𝑥𝑥)� = 𝑥𝑥2 + 𝑥𝑥的解 

【必由之路】 



请给𝑓𝑓(𝑥𝑥) = “ lim
𝑎𝑎→0

”
𝑎𝑎

𝑥𝑥2 + 𝑥𝑥
  

下一个准确的定义。 

【说明】 

我们先对
𝑎𝑎

𝑥𝑥2 + 𝑥𝑥
复合，得到 

𝑎𝑎

� 𝑎𝑎
𝑥𝑥2 + 𝑥𝑥�

2
+ 𝑎𝑎
𝑥𝑥2 + 𝑥𝑥

=
(𝑥𝑥2 + 𝑥𝑥)2

𝑎𝑎 + (𝑥𝑥2 + 𝑥𝑥) 

再令𝑎𝑎趋向于 0，就得到𝑥𝑥2 + 𝑥𝑥 

乍一看，似乎𝑓𝑓(𝑥𝑥) = lim
𝑎𝑎→0

𝑎𝑎
𝑥𝑥2 + 𝑥𝑥

就是解。 

但是这样一来，𝑓𝑓(𝑥𝑥)就直接成为 0 了。 

那么，我们让𝑎𝑎不等于 0， 

𝑎𝑎取 1, 0.01, 0.00001 … … 

则此时𝑓𝑓(𝑥𝑥)不是 0，可以正常复合， 

由复合后为
(𝑥𝑥2 + 𝑥𝑥)2

𝑎𝑎 + (𝑥𝑥2 + 𝑥𝑥)可知 

结果会越来越趋向于𝑥𝑥2 + 𝑥𝑥 

所以就有两个问题： 

1、 结合极限的定义，到底应该如何定义 

这样的𝑓𝑓(𝑥𝑥)？ 

2、 判断这个𝑓𝑓(𝑥𝑥)到底是不是方程的解。 

最头疼的是第一个问题，有了定义之后 

第二个问题就不足为惧了。 

【背景】 

知乎有“f(f(x))=x^2+x，如何求 f(x)？”的问题， 

讨论十分丰富，甚至有一大类类似方程的可解性。 

不过似乎没有和这个悬赏相关的内容。 

 

【悬赏 007】 
𝛼𝛼 ∈ (0,1), 𝑥𝑥0 = 0,𝑥𝑥𝑘𝑘 ∈ �0,

1
𝛼𝛼
� , 𝑘𝑘 = 1,2, …  

设 𝑆𝑆 = ����(1− 𝛼𝛼 𝑥𝑥𝑙𝑙)
𝑘𝑘−1

𝑙𝑙=0

�𝛼𝛼𝑥𝑥𝑘𝑘 ��𝑥𝑥𝑙𝑙

𝑘𝑘

𝑙𝑙=0

��
∞

𝑘𝑘=1

 

满足����(1 − 𝛼𝛼 𝑥𝑥𝑙𝑙)
𝑘𝑘−1

𝑙𝑙=0

�𝛼𝛼𝑥𝑥𝑘𝑘�
∞

𝑘𝑘=1

= 1 

求一个 𝑥𝑥𝑛𝑛 的通项公式，使得 𝑆𝑆 最小。 
【背景】 
为了提高经济效益，某商场设置了一台抽奖机器，规则如下： 



（1）每一次抽奖的初始中奖概率为零。 
（2）每投入一个币，当次中奖概率就增加 α  (𝛼𝛼 ∈ (0,1))  。 
（3）一个人抽奖的次数和硬币数不限，机器能吞的硬币不限。 
这里计算的时候可以任意给定概率，不受整数限制。 
然而概率当然不能比 0 低或者比 1 大。 
 
小明非常想要中奖的礼物，他拿着用了毕生心血攒下来的无穷多的硬币去抽奖。虽然硬币有无穷多，但是小明还是希
望能够节约一些。于是他开始苦恼应该投多少硬币。 
小张说：“当然是一次投多一些了，虽然花的多，但是几率大，没几次就有很大概率中奖。” 
然而小红觉得不对：“一次投太多感觉很浪费，少投一些，花的硬币就会少一点。” 
听了两个知心好友的话，小明决定相信数学。他在心里盘算着： 
 
我要算一下每种方案平均我要花的硬币数量。 
因为失败几率总存在，所以理论上我有可能要投无限次硬币。 
考虑直到第 𝑘𝑘 次抽奖我才中，这说明前面已经失败了 𝑘𝑘 − 1 次 
之前第 𝑡𝑡 次我投了 𝑥𝑥𝑡𝑡 个硬币，那一次失败概率是(1− 𝑥𝑥𝑡𝑡𝛼𝛼) 

所以我连跪 𝑘𝑘 − 1 局的概率是 �(1− 𝛼𝛼 𝑥𝑥𝑡𝑡)
𝑘𝑘−1

𝑡𝑡=1

 

为了 𝑘𝑘 = 1 的时候这个式子也能用，引入 𝑥𝑥0 = 0， 

连跪 𝑘𝑘 − 1 局的概率是 �(1 − 𝛼𝛼 𝑥𝑥𝑡𝑡)
𝑘𝑘−1

𝑡𝑡=0

 

这一次我投了 𝑥𝑥𝑘𝑘 个硬币，成功概率是 𝑥𝑥𝑘𝑘𝛼𝛼 

总的来说，我在第 𝑘𝑘 次中奖的概率为�(1 − 𝛼𝛼 𝑥𝑥𝑡𝑡)
𝑘𝑘−1

𝑡𝑡=0

𝑥𝑥𝑘𝑘𝛼𝛼 

我在第 𝑘𝑘 次中奖，总共已经给机器喂了�𝑥𝑥𝑡𝑡

𝑘𝑘

𝑡𝑡=0

个硬币 

于是就能算出中奖所需要的硬币数数学期望。 

𝑆𝑆 = ����(1− 𝛼𝛼 𝑥𝑥𝑡𝑡)
𝑘𝑘−1

𝑡𝑡=0

�𝛼𝛼𝑥𝑥𝑘𝑘 ��𝑥𝑥𝑡𝑡

𝑘𝑘

𝑡𝑡=0

��
∞

𝑘𝑘=1

 

 
这一串玩意儿似乎在瞪着眼嘲笑小明。 
虽然小明能拿着无穷多的硬币，然而当他尝试着对这个有无穷多变量的函数，每个变量求了一遍导，发现并不能拿着
这无穷个方程对这一串玩意儿做什么事情。 
小张见了这个式子，说：“要求最小值？那不是让 𝑥𝑥全取零就 OK? 这就最小了。” 
小明：“这样还怎么中奖？” 
小张：“反正你本来也是失败无穷多次，不一样嘛？” 
小明：……（一定有哪儿不对劲） 
于是小明写了一个条件把小张拍了回去。 

����(1− 𝛼𝛼 𝑥𝑥𝑙𝑙)
𝑘𝑘−1

𝑙𝑙=0

�𝛼𝛼𝑥𝑥𝑘𝑘�
∞

𝑘𝑘=1

= 1 

小明：“只要满足这个条件，我就有必胜的信心。我先试试每次扔固定数量的硬币。” 
他掏出了两根无限长的棍子把无穷多个变量串在了一起： 
设𝑥𝑥 = 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = ⋯ 

于是 𝑆𝑆 = �((1− 𝛼𝛼 𝑥𝑥)𝑘𝑘−1𝑘𝑘𝑘𝑘𝑥𝑥2)
∞

𝑘𝑘=1

 

这个式子开始瑟瑟发抖，因为小明的差比数列技能是 S+级的。 
只见他顺手就抄起了(1− 𝛼𝛼 𝑥𝑥) 戳在了 𝑆𝑆 的复制品身上 



(1− 𝛼𝛼 𝑥𝑥)𝑆𝑆 = �((1− 𝛼𝛼 𝑥𝑥)𝑘𝑘𝑘𝑘𝑘𝑘𝑥𝑥2)
∞

𝑘𝑘=1

= �((1− 𝛼𝛼 𝑥𝑥)𝑘𝑘−1(𝑘𝑘 − 1)𝛼𝛼𝑥𝑥2)
∞

𝑘𝑘=2

 

和 𝑆𝑆 本体一比较， 

𝛼𝛼𝛼𝛼 𝑆𝑆 = �((1− 𝛼𝛼 𝑥𝑥)𝑘𝑘−1𝛼𝛼𝑥𝑥2)
∞

𝑘𝑘=2

+ 𝛼𝛼𝑥𝑥2 =
(1− 𝛼𝛼𝛼𝛼)𝛼𝛼𝑥𝑥2

1 − (1− 𝛼𝛼𝛼𝛼) + 𝛼𝛼𝑥𝑥2 = 𝑥𝑥 

胜利就在眼前了！只要求出𝑆𝑆(𝑥𝑥),求最值就容易了！！但是，似乎哪儿有点不对… … 

𝑆𝑆 =
𝑥𝑥
𝛼𝛼𝛼𝛼

=
1
𝛼𝛼

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
小明：？？？？ 
𝑆𝑆:就算我被你化简了，求出了具体的表达式，我还是要对你发出诡异的… … 
S 的话还没说完就被小明拍在了桌子上。他打算研究更一般的情况，并且猜想如果 S 对所有 x 的取值都是这个结果，
那也一定很有意思。 
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