
着陆阶段垂直气流对无动力返回舱的影响

并议空天往返运输系统伞降返回舱配备动力的必要性与注意点
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1 背景 2

摘要

本研究着眼于填补伞降返回舱着陆阶段受垂直气流影响分析的空白。以“神舟七号”返回舱

为原型，分析了伞降着陆阶段降落伞-返回舱联合体的大雷诺数运动。通过设定伞舱、水平风场的
参数，在不同的垂直气流条件下对着陆阶段消耗的时间，中心飘移距离及搜索半径作了定量计算。

得到了一般大气状况下垂直气流影响较小，经历强对流时有较大影响的结论，并据此提出了空天

往返系统的伞降返回舱配备合适动力，提高其对恶劣天气容忍度以降低成本的相应建议。

关键词：返回舱，降落伞，匀速飘移，落点分布，大气状况

1 背景

一次空天往返可分为三个阶段：发射、飞行和返回。返回阶段又可分为进入、下降和着陆

三个阶段。对于无动力返回舱而言，在经历了下降阶段高温热流、通讯中断等恶劣环境后，其

往往会采用降落伞的方式进入平稳着陆阶段 [1]。虽然相比下降阶段，着陆阶段的危险性已经大

大降低，但是其仍然具有重要的意义。

对其上游而言，经过数日的飞行，下降时的各种干扰，航天器的各项性能参数相较于预期

可能已经发生了一些变化。对过程本身而言，仍然有许多影响因素、技术细节值得探讨。一般

选择在 10km 高度开伞，以避开风速较大的高空急流 [2−3]。这一高度大约是对流层顶，也就是

说返回舱要挂着降落伞穿越整个对流层到地面。然而，对流层中天气多变，大气状况难以预测。

和无降落伞的自由下落段相比，降落伞-返回舱联合体受到气流的影响显著加强。同时，无动力
的返回舱也使得返回过程具有了一定的不确定性和不可控性。对其下游而言，着陆过程直接影

响返回舱落点位置及预报难度，宇航员人身安全，返回舱的受损程度等等指标。如果天气状况

复杂恶劣，对落点位置的预报会产生很大影响，进而进一步延长搜救时间，增大搜救难度。更

甚者，会导致返回舱落入回收场附近较大的水域，或是村庄等人口密集区，造成一定的经济损

失与恐慌。而返回舱的受损程度则与其复用性息息相关，若是能够顺利着陆，对于复用型航天

器而言则省下了一笔不小的成本。

为使返回舱能够顺利着陆，圆满完成任务最后一阶段，需要对其最后着陆过程中所经历的

大气环境有清晰的认识和准确的预报。对于水平风场的影响和预报，已经有了不少研究 [2−4]。

然而文献 [3] 表示未能考虑垂直气流对飞船影响。本人查找到的相关研究和资料也并不多。虽

然，一般认为垂直气流的速度要比水平风速低一个量级，对降落伞-返回舱联合体影响不大。但
是如果能从定量上加以分析，也未尝不是一件有意义的事。另外，如果在着陆时遇到一些对流

强烈的云，其中垂直气流速度可达 12m/s[5]，这就可能会产生一些难以预料的影响。
目前，可以通过一些手段较为准确地分析预测某地区某时段的大气状况，确定其适合航天

器着陆。但是，未来空天运输系统中航天器起降频繁，地点可能也有多处。若每次都要专门分

析天气状况，选择适合起降的时间，将会较大地增加成本，降低运输效率。航空飞机已经能穿
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越云层而仅有一些颠簸，未来的航天器也不应当过于“娇嫩”。因此，分析各种情况下大气运

动对航天器的发射与返回是有必要的。在本文中，只研究返回阶段。

2 分析

2.1 用于计算的基本参数

文献 [3] 对“神舟七号”的返回过程作了精细的研究，因此本文也以“神舟七号”为原型。

假设返回舱为质地均匀的球体，半径 r = 1m，质量为 3000kg。降落伞为半径 R = 12m 的半
球面，质量忽略不计。

讨论的运动范围从返回舱在距离地面 h0 = 7km 处开伞完毕开始，到着陆地面结束，称为
匀速飘移阶段。此阶段神七的参考初速度 v∗0 = 30m/s，总过程参考耗时 t∗ = 500s，参考平均
速度 v̄∗ = 14m/s。重力加速度值在地面为 9.8m/s2，计算得在 7km 高度为 9.78m/s2，全过程

参考重力加速度为 g = 9.79m/s2。

水平速度不在专门考虑范围之内，东西和南北方向分别设为正态分布，均值为 u∗
1 = 5m/s

和 u∗
2 = 2m/s，标准差即水平风波动范围设为 σ = 2m/s。两个方向的风速设为是相对独立的。
垂直气流分几个数量级讨论。va = 5cm/s，对应晴朗稳定的大气状态 [6]；vB = 0.5m/s，对

应有一定活动但未成云的大气状态；vC = 5m/s，对应一般对流强烈的雨云状态 [5]。

2.2 雷诺数和阻力系数

对于各种情况，降落伞-返回舱基本都处于大雷诺数运动状态。分析如下：
雷诺数的定义为

Re =
ρvL

µ
(1)

其中 ρ 为气体密度，v 为相对运动速度，L 为特征尺度，取为返回舱或降落伞的直径。µ 为气

体的动力粘度。

在地面，空气的密度为 1.225kg/m3，动力粘度 µ = 17.9 × 10−6Pa · s 特征尺度取返回舱
直径 2r = 2m。相对运动速度取为 10m/s 量级。则由式 1计算出地面附近该问题的雷诺数为
Re = 1.37× 106。

考虑其他因素对雷诺数的影响。在 10km 高空，依照 ISA 标准大气模型计算空气密度为
0.49kg/m3，较地面小一个数量级。动力粘度应当也有所减少，但未查到相关数据。特征尺度

还能选为降落伞，只会偏大一个数量级。这样，即使相对运动速度只有 1m/s 数量级，雷诺数
也至少有 104 量级。因此，整个过程可视为大雷诺数流动。
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在此基础上，结合相关资料可设定返回舱和降落伞的阻力系数分别为 cw1 = 0.8, cw2 =

1.4[7−8]。

2.3 垂直方向动力学方程

据文献 [3]，在不考虑垂直气流和密度梯度时，垂直方向动力学方程为

mg = D1 +D2 (2)

其中 D1, D2 分别为返回舱、降落伞阻力。阻力可按照下式计算。

D1 =
1

2
ρv2cw1πr

2, D2 =
1

2
ρv2cw2πR

2 (3)

考虑垂直气流速度时，可将 v 从降落速度改为相对垂直气流的速度。于是实际的降落速度

w = v + v′，其中 v′ 为垂直气流的速度。最终表达式为

w = v′ +

√
2mg

ρπ(cw1r2 + cw2R2)
(4)

2.4 基础速度的计算和讨论

当 v′ = 0m/s 时，代入各项数据计算基础速度，得

w0 = 8.68m/s (5)

若考虑在高空和地面附近重力加速度和密度的差异，将其值用

g(h) = 9.8m/s2
(

R

R+ h

)2

, ρ(h) = 1.225

(
1− 6.5h

288.15km

)4.25588

(6)

代替，其中 R = 6400km 为地球半径，则得到速度随高度（单位：km）变化的函数 w0(h)，计

算得

w0(0) = 9.12m/s, w0(7) = 12.51m/s (7)

其变化曲线如下图所示。

进一步，通过数值求解 ODE

h′(t) = − 1

1000
w0(h), h(0) = 7 (8)

可得到高度随时间的变化图线如图 2所示。
其中落地时间可解得 t = 678.66s。
结合两图，可得出结论高度、速度均随时间大致均匀减小。各个参数与参考值相比均偏差

不大。
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图 1: 速度随高度的变化曲线
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图 2: 高度随时间的变化
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2.5 基础落点分布

在匀速飘移阶段，伞-舱水平方向与空气相对静止。由水平风速的假设，可知其落点为二
维正态分布。其落点中心为正东 x0 = 3.39km，正北 y0 = 1.36km。积分可知在搜索范围为
x0 ± x, y0 ± y 的矩形区域内发现返回舱的概率如图 3所示。
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图 3: 在矩形范围内搜索发现返回舱的概率

如果在以落点为中心的圆形区域内搜索，则积分得到在区域内发现返回舱概率随半径变化

如图 4所示。
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图 4: 圆域内发现返回舱概率

从图中可以看出要达到 50% 的概率，半径需要达到 4km；要达到 80% 的概率，搜索半径
需要达到 5km。
需要指出的是，由于水平风假设分布是不随时间变化的，因此其落点位置、分布和相应的

搜索半径完全取决于落地时间 t。
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2.6 垂直气流影响

考虑垂直气流影响时，只需将动力学 ODE 方程修改为

h′(t) = −w0(h)− v′

1000
, h(0) = 7 (9)

其中 v′ 为垂直气流速度，正值表示上升气流，负值表示下沉气流。求解这个方程即可解出落

地时间。变化曲线如图 5所示。
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垂直气流(m/s)

1000
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4000

落地时间(s)
垂直气流对落地时间的影响

图 5: 垂直气流速度对落地时间影响

从图中可以看出，对于下沉气流的情况，落地时间会减少，但是减少得不多。即使对于

vC = 10m/s 的气流而言也需要 328s 下落，大约是无气流时耗时的一半。但是对于上升气流而
言，耗时增加得非常快。如果遇到 8m/s 的强上升流，会导致需要 4000s 才能降落，大约是无
气流时的六倍。这就会使得搜索难度大大增加。

以所选取的三个垂直气流速度和无垂直气流为例，将落点偏移距离和以圆形区域搜索，达

到 80% 概率所需的半径等参数一并列表如表 1所示。
根据表 1所示的数据，我们可以得出如下结论。

1. 对稳定大气和弱对流天气而言，轻微的垂直气流对着陆过程影响不大。稳定大气的着陆
时间相差在 10 秒以内，弱对流大气的着陆时间相差也不超过 1 分钟。搜索的半径仅需要

调整 5% 左右。

2. 强对流对于着陆过程的影响是较大的。其中较大的下沉气流会使得落地时间有较为明显
的减少，搜索半径也能相应减少 20% 左右。而较大的上升气流会使得落地时间显著增加，
飘移距离和搜索半径也会翻倍。

虽然实际情况下风和垂直气流的具体参数与假设不尽相同，但这些结论仍然具有参考价

值。
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代表状况 气流性质 气流速度 落地时间 中心飘移距离 80% 概率搜索半径
m/s 分: 秒 km km

强烈对流 下沉气流 5 7:36 2.46 3.37
弱对流 下沉气流 0.5 10:47 3.48 4.78
稳定大气 下沉气流 0.05 11:15 3.64 4.99
稳定大气 无 0 11:19 3.65 5.01
稳定大气 上升气流 0.05 11:22 3.67 5.04
弱对流 上升气流 0.5 11:54 3.84 5.27
对流云 上升气流 5 22:24 7.24 9.93

表 1: 三种量级的垂直气流速度与其对应的参数指标

3 结论与建议

结合得到的结论，再考虑到其他一些事实，可以提出相应的建议。

1. 对于一般较稳定的大气而言，垂直气流对返回舱着陆的影响在可以容忍的范围之内。

2. 无动力返回舱在面对恶劣天气时较为被动。因此，在伞降的基础上可以配备一定的动力，
以主动避开不良情况；甚至不采用降落伞，直接采用类似飞机的姿态降落 [9]。本文研究

的主体仍然是伞-舱联合体，因此以下建议只是针对前者而言。

3. 若需增加动力，需要考虑到在着陆段已经是平稳降落，但是宇航员刚经过超重减速，并
未完全恢复，无法执行复杂的命令。

4. 单从数据上看，借助下沉气流能够减少耗时。提高搜索精确度。但是考虑到降落伞的开
伞过程，着地速度不宜过大，给航天员提供更平缓的体验等，还是应当尽量避开强下沉

气流。

5. 更好的方式或许是在平稳下降的中途利用下沉气流加速，在刚开始释放降落伞段和预备
着陆段离开下沉气流。这就要求返回舱具有一定的灵活性。

6. 强上升气流会严重影响着陆点和搜救难度，并且会伴随着水汽甚至雷电等复杂状况，必
须要避开。

7. 强上升气流一般出现在积云中，因此只要避开大型云即可。相比之下，强下降气流更为
罕见，因为下降气流会抑制云的形成。但是，若其真的存在，则是肉眼不可见而难以识别

的。若之后需要返回舱自主动力飞行，还需要有雷达等设备辅助探测并导航避开。
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8. 上升气流一般出现在低气压区，下沉气流一般出现在高气压区，这可为回收场选址提供
一些参考。

9. 动力学方程式 2和式 3中还有别的因素会影响着陆速度。考虑返回舱的质量，为了平稳着
陆，可在降落后期抛弃一部分质量以减小速度，如“神七”在 5km 高度抛防热底座 [3]。

返回舱截面提供的阻力只有降落伞的百分之一，在对阻力系数和截面积进行改进时主要

还是考虑降落伞的优化。

4 结语

限于时间、精力和能力所限，本研究未能获取详细的垂直气流数据并加以模拟，对降落

伞-返回舱的联合体也作了刚体近似，并只考虑了垂直运动。真实情况下，降落伞受到水平气
流和垂直气流混合作用时，会产生一定的耦合效应，将其简单分解会产生一些误差。在落点的

分布上，本研究只讨论了一种理想的水平风分布。风场的实际情况瞬息万变，情况更为复杂。

即便如此，研究结果也定量揭示了大致的垂直气流对伞降返回舱的影响模式，为未来带动

力伞降返回舱提出了一些建议。为了应对空天往返运输系统中频繁出现的天气问题，提高航天

器对恶劣天气的容忍度，进而降低成本，提高安全性，我们仍然还有很长的路要走。
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