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引入：已完成的将要完成的



相空间单粒子分布函数满足的方程

∂f
∂tdtdτdω =

{(
∂f
∂t

)
d
+

(
∂f
∂t

)
c

}
dtdτdω (1)

漂移项 (drift)：运动引起的分子数变化；
碰撞项 (collision)：分子碰撞引起的分子数变化。

* 林 (10.1.4)，按汪书拆分体积微元和动量微元。
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玻尔兹曼方程的弛豫时间近似

∂f
∂t + v · ∂f

∂r + F · ∂f
∂v︸ ︷︷ ︸

drift

= − f − f (0)

τ0︸ ︷︷ ︸
collision

(2)

* 汪 (11.1.13)，矢量形式。林 (10.1.11)，漂移项。

问题：含有弛豫时间 τ0，还需要进一步理论计算。
方法：先计算一对分子的碰撞，然后再进行统计分析。
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力学：分子碰撞模型



两种碰撞模型

弹性刚球模型

力心点模型
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限制

两种模型均有的限制

只考虑平动能，不考虑转动能和振动能
⇒ 单原子分子气体，或碰撞中分子内部状态不改变。

力心点模型的优势

力心点模型可以处理相互作用力的情形，刚球模型可以视为力心点
模型在相互作用能 φ(r) = Kr−s 当 s→ ∞ 极限情况下的近似。(王，
§38)

5 22



解碰撞方程

m1v1 +m2v2 = m1v′1 +m2v′2 (3)
1

2
m1v21 +

1

2
m2v22 =

1

2
m1v′21 +

1

2
m2v′22 (4)

v′1 − v1 = λ1n v′2 − v2 = λ2n (5)

* 汪 (11.4.1-2)
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解碰撞方程

末速度

v′1 = v1 +
(

2m2

m1 +m2
(v2 − v1) · n

)
n (6)

v′2 = v2 −
(

2m1

m1 +m2
(v2 − v1) · n

)
n (7)

* 汪 (11.4.3)

相对速度不变

v′1 − v′2 = v1 − v2 + 2((v2 − v1) · n)n (8)

(v′1 − v′2) · n = −(v1 − v2) · n (9)

* 汪 (11.4.6)
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碰撞与反碰撞

碰撞方程

m1v1 +m2v2 = m1v′1 +m2v′2

1

2
m1v21+

1

2
m2v22 =

1

2
m1v′21 +

1

2
m2v′22

v′1 − v1 = λ1n v′2 − v2 = λ2n

离开相空间

反碰撞方程

m1v′1 +m2v′2 = m1v1 +m2v2

1

2
m1v′21 +

1

2
m2v′22 =

1

2
m1v21+

1

2
m2v22

v1−v′1 = λ1(−n) v2−v′2 = λ2(−n)

进入相空间
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统计：碰撞项的计算



可发生碰撞的体积元

dτ2 = r212dΩ · |v2 − v1|dt cos θ = d212vr cos θdtdΩ (10)

* 汪 (11.4.712 )
r12 = d12 =

1

2
(d1 + d2) vr = |v2 − v1| (11)
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发生碰撞的次数

dτ2 = d212vr cos θdtdΩ (12)

单个粒子 1 发生碰撞的次数

dN2 = f2dω2dτ2 = f2d212vr cos θdtdΩdω2 (13)
= f2Λdω2dΩdt (14)

Λ = d212vr cos θ (15)

* 汪 (11.4.8-9)
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元碰撞数

dt 内发生的总碰撞次数

dN2 = f2Λdω2dΩdt (16)
dN(−) = dN2f1dω1dτ1 (17)

= f1f2Λdω1dτ1dω2dΩdt (18)

* 汪 (11.4.10)，林 (10.1.22)

分子混沌性假设

单粒子分布函数 f1, f2 可以简单相乘，即两分子的速度分布相互独
立。
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元反碰撞数

反碰撞与碰撞有着相同的物理规律。 查看方程

类比

dN(−) = f1f2Λdω1dτ1dω2dΩdt (19)

dN(+) = f ′1f ′2Λ′dω′
1dτ1dω′

2dΩ′dt (20)

* 林 (10.1.24)，汪 (11.4.11)

区别

f1(r, v1, t), f ′1(r, v′1, t), f2, f ′2 (21)

dΩ′ Λ′ dω′
1dω′

2 (22)
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代换联系

立体角微元相等

n′ = −n ⇒ dΩ′ = dΩ (23)

Λ 相等

Λ′ = d212
∣∣v′2 − v′1

∣∣ cos θ′ = d212(v′2 − v′1) · n′ (24)
= d212(v2 − v1) · n = Λ (25)

相对速度

13 22



代换联系·雅克比

dω′
1dω′

2 = |J|dω1dω2 (26)

* 汪 (11.4.13)，林 (10.1.26)

J = ∂(v′1, v′2)
∂(v1, v2)

(27)

函数表达式

对称性

J−1 =
∂(v1, v2)
∂v′1, v′2

= J JJ−1 = J2 = 1 |J| = 1 (28)

* 林 (10.1.27-28)
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碰撞项

回顾粒子数变化(
∂f1
∂t

)
c
dτ1dω1dt =

∫∫
(dN(+) − dN(−)) (29)

=

(∫∫
(f ′1f ′2 − f1f2)dω2ΛdΩ

)
dτ1dω1dt (30)

* 林 (10.1.30)

碰撞项

(
∂f
∂t

)
c
=

∫∫
(f ′f ′1 − ff1)dω1ΛdΩ (31)

* 林 (10.1.31)
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玻尔兹曼积分微分方程

∂f
∂t + v · ∂f

∂r + F · ∂f
∂v︸ ︷︷ ︸

drift

=

∫∫
(f ′f ′1 − ff1)dω1ΛdΩ︸ ︷︷ ︸

collision

(32)

* 汪 (11.4.16)，林 (10.1.32)
未知函数 f，f1 = f (r, v1, t), f ′ = f (r, v′, t), f ′1 = f (r, v′1, t)
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玻尔兹曼方程的适用条件



玻尔兹曼方程的适用条件

* 林 §10.1.5

假设

1. 经典稀薄气体，短程分子力；
2. 漂移项与碰撞项互不干扰；
3. 只考虑二体碰撞；
4. 忽略内部结构，使用刚球模型；
5. 引入混沌性假设，分布独立。

要求：气体稀薄，高温，非简并条件，短程力，不考虑分子内部结
构等。
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简例：麦克斯韦分布律



平衡态

* 王 §41
H 定理：

∂f
∂t = 0 ⇒

(
∂f
∂t

)
c
= 0,

(
∂f
∂t

)
d
= 0 (33)

稳定分布律

f1f2 = f ′1f ′2 ⇒
(
∂f
∂t

)
d
= 0 (34)

H 定理：这是唯一条件。
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解方程

待解方程

ln f ′1 + ln f ′2 = ln f1 + ln f2 (35)

观察守恒方程

m1v′1 +m2v′2 = m1v1 +m2v2
1

2
m1v′21 +

1

2
m2v′22 =

1

2
m1v21 +

1

2
m2v22
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特解

特解

ln f = 1, mu, mv, mw, 1

2
m(u2 + v2 + w2) (36)

分别对应分子数、动量和能量守恒。

不能有更多的特解

否则，会出现新的守恒条件，限制方程；与碰撞方向 n 任意矛盾。
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通解

ln f = α+mβ · v + γmv2 = lna+ bm(v − v0)2 (37)

f = aebm(v−v0)2 (38)

麦克斯韦分布律

f = n
( m
2πkT

)3/2
exp

{
− m
2kT (v − v0)2

}
(39)
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引申：BBGKY



连续介质力学

赵亚溥
中国科学院大学工程科学学院
中国科学院力学研究所

中国科学院大学玉泉路校区，2019 春季
地点：人文楼，教一·1

第 3~4 讲

本讲大纲

博戈柳博夫级联 (Bogoliubov hierarchy): 动力学、动理学、流体力学三个标度

板书推导 BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) 级联方程

这就让我们站在一个高的“山峰”上来观察和理解“连续介质假定”

上次课讲了学习理性力学还有可能获得菲尔兹奖，本次讲工程科学的领航



博戈柳博夫级联 (Bogoliubov Hierarchy)
非平衡统计力学 (Non-equilibrium Statistical Mechanics) 的发展始
于 1872 年，也就是始于我们上节课所推导的玻尔兹曼方程，它
是描述稀薄气体非平衡现象的重要方程. 玻尔兹曼时年 28岁.

我们在一年级的《力学》课上讲过，牛顿第二定律、拉格朗日方
程、哈密顿方程、刘维尔方程、薛定谔方程等均具有时间反演不
变性，也称为“微观可逆性原理”，见《力学讲义》第 225 页.
时间反演相当于速度方向的反转，即运动方向的反转，而不是时
间倒流.

而 Boltzmann 方程破坏了时间反演不变性. 

热力学第二定律告诉我们，不可逆性是宏观系统的基本性质，非
平衡统计力学的主要目的与基础工作就是要从可逆性的微观运动
规律导出不可逆的宏观运动规律，把一个微观保守系统的运动规
律变为宏观耗散系统的规律.



博戈柳博夫级联 (Bogoliubov Hierarchy)
1946 年，博戈柳博夫提出关于空间、时间上大致有三种不同尺
度的描述方法，又称为三种标度：(1) 微观描述或动力学标度；
(2) 动理学描述或标度；(3) 流体力学描述或标度.

三个特征尺度: (1) 粒子间作用力程；(2) 粒子的平均自由程；(3)
密度等非均匀性的量程.

在动力学标度 (微观标度) 上：分布函数随时间有急剧的变化，
系统需要有多粒子的分布函数来描述；

在动理学标度上，系统的分布函数迅速地开始“同步”化，这
时多粒子分布函数可表示为单粒子分布函数的泛函，只用单粒
子分布函数就能描述系统的行为；

在流体力学标度 (事实上，就是连续介质力学标度) 上，则只需
要分布函数的若干个矩即可描述.



博戈柳博夫级联 (Bogoliubov Hierarchy)

以常温、常压的氢气为例，说明博戈柳博夫的三个标度的划分. 

一、微观 (动力学) 层次，特征尺度为粒子间的作用力程，
可取为化学键键长的特征尺度 1010 m (Å). 若气体分子热运动的
特征速度为 103 m/s，则该标度的特征时间大致为 1013 s.

二、动理学层次，气体分子发生一到两次碰撞后进入到动理
学描述阶段，特征尺度为粒子的平均自由程 (mean free path)，在
107 m 量级. 特征时间 (时标) 为两次碰撞之间自由飞行的时间，
约为 1010 s.

三、流体力学层次，当时标 >> 1010 s，每个气体分子 (原子)
都已经过多次碰撞，它们之间已建立了新的局部平衡，进入到可
进行宏观平均的流体力学阶段. 特征尺度为密度等非均匀性的量
程，约为 102 m 量级.



博戈柳博夫级联 (Bogoliubov Hierarchy)

波尔兹曼方程在众多近似模型 (从微观动力学到宏观连续介质力学) 中所处的位置



BBGKY 级联 (BBGKY Hierarchy)
In statistical physics, the BBGKY hierarchy (Bogoliubov–Born–
Green–Kirkwood–Yvon hierarchy, sometimes called Bogoliubov
hierarchy) is a set of equations describing the dynamics of a system
of a large number of interacting particles. The equation for an s-
particle distribution function (probability density function) in the
BBGKY hierarchy includes the (s + 1)-particle distribution function
thus forming a coupled chain of equations. This formal theoretic
result is named after Bogoliubov, Born, Green, Kirkwood, and Yvon.
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BBGKY 级联 (BBGKY Hierarchy)

经上节课的板书推导，一个没有涨落的由 N 个粒子组成的系统，其概率密度函数

(probability density function) fN (q1 · · · qN ;p1 · · ·pN ; t) 满足：

∂fN
∂t

+
N∑
i=1

pi
m

· ∂fN
∂qi

+
N∑
i=1

Fi ·
∂fN
∂pi

= 0 (1)

上式中，qi 为广义坐标，pi 为广义动量，作用在第 i 个质点上的力为

Fi = −
N∑

j=1̸=i

∂Φij

∂qi
−

∂Φext
i

∂qi
(2)

其中，Φij 为粒子间的对势（pair potential）,Φext
i 为外场势（external field potential）

下面讨论 s-粒子和 (s + 1)-粒子的级联。s-粒子的归一化条件为∫
positions

∫
momenta

fs(q1 · · · qs;p1 · · ·ps; t)dsqdsp = 1 (3)

相应地，N -粒子的归一化条件为∫
positions

∫
momenta

fN (q1 · · · qN ;p1 · · ·pN ; t)dNqdNp = 1 (4)



2

由上两式相等有：∫
fs(q1 · · · qs;p1 · · ·ps; t)dq1 · · · dqsdp1 · · · dps

=

∫
fN (q1 · · · qN ;p1 · · ·pN ; t)dq1 · · · dqNdp1 · · · dpN

=

∫
fNdq1 · · · dqsdqs+1 · · · dqNdp1 · · · dpsdps+1 · · · dpN

=

∫
fNdqs+1 · · · dqNdps+1 · · · dpN (dq1 · · · dqsdp1 · · · dps)

(5)

由上式可得到 s-粒子和 N -粒子概率密度函数的级联关系：

fs =

∫
fNdqs+1 · · · dqNdps+1 · · · dpN (6)

上式中，令 N = s + 1，则得到 s-粒子和 (s + 1)-粒子间的递推关系：

fs(q1 · · · qs,p1 · · ·ps, t) =
∫

fs+1(q1 · · · qs+1,p1 · · ·ps+1, t)dqs+1ps+1 (7)

在 N -particle 系统中，对 s-particle 中粒子作用的有 s−particle 中粒子间相互作用的
对势，外场势，以及 (N − s)-particle 对粒子的对势，则力矢量为

Fi = −
s∑

j=1̸=i

∂Φij

∂qi
−

∂Φext
i

∂qi
− (N − s)

∂Φi s+1

∂qi
(8)



3

将 (8) 式代回 (1) 式：

∂fN
∂t

+
N∑
i=1

pi
m

· ∂fN
∂qi

+
N∑
i=1

Fi ·
∂fN
∂pi

= 0

得到：

∂fs
∂t

+
s∑

i=1

pi
m

∂fs
∂qi

−
s∑

i=1

 s∑
j=1̸=i

∂Φij

∂qi
+

∂Φext
i

∂qi

 ∂fs
∂pi

= (N − s)
s∑

i=1

∂Φi s+1

∂qi

∂fs
∂pi

(9)

将（7）式，亦即 s 与 s + 1 间概率密度函数的递推关系：

fs(q1 · · · qs,p1 · · ·ps, t) =
∫

fs+1(q1 · · · qs+1,p1 · · ·ps+1, t)dqs+1ps+1

代入到（9）式，整理便得到 BBGKY 的级联方程：

∂fs
∂t

+
s∑

i=1

pi
m

· ∂fs
∂qi

−
s∑

i=1

 s∑
j=1̸=i

∂Φij

∂qi
+

∂Φext
i

∂qi

 · ∂fs
∂pi

= (N − s)
s∑

i=1

∫
∂Φi s+1

∂qi

∂fs+1

∂pi
dqs+1dps+1

(10)



尼古拉·博戈柳博夫 (1909~1992)



尼古拉·博戈柳博夫 (1909~1992)



尼古拉·博戈柳博夫 (1909~1992)



尼古拉·博戈柳博夫 (1909~1992)



BBGKY 的解法

利用稀薄条件，级列终止于双粒子分布函数。当然也可进一步推导
修正。
见朗道《物理动理学》§16
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Thanks for Listening!
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