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Abstract

Abstract

Evolution equations for internal waves are derived for flow case(flow over small
topography) and wave case(wave propagate over small topography), under the three-
dimensional three-layer weak-nonlinearity shallow water configuration, by asymptotic
expansion method. It shows that the upper and lower interfaces are in a proportional
relationship, and the sign of the ratio indicates the mode of the internal wave. The equa-
tion derived is a KP(Kadomtsev-Petviashvili) equation with an addition of a topography
term. In flow case, the topography term acts as an external forcing, while in wave case
that term depends on the wave amplitude. Higher-order KP equations are also derived
for these cases when the coefficient of the dispersive term is sufficiently small, and they
own an extra fifth-order derivative term. The coefficients of the two-dimensional part
of the internal wave equations for the flow case can be reduced to constants, with nor-
malization and proper inverting method. The sign of the fifth-order term is the same
with the dispersive term in first-mode equation, while in second-mode equation they
are different. Following previous study of resonant flow, the equations for flow case
with fifth-order term are numerically computed. Result shows that compared with the
case without fifth-order term, the fifth-order term with different sign has little effect on
the wave. It sightly enhances dispersion and changes the energy distribution. But the
fifth-order term with same sign greatly affects the wave, like turning the downstream

wavetrain into upstream ones and boosting the evolution of the wavetrain.

Keywords: Internal wave, Multi-modes, Multiscale, Asymptotic analysis, Bottom to-

pography
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1.1 EBEREENEMREX

MNP 1 ERBAR T G, AR D RITE PR A N AT E SRR 3
o WP S B SR . EEDERKMERT,
AR R PR B AR Rl R A B

THPE N AL R T T S O RR ST R L, 2R, PR T4 RHR
JI% BT FIEFIR 2 [ o T R i A AN i ) 2B R S A5G, 0o H
s H L PO TR RS el B R B A A A P S 4
B ShEBUNS , PR BT ORIE S o 8K 2 B J A R R I A 38 5 -5 A 37
M, FRATEE 2m/s(ZA I, 20155 2254, 2005).

PP TR B, i E N A S 2 RO 2 HAR R 2, st
K, HEFRRERE R 202 T3 IERTEN AR E BRAER . BT
(IR JEE RV 2 SRt/ N T T TR B 2 e, WO Ao CIR T — e m A
i M RERE i/ N TR R I RS A O T IR AR A S EE A AR RO RE o SEHRE T
5. WHESRAGOTZ BIMIKE N EN SIE I E T, TRNAMNLES .. ZILES
P AR B R T EE TSR FP PR A AR AR/ N, RIS I{LZ N
RIEWH Tz, HUHRRERE T A PR IELY R AR 15 (R R, 2005).

NIRRT RT 0 2R R, A, ARRR, T Bre ARREA A )
Hr, NIRITE RS Z BB FIR K, DI AT TR 2 BIE SR fidk HM A
WEHSE M, X Hrp DU S R e o e« KT A e, EBEA (2013)
A T =R ARSI, 2030 ARSI Lee wave 2B pHLHIANIE I3 283 E
AL R 245 I (2015); 6 2R 2 (2009) i H 25 N 9 28 /D B 2 w4
ARG H—RRERRAEE DR, Xl B R E .
TR W EMENPEEhIERY N AL 9 TR T RENE S
JERHBALAL . X e, ARSI FUSA T SE Rl B9 sh A I A9 TE K (Salloum
T, 20125 4 W, 2015; $5E 5 45, 2009). KT ERRLRE, A KEFTFHIRT
FALRRH L, BSOS Pl P R A B AR iR B Y
NS, TIRE.
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T I A S S BRI = KT Tl X R VIR e Y
W T SRR S [V FES AIY KFAEE T o 9 AR YR Jeh B A i
FZ NP MTICTEERAE, R EBORIRD) (F5AR, 2005). AEKARH, A
RV FHIEIE LSm/s RYBSYUIRT, XK MO RO E Lo iR 45
SERP IS I B B (A 1, 20155 B, 2012).

HL RS R R AT T SO IR R o R AT RO AT A 2 =2 2R
JK-E5 i 7I BRI A A 5 MR (6452 B 0 (A W1, 2015), R it Aol i
FASHEE AT IR A AIRSZ B MR A IRIAE , AT i A% B0 5% O kA 2z, 2005) . 7K FPii
ATV ME 32 1) N P05 O 3 B R RO, R E 3R ST 1A5s 3 A MEE N
P IE BT B A Gyt R ANPE /K T Bl RS G2 A W, 2015) . AN S
& TIZEME, LAOF EIRIR ™S IE L [N 52 N R AT 2 2 R 1k
KENBR (B EZE AR, 2009) X T ANEEINM S, NPT ZRMEA IR KD
J2 ST AT AL e e B BN T, 4 A P i B T A A AR (A I
T3 P I A8 (A3 B, 20155 7 fkAE 4, 20055 2257, 2005).

H=R R AR AR A ), XA SINE I BA B . (E3E BT 1)
E. BTSSR EETS, RUILRENS (R g BN aE i £ 3 BT 7 |
Hfis , XEGREETERER S E TR, FIT ARG, 15R=
FERRI A g, BRI REA LT ERY T 2 ARE (Deepwell
¥, 2016; Moum Zf, 2008; J5 kA 5, 2005). FE/CEIT AL, —2E NP RIE 5
TSI, HABGRIKAREIZEEST, RTINS IR Z [H) 15 A
i EE R YR WA BORRY 2 (B84, 2013; Dunphy 7%, 2011; Moum 4%,
2008).

12 BTG E

WA S B SRS, FIIE WIS 1847 4F Stokes fift 5% W )2 YAt A7k [R] Y 18 51 A1
1883 4 Rayleigh ff 5 7 L L 2 AU SO0 (O e 55, 2005) 4 A SEBR AL
JUJATIE 1 %S 1844 4F Russell WLEE SIS (RN 7K T BB RS BhHY, TEARAER
“OK F&”(Massel, 2015), 55 1893 % 1896 4[d], Nansen fE 4t %2 FErh & BIAIRAE
53 JE K AT I R AR 5 Ekman T 1904 fF45 H ™ A2 N THAE AT TRE
YRS o AR S AT A OWL IR 2, (B0 A A BRI RV D A /D,
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2 UK R/ N A AL O IR 55, 20055 25524, 2005).

FF 20 theg 60 A, BEE M HECAMERIEORI R R, WA BN
—AMSZHI TSGR, R T A RIRIE R N (Helfrich 5, 2006).
R AERIER WA Perry H1 Schimke T 1965 441 & g H R BLIY —H#FR
e =53 80m (AT, Bockel - 1962 AEAE ELA A FEifflb A 8L 1 180m =g A1 382
Zeigenbein T 1969-1970 FA1E [F)E & B 7 WAL (Massel, 2015; Helfrich 45,
2006). 1978 4 SEASAT TR A HE AT EEA (SAR) RYMHA], (7%
B 3 o SR AL PAY 9 ) 7 R RS K ok, MM BB B B B A A — B
W, AP AT R H

AT FTR A E .  EHEAE 60 SRR BRI ST AT AE Y 1L AN AT
TN, EE 70 SEAGEA TR T RGN I OF kA 55, 2005). 20 T4
90 FEAHI, SEE A A FIE R A LN OSBRSS R AT R AR
BB RS A FISZ ORI B A 5 LR PN AR R B O S 5, AT R N
P E N SN2 RTE (Rayson £, 2019; 247 1], 2015; Yang 5, 2010; Helfrich 4%,
2006), L b, FREWED. EOE. R FIBEAEAEIE TS RN, (HIRFRE
BEATRE 22 BT (s FE 2R 52, 2009)

1.3 AR RN 5 AR

NI AT AR 2 LA I A i CRE 1 2 52, 2009) 0 gt BAA UL %X
PR . FOR M LA ERYRARIE A B S A E bt . SIvatiig s, BAn D e ik
HIWINE] (Massel, 2015). 1969 £F, Ziegenbein ££ ELAf 27 FEHFBRALIN 21 A 17
PRIEECTK, IS — 40 h: Apel S A 1985 SEAE IR £ 17 4~ RAL
P RO/ NI PR 16 oK B A IISZ s L i 22 Im/s,
ARIRFIR Y A IS 5 S /K T 2ms, 3 BLEE IS 0.7m/s (B R4S, 2013)

WAL PR P RERASE LR AN, 22— I H B SRR 5. B
TR N RHUEASA SR RS BB BASNINZEE R R, B &
PREGARE, 1058 AR A IISL B RO AR B, R 2 U 88— s i =20
Z— (Liu 4%, 2019)0 5B MEASN ARSI AT 0 o4 B A R L AR, 7051 6B
PR a2 [ M wulel e 1 1 P S PNy ) VAR 55 S PN N A U i)
AP AR, oA A SO (EOPR M) o (B A9 5 2 JRE T AR TR R
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AR TR B, AEAERAR AT IUIRG , RRROXE s sk P A, MR R, &
AR TR R Y SR R T (Yang 55, 2010 H T M A M AR TR 25
FHIE, FIER s o A2, JaE WA KSE: (Rayson 55, 2019; Deepwell
52, 2016)0 45 BIASHITSBHUI., AEVES BRI IR. R (L UE kIR
A HIRESTHLEE SR, B Y M I El R AN E M B PR (Rayson 4, 2019).

P IRAZ 35 BN 52 BRI HR 22 Bl R 2R B9S2 Mo A28 — RS NI T =,
TE AR FEB 2 1T MBS (Liu £%, 2019)0 1058 A A A7 A A
51, Rayson 5 (2019) 3 AT A5 AN~ = Rl BB ZUE R E R E T L2454, H
RAEfE R I 12 EREEARIF N Z50, e BT RE B T sl AH 54 H
It FERER. JTAF2R, BEE A8 S N I B RS INFI R SE 28 A i, 3R
15 7 ADHAN B AR 78 == 00 2 55 R IR B 7 IR BE— H3 5 — 15t
AWIZEE, A E R IR 55 SN IR AR SR — RS NI 2 R 48
L e MR BTEEPE KRG 0 BRI g S bl B AT 58 A N BB WL 55
(Liu %, 2019; Rayson 2%, 2019; Deepwell 25, 2016; Yang %, 2010; Moum 2, 2008).

1.4 RNiEELHRIVIK

KT NP EISRII AR o B 55 RT LAgr Ry AR = AR o 2 K5
GURF ZHERRL, R TE S WAL R~ T B 7 17 By A v B 48
o HYRAT LA A /K AR A KAV B9, RI/K A7 11 Benjamin-Ono F %
o BARSLBRIETE RS MG A UK AL, (HEE S BB 25 S TR AT 5 5056
SBRP AR, RIS B T 4 (Helfrich 25, 2006).

X TR IEAANT S, HE—25 0] DU BT @ 3 AR (AR 2 AU =
R BRI S S R R S . FE NG, R H Boussinesq {f 1%
(RPRFEE i 8 A ) . WISERIL (JEBRFTEBZN) , T I
i (HERHIZ M) SRR SCTIRMARIE DT, W R K AR 248
TR SE N R, SR TS, TORAS AT RS4RI -

PRI R/ N R R AR 195855 , WIS AT A BRI . ffd]
BRI OLR /MR AR L AT 200 O 2k e, 25 8 T S R BRI e Pl B i
Euler J7 7215 Hifi##7f#% (Cushman-Roisin 5, 2011)o X TABRIRMEATIN B, LA 53
ARSI E AR E BT RF o
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5 YA B 6 45 LR SR MR 5 (2 MO T N 0L R (MR 5 7K
ML, AV S B K A R P2 B R T /NT 1) @i Kav 5
P15 H P ARST WA (Helfrich 2, 2006). {9411 Yang % (2010) il KdV H36,
TE L = 2 B 4 BRI R IR BB A R 75 8 T R s IS 0 P T A
Grimshaw % (2002) 7745 2B F B4 T KAV 7R 5 0 KaV J7e.
§3 LR RIS FO R AU B R T I A G, RSB IAIH JEe e p B % Fic
B, TS SR (SRR R BB AO L E . FAEAN
TR S, FRIE P b 55 A R A B (Liu 22, 2019).
R 52 A AR LRI, ATR P4 R MCC B854 LAY DIL 77
£ (Dunphy %, 2011; Helfrich £, 2006; Jo £, 2002; Choi £, 1999), H.rf DIL 7%
(U FE e AL 4 A (AT A% (Dunphy 45, 2011).

53— TS R BEBR B2 6 B R LA HO B, A Boussinesq
(BB AR A K2 7 A 5, 2005), FE1E BRI (RB0k 25,
2014; Stastna 2, 2002) % , % AT, TTRFFE A IS B EAHE , SR S HA
1 BTy, (Liu 25, 2019; Yuan 2%, 2018; Grimshaw 25, 1986), “FEIR ™R PN 1 Y TE ik
(Terletska 2%, 2016). HUHERUR A0 LAZNE, 1 BE B4 (XK 22, 2000;
Ty KA %, 2005), % FEHBIEIIRE(SE] Ostrovsky Ji%2, OH JrFE, KP Jifd, Huffs
MCC S LRGP Pt B S 0 M BRI OB I
TR, B G OSSR S B . P LERLMIZRARES (Stepanyants,
2020; Farmer 2§, 2009; Gerkema, 1996; Grimshaw %%, 1989; Grimshaw, 1985),

U BB K SN R L LR 7 MR 5 R BT 1A 2 L
(Helfrich %, 2006), 5 I fEHUEE R TT 58 A RIRI RS o 4 5 = e pir
WS BELL KAV BRAGY R KP J7E Rrful (Akylas, 1994), 411 KP Jr 2
B AR (Freeman %, 1983; Manakov %, 1977), F ] KP 77 E2RFSE MR 807
(Grimshaw 2%, 1989; Grimshaw, 1985), JHLAMEA = 2445~ His A0S B 4o
AL (Deepwell 25, 2016) 5,

ST AR A U R RS T8 RS IS T o, A IE
FEWIS AT IO . 2 M IS A S s 5 R IS T
= HE A NI N BRI R . S R IR . P ER R
{6 SR BIEWOR S EG IR R TS5 ST 48 — A PO I
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ST (Liu 2%, 2019; Rayson 25, 2019).

Xt IRSZ W I BUE AL R BRI T, —RAEISEI AR R TR E
fit, —REREXERMA NS FRREUESL. RS RSN, BT
FIREAEXUE T AR AR A%, TETRSI R A RUERT, AR E G ARG
RERLIF M HEATHEIA (Terez 45, 1998), FEHUEMBAUH A REM I H 2 DIL J7
FEAEVESR AR TR, H A BOm T Turkington 55 (1991) $2 A5 J7 15, IEA
P27 RIDunphy 55 (2011) £ H B9 FH R A1 7730 ARHR LT 15 AT BUE SR AR 825 T
G EAE DL T 8 — RSN ARSL I (Helfrich 5, 2006). FEAF 533 Y AH BLAE T alc
FERGVER S, A AR EUE 7%, Wil 5 RANS J7#2 (Rayson %, 2019), {#iH]

MITgecm(MIT general circulation model) #4754, (Yuan £, 2018) £,

15 AXAREETZH

KBS O =2 = 2 A KRR R, R A7 5 H 7
UV S M P e R R LRIt HR i M 1 — 4T
RO B Y AR e, BoR T IE ST BAE R MW A4 3k 3
77 2 R FT0E

FURRI B A ZHE T o 35 2 306 A GV = 4 = T 72
L1, SR T RS TR S SR A R . B R PR B S A 7
FRALSEATRAR. S WO MO I o B 7 R 1 6 BT R B M B E 2
T, R, ST T P B B A TR, TR
TR . S B S Iy 4020, SOerh F A R . 40
e SR PT84 Hh B MO TG O DA TR

4 3 SN I R P — AR TR . BB, R
HE SRS ST T IR AT . J00 RET— L SER 2
BOEX MR, FERURIE GO S H R MU R RIAL T, 46 % R AL T/
IR, REXE TR SRS EI RN, R T T S
Runge-Kutta 77 AT RO, 2E/RIF LRI T 19504 1 0 B b 5
X WA FL I 50 7 R R R -

55 4 RPN T ORI — MR, . 7E4 CRIF NI T AR
R A SRS T 1

6
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2.1 ZEERKEREN

2.1 Z Rk G R E A

Figure 2.1 Illustration of the three-layer shallow water model

WMER AR R = RGN ER . IR BHEREIR, WA EESE
MR =2, TSR EEE, JRFSIAET IS B S —/NIE it Y 2
JERREL b(x, 1) Tk e FIZE LI RICN p1s p2s 3. A p1 < pp < p30 RZEIDN
N, AR, SZREICN Hy, Hy, Hyo SR H = Hy + H, + Hs.

R A P B RS AEAE DA B, X DY R AE 2 J7 1) ERYAAARE gy 2
ny Fon, B WG ny . BB ESE 2SR g, BEEEEE
(53 P my s NSESHOTE T ngo o, 43 SRETEREDR 108 (o 5 R AR 5L 5331 LA
$ 5 &G FR FHIEIGHHIY, 53 F Iz BIEh N S T = Bk E R
Ry, hy hye IR, ST LATF R R

m=H, m=§ m=-Hy+& ny=-(Hy+ H;)+b .. (2.1)

hl=H1_Cl h2=H2+€1—é’2 h3=H3+C2—b (22)

2.2 S5 E&MIRKARENSH

Choi & (1996) S | —E =R 55 4R AR T #E o A4 3 Tl ]
HEAET L, S =2 S5 AR MR ORI [ BEA T 7

RGeS A R, M2 I e, WO R IUTCEEAS AT R 46 B0
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p7ung
e

(V. u;+0,10,=0
1
{Dju; + w;o.u; = —;VP:‘ ... (2.3)
1
1
L i

Hit D=0, +u; -V, V= (0,,0,) ASCHATCRBIBEH, i RBEEA 1,2,3.
FESRIMTL, AR

-

wllzz"]l_ == 0

(Dym, = wy) |Z=,7;r =0 (Dyny —wy) |Z=,72— =0 Piloayt = Poliey;
4 ... (24
(D2’13 - wz) |z=,1;r =0 (D3’13 - w3) |Z=,73— =0 P2|z=n3+ = P3|z=n3—

| (D314 — w3) |Z=,12r =0

X TREAETC R, R BT MARE RN H, RKP 5 TRHE R IE Y
Lo BIex TR E— . WIfS w; ~ wH/Lo B TRRIEIICK AR, i
H/L y—/Nax, e FoR, [/
H

€=7 ... (2.5)

H w; ~ ew;, AIHZIREL N7 gk e ie ML

r(x,y) =L (x*,y*) z=Hz* t= L t
VeH
Vu; = VeHu! w;=e\gHw' p;=pgHp' p;=pop - (26)
(H b ) = H <H,.,hj‘,n;f,g,j) j=1,234 k=12
H G5 - A R
V=L'V* o,=H'9,. (d,D)=L"\gH (9., D) .. (2.7)
e -t e LAY =YL WR Y
(V- u;+0,10,=0
{Du; + w;0u; = —plivl’i ... (2.8)
e*(D;w; + w;0,1w;) = —iazpi -1

- pl
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R N IR Wl e S e sl
AR 2.8) B =, AR AR BUL I ¢ JRIT, B

f= f(o) + €2f(1) +0 (6‘4) f= u;, Wi, p; (29)

NHEIAEBER RIS

F(x,1) = f(x,z, 1)dz ... (2.10)

1 [T
h |+
UM

T RRRIK B BT R, R4 2T ELT 1) AR, RIS H IRy
T
211

{@m+v-wﬁy=o

_ N\ h; —
at (h,u,) + h,V . <u,~ ® ul> + ul‘ ® u,- . Vhl = _p_let

fE_ERTTRERY U RE, SR TSR, T BT 1A BT B
HMBUE . I F BB e B 7P B AR A LK, |

O = 70, 1)

uilz:ni_’uilzznlf:l zu_l (212)

X BUE R AE LA =P R Dbl e Johedt, sk iz, 558yl n /=
(Choi 7, 1996). AFFEMIEETWIMATCHERE , MIGRACK: — B AR FFICHERIRAIX —
F, RHILBGE. MEIZBUE T, IS

w,®u; =u; ®u; +0 (e*) .. (2.13)

K HARNEETHFRACEEETTE, R

@E+E}vmz—lvm+o@ﬂ .. (2.14)

X —BAE, IBFTARIEAS AT 48 45442k 15
== (Vou®) (o) D00 DOm0 au® V1)
N SR T AT, HIEEE SR TR, BIE (2.8) s =X, FIH R
A5

0 1 0. (© 0 0
00" ==p 0" =, (DOw” +u"0.ul”) .. (2.16)

i
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215 N, 15 —Fr 7
0.0\ = p,GV0x, 1) (z = niyy) + o FO (e, 1) .. (2.17)

e GO, FY W5 2 KX

2
"0 =D (v-u”) = (v-u”) FOwn=-D"D"4 .18
o 5152
0 0
p=—p;(z—n;) + PV .. (2.19)
1 1 .0 0 1
P =36, (x.0) ((z=m41)* - h,-z) +FO, 0 (z=n)+ P (220

P ORNAESS | A R T AR SR B T, g
%7 G, F? {fbr.

V_Pi =V <p(0) + €2 (1)> (€4)

+0
= p. V1, + VP, — €%p, <%v (—h?G,. + —h.2F> <2h G, + F) Vn,-H) +0 (%)
1

. (221

ARSI TR , JE5h & IR 4 1 B TS B P A ) AR L 12l
PERIR SR L IR, TR0 NS AR (A% v BV ST R A E R
F—/INk L ELPI B S BO Hsh i AT A R th 2 — it T, TR
B € (/N I TSR, 5w #hE.

0(¢/H) =0 <u_,-/\/gH> —O0() j=1.2 . (2.22)

FIFAE/K KAV (53, BOrE R u~ e fih, B 2.9) sknior. B e
Sz, o e BB, M 2.14) Bl

ou;, +u; - Vu, = —lv_lai+o(eg) ... (2.23)

HEEEITR, BENEAE. BT 5w R, Hom,, ~0 (). N
E— R 2.17) 58 IR

2.0V =0 L (2.24)

Zrq
2 1 1
0.0 = —po,w” = p,GV(x, 1) (z = myy) + 9 F (1) ... (2.25)
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He
1 1 1 1
GPan=0v-u"  FOx1)=-0,1) .. (2.26)
BTG
1 1 2 _ 1 1 2 1 2
A =p" =306 (= mn)’ =)+ (=) + B @27)

X5 (2.20) FPAERL, HEE (2.21) IR H . (HEF OSSR IE S LA
FIFT, JEH H, +0 () fUEs by, SHILESZE RN

Vp; = p Vi + VP —e*p,v (%ch;ﬁ“ + %HJ«;‘“) +0 (€% .. (2.28)

NBIET R, Dl A0k Pul”, g

0+ VI + Vo + = = &V <§Hi oV - — EH,.ann,.ﬂ) +0 (%) ... (2.29)

i

SRS R E Py = pilacy,,« FOAK 2.19) 5538 2.27) 19
Py = Pt phy+ €2, <—%H,.26,V T+ o ) +O () i=12 ... (230)
I, 6 P3N (2.29) 52 Mg (2.30), LLE 3 ik T
o1 +V - (hiT) = 0 . 231)

I b+ hy+hy = H —b—i2, W17 RT hyw, P36 12 AR R Ef ]
R HABhRFGH— O (%) BRET, (HBX T — LA BT 447 I JC 5 1
CUJEET) , MRS Lo O T ITEZ S BSKAE, JoxtJrfelE—Lef st . 4
AN hon HE G 2.1 53K (2.2), BRI IRIEEE ¢, &, IR Lt
HEhl . RESEINHZE . T RAE R, %

0,$1 — H0uy — Hi0y0y = —=0,(§yuy) — 0,(§1vy) .. (2.32)

0;8y = 0:81 — Hy0uy — Hy0,0y = =0,((5; — {uy) — 0,(( = Epvy) .. (2.33)
0,§a — 0;b + H30,u3 + H30,03 = =0,((§; — b)uz) — 9,((&, — b)v3) .. (2.34)
P20ty — 10y + (py — p)0yC; = =Ky, + Ky, + €20, (M, + N)) ... (2.35)
p30,i13 — pa0,iiy + (p3 — p)0xlr = =Kz, + Ky, + €20, (M3 + N;) .. (2.36)
20,05 — p10,0] + (py — p1)0,8, = =Ky, + Ky, + €70, (My + N)) .. (237
p30,03 — p20,05 + (p3 — p2)0,8r = —K3 , + Ky, + €70, (M3 + N,) .. (2.38)
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Hrp K FoRAR4ett i
K;, = piu;05u; + p;v;0u; K, , = piu;0,0; + p;0;0,0; ... (2.39)

M, N ZoR .

M, = %szg( iy + 0,,0;) — % »Hy0,¢, ... (2.40)
M3—%p3H2( i3 + 0,03) — % 3 H30,,b ... (2.41)
N, = élef( iy +0,07) — % \H,0,¢ ... (2.42)
N, = ész (0ytty +0,,07) — % »H,0,,¢, .. (2.43)

2, BAPAT TIRIES 2 -PAK 88 Frif 2 AR TR
B A KRR 2 TR

23 PR RN SRS

ARAGEET LT a AT R, SR E T ALY A o S0 T
INHTE IR e AR AR T ™ A2 A I RO R R T R o 3l SR T i FH RO (BORRT A B KR
WSS ABAE =2 = e i X SR TAR N M =

OB NI AR & = x —ct + 1A, Wik o i, Hrb A TRl 5%
PEMRAEAE— ¢ PN ZERe e R IASEBR B AOVERT, B 45 B B B K )
R 7 =t KN y FERREY = ey EARERREN, 555
NRT &7, Y HIHREL

f=f(§’TlaY) f=u_1’ i’Cl’CZ (244)
T FECR RN
0,=—co;+€%, 0,=0, +Ad; 9,=0; 0,=edy ... (2.45)

IR GEE N O (7). WU e*b AR b, HFULHT b ~ O(1). I HARE b thj2
&7, Y HIRREL. IXFFAZ U I AL LMEEH P R85l @M T 5 R H &
FEMEE B HIE, A HARAGIE N (Grimshaw 5%, 1986).
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TR LRI R TR B 0 N, S ERBURIT T R ¢ RO

1 o7 MBS A E /N, M O () it ¢ BIT. 1Y
=M +etf@ 40 (e f=u.6.5 ... (2.46)
o =35V +0 () . (247)
NG R AN TTRE R AR BT, B e T R & U E— Ao AT

FOTR, x Jra y Jr s iR A B, Hrp i B AR IR i
2 (H/ Ny e 3850 ks

atgl axu_l ayU_l 0x (glu_l) 0y (glv_l)

.. (2.48)
2 2 4 4 6
atu_l axé’l maxu_l U_laya 6‘2()xxta 6‘zaxytv_l ezaxttCl
.. (2.49)
2 2 4 6 4 6 4
az‘U_l ayCI u_laxv_l U_layv_l ezaxytu_l €zayth_1 €20yttcl
.. (2.50)
3 3 5 7 5 7 5
IR T ARE 52 Ao
4 47— 47— 2 4 2 4
€ab 0.(ebuy) 0,(e"bvy) €°0,.,€'b €°0,€"b
t X 3 y 3 xtt yit - (251)

4 6 8 6 7
RIS AT, (URG T wy JRHPIRY, XF o B —FrRImT, el TS
x JT I E RS, O (€°) MUA LRI 206 s 5 y Jr s e ifd, O () &
DA AT AT 220008
TFHRA RS TR, H08 0 (¢2).
—co:¢\" = Hyo;" = 0
—0:¢" + 0" - Hyo.m " = 0 .. (252)

~c0:88" + Hy0,u3" = 0
FIATEG LA RANE, o 5 &L G RBREE, b o' fgesstm T,

—() ¢ M D c ), € ) —1)_ € D
i — __z: U, — __C + _(: U = —Z: (253)
H,"! H,”>  H,’! H;™?
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AN HY x 7 IR 28— B sl e

1
—cp20§u2 )+ cpldéul )+ (py — pl)agéf '=0

1 . (2.54)
—cp30:a3" + ¢py0iy " + (3 — p2)0zLy ) =
1532
M
P)
ul % 2o ... (2.55)
0,c
Pz Pl 2 P2
-+ + (py — p1)
2 20 : H, .. (2.56)
”2 —c (,’;22+”3)+(p3—p2)

NER T IR T Qﬂﬁﬁbr WA ZBOEREATHIACON 2, B [H| = 0o fitbn]
S BOERR RO R I

rct+rct+r;=0 ... (2.57)

AR R BN
ry=p1paHs + pip3Hy + prp3Hy
ry=—(p1HyH; (p3 — py) + poH H3 (p3 — py) + p3H Hy (py — py)) - (2.58)
ry=H HyH; (p, = p;) (3 — p2)
f£ H| = 0 BT, By RS £ S IR 55— i SRy Ho il 5¢
Ro WX HOIRE Ny, WA

gV = yeV ... (2.59)
H — o H H — 0, Hy\ !
y=1+22_70 p1_2:<1+p3 2 5 p2—2> .. (2.60)
prH, py 2 pyH; py 2
wmen, e =¢, &V =ye. |5 5D WFEER 253 W,
nV=-"y¢ BV=Z"0-n¢ w"=— .. (261)

H, H, H,
y TR S — B shie J R A TR, JesRAR S8 — B i . (SRt
FTREITR
—c0:¢? +0.t" - H0.5,® = Hy 0,7, - %<§“mﬁ”)
—co C(2)+0 §(1)+ca C<2) P C(l) Hza,:u_z(z) = Hyo, 0" + << ¢ (U)ﬁl))
—co C<2) P §(1)+ca§b+H3a€@(2) = —Hy0y0 —(1 ( (1)—(1>>
.. (2.62)
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MR P RN E RIS, 15

— 1 2c —)

0. ? = — a @y 95— 0.6 -0y .. (263
2 29 , ¢ HIZC :{ = Oy D) (2.63)
_ 2 5 y—1 2e(1 — ) .

O;ity =——6,,=C( )+—05C() 9,¢ — £0:¢ — oy 5y ... (2.64)

H, H2
_ 2c7/ _1 c

0,1 ? = —a @ _ 0.6 — vV — £.9.p ... (2.65

cU3 65 H3 0, — o2 C € — dyV H, & ( )

3

W HARNT T B x T sl )i

—@ —(1 — —(1 1 1
—cpzdéuz( )+ pzafuz( ) 4 cplaful( ) — plarul( )+ (pr—p1) = —Ké '+ Kf '+ Ji

.. (2.66)
—(1) IO NG
—cp30€u3 + ,030 u3 + sza Uy — pzafuz + (p3 - pz) = —K3 + K2 + J2
.. (2.67)
Heb KV h K, (5%(2.39) i s
k" = pi; Vo . (2.68)
J1,J2 j"? M,N EPE/‘J%—BJ/I\I)ﬁ
I R PR OB 29 cW L o ) _ 1 25
Ji= 3P Hy(=)0gectty " = 50y Hoc™0geely ™ + wpr Hi(—C)0gectty ™ — 5o H 706,y
.. (2.69)
1 — 1 — 1 1
Ty = 203 H3(0)0pis " + e py H (~0)0pzgtiy = 2 pr Hoc ety .. (2.70)
RNFFNH—B iR R RNt s, 153
)
9:¢| R
g = ! .. (271)
96, R,
/\EI:I
Ry =q110:{ + 4180:C + 431 0¢2:C + V)
p
Ry = q120.8 + 420800 + a300::C + V5 + Czﬁagb .. (2.72)
3

—(1 —(1 —(1 —(1
Vi=cppoyy —cpioyty Vo =epyoy T3 = epyoy Dy
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#R2EN
P1 %)
= <H1 Hz( y)>
P
4 = 3¢ (——12 + —22(1 - }’)2>
H H,

c2

Y
B =73 <P1H1 + (1 + 5) P2H2>

qip =2c (ﬁy + 20 - 1)> .. (2.73)

H;"  H,
P2 P3
gy = 3c? <——2(1 )’ + —23/2>
H, Hj

... (2774)

2 1
T =7 <P3H37 + (E + 7) 02H2>

.. (275)
T R2EBUEME M 115808, SO ISt A A, walh
yRy+ R, =0 .. (2.76)
S KP 72
p
WRABI T 5. AR W N — y 7 mshs i
¢py0:0," = ¢p10;07" = (py — p)OyE .. (2.78)
¢p30:03 = 9,003 = (p3 — py)rdy ¢ . (2.79)
SHV IEERIA
0:V = ((p3 — p)¥* + (p2 — p1)) Oyy ¢ . (2.80)
A AL (2.60), A1H
(03 = P2)Y* +(py = p1) = & (;—Zyz + ;’I—zzw — 1%+ 1%) . (281
KP 2R =1 RECH
41 =791, +4q11 = 2c <£[—3372 + I/-)I_zz(y -1’ + Il;_11>
0 =4y + gy =3¢ (%P + %(1 -7 - %) - (2.82)
3 2 1
2
g3 =793 + 431 = % (P3H3}’2 + P2H2(7’2 +y+ 1D+ P1H1)
Al (2.81) S RIS UG TS g A, MuRZFH KP TN
0:0; + %fhayyé' =0
.. (2.83)

P3
Q1 = 410, + 4200:0 + q30g:C + CZEJ’agb
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24 AMIAISH

TE=B IO Ceee YRR/ NI, FFEG I NFE S B A9 (A BIIOR 5 etk 1
o I B S 20— R T R fifth-order KAV J7#2 (Hunter 5%, 1988), HA
NS B S KdV R

Cr + 08+ Cege + Crpzer =0 ... (2.84)

AP AERT SR HEZE N SR B 7%, SRS A A T T KPR KA
RERKL. B0, B BT R G S o I A A Y
TS SFEORATH,L ¢ 55 0f R, BUbi ¢ R2— O (e*) /Mo FHRHE,
o, ~0(e*)s

R R BB R (B Q.8) P =) e TR A &4k, #%
JESR SRR IR € SRIETT. N T LA SR R, IXH ¢ M4 R €2 (R
RIRTT o FEERIT RS R, AT (B 15 S h R A R R e AR
JE—B AR, RS AR R, T ¢ R IUB M, SR
WOA BN, IR ERITI. Ny B, = .

KTy AR, TEWE o B0, . T2 y J7 hskeE
BR R IFE TR E T3, 2% 20 SHTRRN SR, FT AT E e

Oy, ~ €*0zu; ~ O (€°) 0:0; ~ Oy ... (2.85)

HILFT 15 oy ~ O (e2),7; ~ O ()
KT HILTUO %, il i R Ik th e SR A B E S, ol

0e*b ~ e*0n; = k=38 .. (2.86)

WRHE BRI 3T, BEPRSHTA R T

f=etfD e f@ 4834 0(el?) f=¢.6.1; ... (2.87)
0 = 5V + 0 (%) .. (2.88)
§=x—ct+€4tA T = ¢ Y=€2y ... (2.89)
A N

0,=0; 0,=—coz+€0, 0,=0, +Ad; 0d,=€dy ... (2.90)
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PR R PR B Bk S KB T RE . A2 B RUTRERT, Sy fay B
W 8w, o JRIPFEAANARIE . X w; EAT 90470 I g I 22\ B, et
i SRR E 2B AEES RPN w; I (TR TR
FET. E5 w ISR . =

(1,2)

i

34 _

0 1,2
0.0 =—p 0P =0 0,p>Y = —pouw ... (2.91)

HrRIAN (1,2) MFRIT 3R S B B AR S ol BT B ARk we EIREE S
u®,u® u® 15 2 G AR, TEEE g =0 +0 (), 13

W = - (V -u_i(l’z)) <z _ n§°)> + o . (2.92)
ic
GV =0v.-w® FP=-0n" k=12 .. (2.93)
G,=G"+6Y  F=F"+F? . (2.94)
UES]
0.p; = —p; + p;e® (Gi(z — ) + F;) + O (') ... (2.95)

TERR| by = H; + 0 (e), A3 Eo ik

1
pi = —pi(z =) + P+ €%, (EGi(z —n)* + F(z - n,-)) +0 (') .- (2.96)
Vo, = p.Vn; + VP + €5, (éVG,-Hf _ %VF,.H,.> +0 (') ... (2.97)
V(P4 = P)=p,Vh;+ €,V (%G,.Hl? - F,-Hi> +0 (') i=1,2 ...(2.98)

NS N RO R . PR TR R AR
0;h; + V- (hju;) =0 ... (2.99)

XTEhTRE, % ER (2.13), BERT Ay

u,@u; =u; ®u; +0 (e'?) ... (2.100)
OB Bl & T RN
— Ui VP _ (] 2, 1 10
O+, Vil + Vi, + — = ¢ (—EVG,-HZ. +§VF,-H,->+O(6 ) .00

i
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BEAN, FESRAEPE A (2.98). HMERIE T4 BB P9 Bl T R
5 JEFFE) O (¢%) . e ity s g (I 22 A S

TR 5 A U 7 R BRI TR . I TR B 7, 5
TR o B BRI R R T RO (E TR 15 S A TRk B2
ST AR, Bk A T RS 4% U o

B ARRRGN O (¢*). Tl BEH—HE ML 252), =&
(2.54) 1S4 AR, BI85 AR 4, BTl gE @
B RN 257, ETREIRIEALLE, LEREC v, v WER (2.60). RFHT
(V=¢V =yt

—©2) c —(1) ¢
H, Hj

LARATHN O 21 R EOE R

2, (= 1
H=P2|77 . (2.103)
HZ 1 _7/_1

BTN O (¢°) ., i TARSMIRILN O (¢) . by BRdlri
PR, T T SR BT O, SR TR DU B A
5D 5 0G0 WK R YOTRI S R . B

n=—grt wm0=(67-07) mY=ga” i

RHAN x T sl s ke, 133

@
0:¢ S
-Hf = .. (2.105)
9.0 S,
/\EI:I
s =_L mgra w1 g ooy L0 1 g )
1= TPty 0stn T+ 5P Hoc 0cee6y - — 3P HicOgecty
.. (2.106)

1
= E; (gcza€§é§>
1 —m 1 ! —m , 1 (1
S, = _€P3H32c8§§§u3( '+ §p3H302‘9&:—§Cz - §P2H22 COgeeliy ) + §P2H2025§§§C1
1
= E, (802%@

... (2.107)
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Hrr 2%
E, =p,Hyy +2p,Hy +2p  H, E, =2p3Hyy +2p,Hyy + poHy ... (2.108)
BT H| =0, T S +7S, =0, H
(%czagf,fg) (psH3y* + pyHy (y* +7 +1) +p H ) =0 ... (2.109)

X RPN R A AT — T 7 FEAr S H A 25 e KX
ER (2.82) i g30 TAT T LET OB T =W (BRI R BB N BIEHA
e /NG B g; = ga/e® flEHS O(1).

’ 02

q; = psH3y? + pyHy (v* +v + 1) + p H)) ... (2.110)

3 |
US|

S| +7Sy = €7¢30z::¢ . (2.111)
KB Sy + Sy HIRA TR, X — @B BUSEhs LA H I T i fed
AR =B T Fy + v Fy, =05 Ep +yEy = 00 Wy ReAL7 (R
@ 4P = ipE1 (—éc aﬁg) L (2.112)

NHESRAES =BT XS T BRI, HIPA SR (2.62) £, RS

0.5 = a &Ly —a 2_ 9,07 (2113
Uy € H N H] € YU ( )
0,1, = 0 ¢ - §(3) Ly —1a.c— (1 —y2a.2% - 0,55
&2 4 H, sz 3 Y2
L (2.114)
—@3) _ 3) c -
Ogu3 0:8," — F y0.¢ — P 0:0% - ?agb oy 3 .. (2.115)

3
RN x Tyl shie iRerh, RG2S (2.72) MR EE, (A8
o

3) /
0 R
~-H §C3 = . (2.116)
Ri =q110,¢ + ¢ {0 L+ V + 1) ... (2.117)

R = 4120, + 4l + Vs + c2§a§b +1, .. (2.118)
3
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Hrp
1 — 1 2 1 .
Il = ——szzzca§§§U2(2) + —szzcza,:éng ) - —lelzcaéégul(z)
6 2 3
> N N L (2.119)
= <€ag.§§> ((szHz +2p1Hy) &7 + pyHol, )
1 — 1 2 1 _ 1 2
2
¢ 2 2
= (z%gg) ((2P3H3 +2p,H,) Cé '+ Pszéfl( )>
... (2.120)
HaEL+yL 15
2 2
c ) ) c 2) 2
Iyl = Toge (Elé’l + Byt > = £,% 0, <—yC1 +¢l > L 2121)
RN LE— TR (2.112), A5
I, +yl, = E Cza H g Cza = q40
147 =By w0 | - Ei | 50l ) = 4a0zeeeet
p2 2.122)
2 H, , ... (2.
qy = =—=—7 (2p3Hsy + 2p, Hyy + py H,)
36 py
H Ry +yR, =0, H&iea BRI &I 2.111), ST KP Jy
o
¢
aéQz + quaYY = 0
... (2.123)

P3
Qz=%¢£+qﬁ%c+@%ﬁ¢+%%ggc+éﬁyﬂy

2.5 RS RNBRETENSH

A EE T W TSR A TR, SRAR D S HO T I il 7 o SRR
RSP LTI SORTE . R R B s .

FERTP A HE SIS TR . MW A9 R L AR IR A R /N (A48 =it
b~ e, BEITI b~ e*), (AERTITM LT P . HUT A G T AR AR
HEEZARE, B b~ Co PRIIMBUR L TETR S B mET, MRFEE=x—ct. (0
S HBTE b ARBERT IS AL, SO RN A7 AE 0,b Tile (EIREEMSEZ R, AR
SLBILTERME. BRET & NTRE, TEREFLER, XEH TR
R x THE & NEAE . 10 q) = g/’ q) = qi/e*, HILERIN RN

c
0,03+ Sq10yy¢ =0 . (2.124)
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Qs=QH@C+c@§y+@C@C+qﬂamc—c?§§ﬁdgmj ... (2.125)
3

FIEIHI, M O3 N Oy

p
Q4:qf@g+c@gy+%ag§+%@Mc+@@mmguqﬂﬁ%ﬁ@ﬁg)nxzu@
3

26 AERBNESITIL
AREET Z 2K, S R I 5 W s PR G T T A 0 1
WITRE, LARHHIS B A T I J5 R o
XL RAFAERZ ML Z Ak FERTETHIE T, NI L ds ¢ B2 i
IR O R
rict +ryct+r3=0 .. (2.127)

Hrp

ry=p1p2H3 + pip3Hy + prp3H
ry=—(p1HyH; (p3 — p2) + poH H3 (p3 — p1) + p3H Hy (py — py)) -+~ (2.128)
ry=H H,H; (py — p1) (p3 — p2)
HATF &N, R REIRIES s, B & = v I RSP —
PRIEHI A RLERI AT 38 ¢ = ¢, MR IR ¢ BFoR ERERRIE.
BIRE y NRTIIESHNH AL

-1
piHy py—piHy _ <1+P3H2_P3—Pzﬂ>
pH, py 2 py H; py 2

y=1+ .. (2.129)

LR L R Bk S Barros 2 (2020) T HHY 4 = R4, i
WHAE = A28 PO AR RS R A e BB R E— KT
RITRE, ¢ (WA RSN I R A — RS 5 85 REAS I IS B, 1T ¢ YA
Y53 X R AR Y ZE A S A o (A —1RIN2, R n B2, i 20
TS AT A I n— VTR, IRTA n— 1 AR, X2 n
JERARLARERIA n — 1 DRSS E R — A

FOI R A y BBUES ¢ Mok WTLLEN], X TREARRIZMEPOE ¢, HXFRHY
y BONIE, ENERIRIET AR, AN TSN TRV ¢, HXTR
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Wy SouP ENERIRIET AR, AR TSR R, BB — RS
HOZEPER AR AT 58 RS BE R, XS R ABF SRS R —2.

7 AT B R EAE y J7 17 _ BB A AR A, 5
REAFAEMRI B KP 78T, RIPY AT R aT 508

90 + gqla”g =0 # 0,0+ gqla”g =0 .. (2.130)

O MBS —4E KAV B ES . X T AFEIZ A O AR (0 5 o, A A IX
Ao X—HEFRFHER SE SN KP 7 582 W) (Grimshaw 55, 1989; Grimshaw,
1985), AN AL FEARTE JEHIE R . Ak, TTREH B HIHIZ R Y 24X
T, JXE R TAE TP BN, HAE y 7 10 B A ise i e

NSRS BIFESILRMEIE Q Tle B5G, U A E R R LR S
MRS . AEMIEAATHR, AP R B 40l & 28 iy O(1) HiY, TISE
Bt 25 A B R A E 2. 1

# 2.1 BB

Table 2.1 Order assumptions

5K SEhRRIE  SEPRMOY BIRE AL y TRRE
W T T O, 2 e*b 7,=€ E=x—ct+etA Y =ey
AN, % e*b =€t E=x—ct+e'tA Y =¢€%
Pl HNINQ; € ) 7, =€t E=x—ct Y =ey
Wit A TR O, et e*b 7, =¢e* E=x—ct Y =€y

FEFULHICHTEIE . A% 85 % SR IR TR BIXT 01,0, A

p
01 = 410:{ + 280 + q30z4:C + czﬁzyafb ... (2.131)
p
0) = 410, + 4200:C + q30s:C + quOseeesl + czﬁydéb .. (2.132)
3
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HrRECH
P3 - %) 2 P1
=2c| —=—v"+—=—@F-1)"+—
q C<H3y Hz(y ) H1>
4 =3¢ (”—ZP + 51—y - ”—2)
H; H, Hj ... (2.133)

2
C
=7 (psH3r* + oy Hy(y? +y + )+ p H,)

¢ H, 2
“=3657 (203 Hsy +2p,Hoy + py H,)
2

LK gy = g3/€?, 0, = 0, + Adgo
MEE Qy, A WHAT 5 R HEAR KAV 5 #5555 o 5 EAFAERIE

419:C + 4280:8 + q30z:L =0 .. (2.134)

AR LS KAV i —8 BRI R 8kiA = SBarros 55 (2020) [
ZERMAWIG o IXRIERAAFAEREHEIE . ABEEAERF ST A KdV
WAMREER
IR AR O Bl hn 1 — i, HX—#P IS IRIELE ¢ TR X
FHIHOIE A A — A E KAV AR AR B hsiid, 35X Ml i 77
FEAERF ] DMEAIRBCA B, CCATRAEIE T 2N, RIS HOE AR
JEEEMEUER A T IX — KT M Q) =0 il
010:8 + 400:C + 43055 + czg—Zya,:b =0 .. (2.135)

A forced KAV J5#£. Grimshaw 25 (1986) F:H T L5 Z 45 Y forced KAV
S, EEE] 9, =0, + Ady, W WEIMESZETRM BRI, [HRE)HT
HROTRE, SES BRI SR AU RECERZER .

T TRRRAE g3 BN =B iR — M IR X T 0, s, LAEANL
E Oy PEFRREIES R . BRILZAN, Op 8 0 Z—WiH b FAI, HERHUE
5y K. H4HIE b=01, O, =0N

410:8 + @,80:C + @30:£:C + 40¢sz5:C =0 ... (2.136)

X4 fifth-order KAV J5 #2 A A (Hunter 5%, 1988). fEARLRMEP L, T
SE =B SEOEEL, AR T By, (H2 HIE U B R Ak
BAREW, P8BS 8ESE R IX— .
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N ETRE R Y R T R A S-S R AL IR TR SIS Y O3, Q4o

03 =q] (0,6 +¢0,8) + 45£0.8 + 430, & — czﬁﬁax(bg) .. (2.137)
3

’ p
0, =q] (0,8 +¢0,) + 00,8 + @}05xxC + d4Osnxxxl — czﬁzyzax(bg) ... (2.138)
3

Hepg) = qi/e*, q] = qi/e*c MTRHILIEIEIE . O3, Qy MR 1 25 F it ]
x [P 0 BOAJHK 0, 5 o WG, JUGHE I AE LA o

B NAEZ AL AL I AR BUSR N B, e I8 B9 J7 % Hh R 00
AR IESMES v A% XAEZJFRYH—LA g (I953.2) BTN, {5
TARBATH RIS HICAF R BB SR 5, BATAFHERE— B4R

AR Z A NI bE SR o XU I TR A5G B Y 35
ARETEVEH TAREGIRE HOP RO P — N RUH L, FLICI th T idre
PIRTCWHIIEIE Br=dail, SYESChmI & . AR IRBUR SEBIRIT . TEE b N
e 4s E R E EHIEIAR, M bo & AT AN — XS pYME IR, Co,b 1l
T CIRU—ART x BYR R R T IRl HE A0 K s sl ] B
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Vaand

F£3EF RUMEHBETE

52 Bl T Y S O P R R T N R T R . AR XY
T Y 7 AR KAV 390 E— LE B

3.1 HREREST

55 2 TS R R P T KP TR KdV #8904

5 RBERIEAT .
P3 o P 2 P1
=2c|\ =y "+ —=@x-D"+— ...(32
q C<H3y Hz(y ) H1> (3.2)
p p p
g, = 3¢? —323/3 + —22(1 — }/)3 — —12 ...(3.3)
H3 H; H;
2
c
a3 = 55 (p3Hsr* + oo Hy (r +7 +1) + p Hy) SOACR)
2 H, 2
P2
2 P3
=c"— ...(3.6
gs =c¢ H3y (3.6)
a; = q/q, a, = qs/q, as = q4/q, as = qs/q, . (3.7)

AP SA r 5 e, LAEBETTEAY

ret 4 +r3=0 ... (38)

Hrp
r :p1p2H3+p1p3H2+p2ﬂ3H1 (39)
ry = — (p]H2H3 (p3 - pz) +,02H1H3 (p3 - p]) +p3H1H2 (pz - pl)) (310)

NERES EEEE y R

—1
piHy, pp—pi Hy _ <1+P3H2 B Ps‘/’zﬂ)
prH, py 2

... (3.12
pyH; py  c? G12)
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IR ZBG SR, BT = BRI R SR o, H; . 2R R
TarE g, MELLHATHEIR AT, E A AT R4 HIX LR . TEE
XHE p; 5 Hy @& TR T po H5EVKZIEE H TTEAMIGHIE, MAEER
A

H +H,+H;=1 ... (3.13)

M EEMT AT py = 0.99, py = 1.00, p3 = 1.01. JX—HSEREV R UF AL
X EDRE PR i

PR Hy, Hy A, 45 YIRS O Ze b o, B R R IRIE HE LUK Y
BRI A -

mode-1 linear wave speed ¢y mode-2 linear wave speed cg;
m

. N

T

04}

0.2 wom
0.0 I

0.4+

0.2

0.0

(a) b)

Bl 3.1 Zebkifeid . (a) SRS, (b) SR

Figure 3.1 Linear Wave Speed. (a) mode-1 case, (b) mode-2 case

3. R B2 B R 285t /g H TE A0k Ja B4 iost e MART I, 46
— RS A LM P BRI TR RS IR B, E — RS I 2 BT A
0.04 — 0.06 2 [a], 55 _BEASHIZANEPOETEEIAE 0.01 — 0.035 ZJH]. TS
AN PRI AEAFAERE N E I BB B IME . 88— RS2k P AE B 2 R
AR, BN SRR N A AR, 5 RS I A = R R T
HEE NI

E3. 27 Al A AR AS B ARG B v (B P AR AT DT80 — A4S v BN IE, X
T RS y BOIL, XMHIE 75— RGNS 9 RS E Lo U RANE, W]
WAE Hy = Hy WXSARIGOU IR BESE A vl =1, BT 2RI/ NMESE. A
FAL RO B A A R FRI R o FEAERTFRIIIE LT, TR RIE T U2 B2
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mode-2 ratio y,

; %%// . . %/%

0.0 0.2 04 0.6 0.8 0 0.0 0.2 04 0.6 0.8
Hy Hi

mode-1 ratio y;

®
04

0.2

0.25

(a) (b)

32 TREEES LERELME. (a) F—HE, b) Bl

Figure 3.2 Ratio of amplitude of lower layer to upper layer. (a) mode-1 case, (b) mode-2 case

M 1/4 2 4 £5, BXTEEE, LERER/N, FNEBEGEHHEL FEIRE
B MFHESNE T EEER/N, BEEEERIE N ERIER K.

mode-2 coeff of {Z,: a

mode-1 coeff of {7, ay

1.0 1.0,

08} _

0.6

3

041

021

0.0 77

b3

0.8

06

0.4

0.2

00k ~

0.0 0.2 0.4 0.6

(a) (b)

33 LMEIIR L a0 (@) BB, (b) 5 HES

Figure 3.3 Coefficient of nonlinear term. (a) mode-1 case, (b) mode-2 case

B33 7R N AR IR A a) BT B ] DU RS, AR4edt:
WABEIA AT, FFATREREIE . ARZMEIUARECS IRIERY ISR, MRSt
WOARKIEN R, WIS TCARZE RN, AFAERUERT N TN RIAR A BER:
AR RE R MO 4ER R E NS e W T 2R — A, a) £ 204 Z[AIBUE, 1E{E
MR N RGP R XK 0TS TS e MURAE £1 ZHUE, 1EED
FEFP R R FER /N DRI BEARTT S R AR P PR AR e P 007 1 o B A 2 —
BBAKKZER
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mode-1 coeff of {y: a (x107%) mode-2 coeff of (i @, (x107)

3 |

2
6 . 0 00 02 04 06 0.8
@ (b)

o

-

AN

S

0.0

0. .4

0.
Hy Hy

34 EHIIRE a6 (2) BHZ, b) B BEE

Figure 3.4 Coefficient of dispersion term. (a) mode-1 case, (b) mode-2 case

T g5 PO R E BARERY €, WL I3 4rh 2 I 2 BOT R KR A
e*, Bl aye® W53 o piy A mT X F IR B BOTUR B BN IE . HARETE
A K TR, EPREER/N, ETEREERFN ISR X
T BESN A = 2 R RCP B BB, A LA Ze P Pk 1 ML
KBl MHAFTE IR BISIY aze® 9 107 2R, 45 BN 107 Higl,
WA 28 RS Y B USSR 55 T 5R A

mode-1 coeff of g @s(x1 0% mode-2 coeff of Jeyes: as(x10™)

0.8

06 06

0.4

041

02t 02l

\\\\\\\\

=]

0.0- | | I 0.0 L T n n . ful
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0

Hy Hy

(@) (b)

Bl 3.5 I R E a5 () 5B A, (b) 58 S

Figure 3.5 Coefficient of fifth-order term. (a) mode-1 case, (b) mode-2 case

3.5 AR T G BOTURE ag B0 A S A RTR, SRS a5 2K
T, B o SUNTER. T BIRFS XA TR, KL
JEEEAHUELE TS . PIAS a3 BEUGEYN, BACh 1074 5L (B2 R0
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TEEIRA, AT LAEAR s A L N 1 T2, ROl B B BRSO, A R 2 e L
590 BUAMTS . XTHBE, LREEEBRIRE a3 @0 T2; 3T K
A, WHE ER IR R Nl 2 R SR N R B 1R T2

mode-1 coeff of by: a4 (x1072) mode-2 coeff of b;: a4 (x107%)
/ g 1.0

////////////

0.8

06
£
041

&

=]

0.2 02

041

0.6 4
15
2

0.2 0.

0.0 0.0

0. 0.6 0.8
1

(@) (b)
Bl 3.6 HETI R L a,0 (@) 5B —BIE, (b) 55 BN

Figure 3.6 Coefficient of topography term. (a) mode-1 case, (b) mode-2 case

B3 65T /R AL IAREL ag B0 AT FIETATIL, XS THOE IR, RS
1072 G, WA AR R, HE RIS REUSAIE, B RAREE
N XU HTHIE R S — SN R, HIE (51) MBS IS N
FIsm, St (IE) MBS RS ARG IRl X8 —#i%s, £ ERK
K H R, RRIKIR Hy &R ay BERACRAE, PR B s 350 A
NRAE BT R K TR A& P I U A 5

32 HRERHWA—

N TR REBHATRUEAGU, E ol AR R T R AR I N 5 2R
HIHE o T 25 AT, KR8 5 (Grimshaw 5, 1986) FfiH [ Y
e RIXTES 2 b S a5

VRGN A i

C=rl*  E=rnE  b=rb" ot =-rt A=A L (315)
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Hrp
ri=6]a|" |ao]* |as| ™ ry = lay| " Jas | 3.16)
r3 =06 |“1|_1 |"2|4 |"3|_2 |"4|_1 ry = |"2|_5/2 |"3|3/2
A RS GRS
— 0. — A%C+6 L0060 + —200:C + 3%¢&§+fi%b=0 .. (3.17)
|a, | | z| |as] |a,]

A E— G R, WA o PR TIERBEAEE CYFENAFAERE
NIZIHITERATE RE) . ay BENIE, a3 5 ay BIRAER —MASHFONIE, 55
BTN BOh, A PRFF BRI SOHIRIERT SR « i SRR
NEL=C RN €, S REEMEARARZMEI S P IAL 5 SO P N RE A3 I 00
Ao FT I, RIS AR AR E T %

# 3.1 FREABIA— M RAHEAE T X

Table 3.1 Inverting method of coefficient normaliziation

RS RS
a; >0 A B TERAE FAHHIE
a; <0 JOAIRIES SAHIY  SOAHIRIE

L R3NP BB E T 25, TR A a3 TR IESOTCIESE—, HAE
DI & BT —HASHI NS, A s o0 rl R Z5 X~ IR RO

— 0,8 — A0 +680:8 + 05558 + Opzzzsl + 00 =0 .. (3.18)
XTER TASHINBE, EEE TR R YR

— 0,8 = A0 +6£0;C + Ozzel — Opepzsl +0:b=0 ... (3.19)

HIE AT L, SR RO, SRS R KAV 7R g TRy, Pz
PR R O T #EE AR R 5 R o (R 7% & SRR . WRMSEARRTC
AL ] EAR A N [T R IR Ty RE AR e B AT M DA AR —

HUZE 5, X AE T AR R B H R
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3.3 HERPEX

X (3.18) 5 (3.19) W= A BTG SR H 23 [A] Lty A R0 A - (R 1 5
%, SRDJT R _EAYPYEY Runge-Kutta J5i% (Trefethen, 2000). LAF (3.18) 4,
B ARSA_ BRI TR AT HRIE S, Rlu R ¢ 1 R 7, x AU
§o JItEN
— ;= Ay +3 (1) gy F Uy + b, =0 ... (3.20)
X HAF Fourier 246, 1%

— 0, — Aikil + 3ikF (u?) — ik’0 + ik’ + ikb = 0 ... (32D

MR Nk, ARHAR PR . &

U =iaeX" K= Aik +ik® — ik’ ... (3.22)

15
,U = 3ikeK'F (r-l (e_K’U)2> +ikeK'h = K f(e=K1U) ... (3.23)
fWV)=3ikF (F~' (V)?) + ikb .. (324

XFETTRE . Sk A PHBT Runge-Kutta J3iARRAME . (HRBE SR S0 — 28X
e 30 U; by dyeX, h B de, NUIPY B Runge-Kutta 77 i bR %A QB R

1
U —U; =~

c (ky + 2ky + 2k3 + ky) ... (3.25)

=

ki, = heXi f (e7X1U,)

k, = heK’i+1/2f <e_Kti+]/2 (Ui + %))

) ... (3.26)
ky = heKtin f <e_Kti+1/2 (U— + _2>>
2
k4 = heKti+lf (e_Kti+l (Ul + k3>)
RN U; BY7E LR
Uiy = U; = iy X0 — ek ... (327
0
kll = kle—K’i ké = k2e—Kfi+1/2 ké = k3e—K’i+1/2 ki = k4e—Kfi+1
... (3.28)
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TER (3.25) WiHfBR LA e®ivt | 15

Gy = e KN 4 % (k! e Kb 4 2e=KH2 (k1 4 k1) 4 k) .. (3.29)
= (3.26) BN
=hf (e*U;) = hf (1)

k’ /
(e (ureni) ) < (0 (33
< .. (3.30)

kS K,
hfle —Ktivin (U + eKtivin =2 >> =hf < Kh/2ﬁ + -2 )
2 2

= hf (e7Xw (U; +eXmnk))) = hf (7% i, + e M2KY)

# (3.24), K (3.29) 15 X (3.30) WM& HUS HIPU K Runge-Kutta 83, I 453
B AR B A YR ¢, A ESTEES AL, T G119 s, HFk
K HRi =ik $0y +ik® BIRT . A, TR F (P ()?) TR, IR
THELR ] De-aliasing Jy 12K IS BRAE T4

3.4 I IEMBIZHONE &Y

ATE NS H R G.18) 530 (3.19), fERaAAT (6,00 =0 FRY
FURUEE R, BRSO, DU T AL el O s 2 PR, A
AL IR, A 7 2 ) 9 B TR SRR DL, AT B 28 A T RE R Bl 22 S0 7R
TS IEMIE R DL, TN — RS ORI IG . SREEERYE, XHEAIE
THIE fR R A 3.2 h— KA — L ERAE)S . 6> 08 b < 0 INfHTE, X 55K
(SR NENAC) = | A ON VA

MHEGrimshaw <5 (1986) {) TAF, FIdHIZRIBRIAEAFR A BUE T HAA
RIS, AT A R, S Im P, i FHX S X AT IEAR 2
HON XA ST U forced-KdV JyFEFEAT 1AL, 17 SCREIE U [F] O 22804

MEATHI GEHRECN ¢, ¢ /I +1 B -1) 5AGTBIR TR (¢ B
0) BEATXIEL. Fris IR BR8N

b(&) = Bsech? (I(¢& - &y)) ... (3.31)

XFR—ALLE HHL, B ARCREE, FHEREER 17 19—/ BRI o
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. ‘\”\‘\\“\\‘\\l“u B —
20 \M\ \h Jj.ﬂ“h‘lﬂ:ﬁ:"w%““————_

5 F;j o ~

T 0 ~

< 5 ’f/T/fmol f150 \200
200 -150 -100 -50 0 %0
3

(€))

) e ——
- }':Wf,
\
(b)

(c)

K 3.7 3RIEREAARE, A=0,/=03,B=1. (a)g=0,§ =-40, (b)g=-1,& = —40, (c)
q=1¢,=140

Figure 3.7 Resonant case waterfall plot with A = 0,/ = 0.3,B = 1. (a) g = 0,&§, = —40, (b)

q= _1750 = _40’ (c) q= 17 50 = 140
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1r —=12]]
051 q
[
0
05E I I I I I I I 1
-200 -150 -100 -50 0 50 100 150 200
=
I I I 1
-200 -150 -100 -50 0 50 100 150 200
13
(a)
1F =)
051 q
w
0
05 I I I I I I I 1
-200 -150 -100 -50 0 50 100 150 200
—
1 I I I 1
-200 -150 -100 -50 0 50 100 150 200
3
(b)
0.5 — =121
0 VA'AVA‘M}AU
[
-0.5 q
-1E I I I I I I L4
-200 -150 -100 -50 0 50 100 150 200
05 —=24]]
0
w
-0.5 q
B = I I I I I I I L
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13
©

Bl 3.8 LIRIETBHIERE, A=0,1=03,B=1. (a) ¢=0,§ =40, (b) g =—1,§ = -40, (¢

g=1¢ =140

Figure 3.8 Resonant case wave plot with A = 0,/ =

q: —1,50 = —40’ (C)q: 1’50 = 140

03,B = 1. (a) ¢ = 0,& = —40, (b)
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K3.75K3.809 A = 0 HARIEIE T =D RN EIE & RE S v = 12,24 |4
INZIN PO, Kb (), B (b)), &l (©) 205 W IC By Jife . Tobr s
Boq=-1 MRS EHIRE q =1 7R, 5 g =1 7RI T PR
(B IR SRR AR HES] o AL (a) HRA) I, SEHRAETE T AE Y
BiF T A — 100N MR R, AR T A ORI L N 7 A — A/ MR M LA M il PR
BIE M NS, DA TR IR 5% s AEHIE B INEEIA AR — BRIk
i LR R AN BEER B AR 51, SRS o PRI SRR IZ0 0 1, 3
HOAWEE I B & SR TE . A () Al I, 3T g = =1 BIIEDL, SURRFIER
A RAERKAAN, HAME A% IR A2/, By B . 1M ]
©) AL, g =1 B EAIRKIIA R Z 4. EHIE ErA —4508, IRIEZIHN
0.6 Hmlk, HEH—KBHREAZE, IRIFLIN 0.4 BIBA], B2 5 AR = i
I o TTAEIIE T —/ NBETE R A A — SEARIRZ A — 1 TSR o

K3.95 E3.10 01l FALRIETE . A = 3 BIBUE&IR TIRK E5 A, = 3.3,
WG P J5 7 RO RS2 9 81 & e 2z 1% (Grimshaw 5, 1986). MIE] (a) Hhal L, ££
T =24 B HEAE TN AR IS B RIE RTIA 2.5, 10 R AR
RILPARMEN A2y 0.2 I () /I, 1E g = —1 HEHL T _LIFHT N IR
A ISR AR AR 18, HAVEE 1 =24 5 ¢ = 12 MR B LTRA L4
DA, SUFIRIGHIIE . (EUEI A IR BRI IRIETE « = 24 I RAT 140 KT
A () Fvnty g = 1 RIIEDL, ST EARAKIX . HMiP e s —HK 10
q = —VIEWH LA NI, IRIEZIN 1, TG A BRI Y 1 W=
FIes, HHEARIEZIM 0.5, MY N ilEE e — BRI P2 M, RIEZIH
—0.05, HjFth h—LRIEZh —0.2 [YICHIIA RS s o

F3 1L EB A2 LI S TR B Im S A E T, B A = —1.7, AL TRV
Zhbe HE (@) AT, X1 T I LI IS A A R M 2 G e A 1 44
SEPHAR, AHEKIRME U 0.6, TTHbTY N e B9 M [ S 5 N B B K2 1.5 19
o 4 q=—1 0, PBAISIRMENE SN, IR AL P A VS R . Ty
g =11, #j B EARN R R FZ M, EIEZAN 0.3, HEHEK
70 Bl N AR AR AT R A SRR 1B sk N A1), EEARIEAR N, 297 0.2 7EH
TR, I BRI B AL R R, BRI, ik —1.5. X
S5 HARASHI RO R L (RIE3.7¢) .
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