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摘 要

摘 要

本研究通过渐近分析，在三维三层弱非线性浅水模型下导出流过小地形与

波过小地形两种情况对应的内波演化方程，并对流过地形二维方程中五阶项的

影响进行数值研究。研究发现上下两界面振幅成比例，比例的正负对应内波的两

个模态。所导出的内波演化方程为带有地形项的 KP(Kadomtsev-Petviashvili) 方

程，其中流过地形的情形中地形项可视为外强迫，而波过地形的情形中地形项则

依赖于当前波形。当色散项系数较小时，可进一步导出具有五阶导数项的高阶

KP 方程。对流过地形演化方程的二维部分进行系数归一化，并采取合适的反相

振幅与地形操作，可将不同环境参数下两模态内波的方程分别归结为两个常系

数方程。第一模态内波对应方程中色散项与五阶导数项同号，第二模态内波对应

方程中则为异号。基于前人研究流过地形共振效应的工作，对含有五阶项的方程

进行数值模拟。与无五阶项的结果相比，异号五阶项的结果相似，仅略加强了色

散效应，改变能量分布；而同号五阶项则极大地改变了波的结构，如使得下游波

列转变为上游波列，并加快其发展速度。

关键词：内波，多模态，多尺度，渐近分析，地形
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Abstract

Abstract

Evolution equations for internal waves are derived for flow case(flow over small

topography) and wave case(wave propagate over small topography), under the three-

dimensional three-layer weak-nonlinearity shallow water configuration, by asymptotic

expansion method. It shows that the upper and lower interfaces are in a proportional

relationship, and the sign of the ratio indicates the mode of the internal wave. The equa-

tion derived is a KP(Kadomtsev-Petviashvili) equation with an addition of a topography

term. In flow case, the topography term acts as an external forcing, while in wave case

that term depends on the wave amplitude. Higher-order KP equations are also derived

for these cases when the coefficient of the dispersive term is sufficiently small, and they

own an extra fifth-order derivative term. The coefficients of the two-dimensional part

of the internal wave equations for the flow case can be reduced to constants, with nor-

malization and proper inverting method. The sign of the fifth-order term is the same

with the dispersive term in first-mode equation, while in second-mode equation they

are different. Following previous study of resonant flow, the equations for flow case

with fifth-order term are numerically computed. Result shows that compared with the

case without fifth-order term, the fifth-order term with different sign has little effect on

the wave. It sightly enhances dispersion and changes the energy distribution. But the

fifth-order term with same sign greatly affects the wave, like turning the downstream

wavetrain into upstream ones and boosting the evolution of the wavetrain.

Keywords: Internal wave, Multi-modes, Multiscale, Asymptotic analysis, Bottom to-

pography
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第 1章 绪论

1.1 海洋内波简介与研究意义

人们对海面上的波浪十分熟悉，却鲜少知道海洋表面下有着更为强烈的波

动。海洋中温度、盐度、密度等物理量并非均一分布。在重力等因素的作用下，

海洋水体呈现分层结构。海洋这一密度分层流体中的波动，就称为海洋内波。

海洋内波的传播方向与质点振动方向垂直，是一种横波，频率介于当地科氏

力对应频率和浮频率之间。开阔深海中的低频内波的生成与潮汐相关，周期为日

或半日，波长为十千米、百千米量级；浅海或温度跃层附近的高频内波周期只有

数分钟或数小时，波长为十米至千米量级。温度跃层附近的大振幅内波诱导的流

速，最大可超过 2m/s(姜希明, 2015; 李家春, 2005)。

和海洋表面波相比，海洋内波最显著的特征是其振幅大一量级，可达数十

米，其时间尺度也更大。这是由于浮力在海洋内部起着较大的作用。由于海洋不

同深度间密度差异远小于海面气-液的密度差异，故将流体微元提升一定高度所

需要的能量，远远小于将海洋表面的流体微元提升相同高度所需的能量。定量而

言，内部流体微元受到的恢复力为重力与浮力的合力，称为约化重力。约化重力

的强度与密度变化梯度成正比，而实际中海洋密度梯度极小，因此恢复力仅约为

表面波的千分之一，故相同能量下内波波幅约为表面波的数十倍 (李家春, 2005)。

内波的生命周期可分为生成，发展，传播，消亡四个阶段。在整个生命周期

中，内波的性质会受到各种因素影响，为此人们提出了很多理论来描述其规律，

预测其影响，这其中以生成与传播理论最为丰富。关于生成理论，黄晓冬 (2013)

描述了三种生成机制，分别为内潮生成机制，Lee wave生成机制和正压潮经地形

变化生成机制。姜希明 (2015); 蒋国荣 等 (2009) 提出产生内波至少需要满足两个

基本条件。其一是稳定的流体密度分层，这可通过直接对海洋进行探测确定。其

二是存在扰动源。可以作为扰动源的因素众多，潮汐、洋流、流体不稳定性、海

底地形变化、风、雷暴，人类活动如船只航行等都可能驱动内波的形成 (Salloum

等, 2012; 姜希明, 2015; 蒋国荣 等, 2009)。关于传播过程，也有大量研究着眼于

其传播速度，模态和极性转换，波与波或波与地形的相互作用以及对海洋环境的

影响等方面，于后详述。
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海洋内波的研究意义主要体现在三大方面。其一是对海洋结构物的影响。内

波可诱导较强的流动，向海洋结构物施加水平推力。例如东沙群岛附近的石油钻

井受内波影响而无法操作，油罐产生较大摆动 (李家春, 2005)。在水体中，内波

会诱导速度达 1.5m/s 的剪切流，对水下钻井平台、海底石油管线和海底电缆等

结构物造成巨大威胁 (姜希明, 2015; 廖光洪, 2012)。

其二是对船只或潜艇航行及声呐探测造成影响。河口航行的船只会受到淡

水与海水界面上的内波影响而使得速度减缓 (姜希明, 2015)，南海油田的作业船

和油轮也有因内孤立波而操纵困难，航向偏移的记录 (方欣华 等, 2005)。水中航

行的潜艇受到内波诱导的垂直速度影响较大，需要主动向反方向运动以补偿内

波造成的升降，但是容易造成意外浮出水面或触底 (姜希明, 2015)。例如美国“长

尾鲨”号核潜艇，以色列“达喀尔”号潜艇均因受内波影响而超过安全深度，造成

失事惨案 (蒋国荣 等, 2009)。对于声呐探测而言，内波是主要的噪声源。海水分

层界面可视为声波声道的反射面，当内波经过时反射面发生振荡，使得声道改变

而造成声呐失效 (姜希明, 2015; 方欣华 等, 2005; 李家春, 2005)。

其三是提供较强的混合能力，对海洋生态环境的具有重要影响。在垂直方向

上，由于内波能诱导较强的垂直流动，因此能够促进物质和能量在垂直方向上

的输运，这使得深层海洋的营养盐被输送到浅层，利于浮游生物增殖，使得浅层

海洋的初级生产力增加，甚至会进一步引来具有经济价值的捕食鱼群 (Deepwell

等, 2016; Moum 等, 2008; 方欣华 等, 2005)。在水平方向上，一些内波特别是第

二模态凸波，具有较强的水体输运能力，对于近海环境和远海环境之间污染物、

盐分甚至生物的输运都有较大的影响 (黄晓冬, 2013; Dunphy 等, 2011; Moum 等,

2008)。

1.2 海洋内波研究的历史

内波研究的早期理论，可追溯到 1847 年 Stokes 研究两层流体间的波动和

1883 年 Rayleigh 研究密度连续层化的情况 (方欣华 等, 2005)。早期的实际观测

则可追溯至 1844年 Russell观察到船突然停止时水面上产生移动的，形状不变的

“水丘”(Massel, 2015)，与 1893 至 1896 年间，Nansen 在北极考察过程中发现船在

分层海水上航行时速度显著降低。后 Ekman 于 1904 年给出产生内波消耗航行能

量的解释。在此之后不断有内波观测报告，但对内波的理论特性却所知甚少，甚

2



第 1 章 绪论

至只将其当作小尺度噪声处理 (方欣华 等, 2005; 李家春, 2005)。

直到 20 世纪 60 年代，随着应用数学和海洋探测技术的发展，内波才成为

一个独立的观测研究对象，并发现了不少大振幅的内波 (Helfrich 等, 2006)。其

中具有代表性的观测有 Perry 和 Schimke 于 1965 年在安达曼海中发现的一群振

幅最高达 80m 的内波，Bockel 于 1962 年在直布罗陀海峡发现了 180m 高的内波，

Zeigenbein 于 1969-1970 年在同海域发现了内孤立波 (Massel, 2015; Helfrich 等,

2006)。1978 年 SEASAT 卫星的发射与合成孔径雷达技术（SAR）的应用，使得

通过遥感技术观测内波的方法大规模普及开来，观测资料大量增加。在同一时

期，各种理论模型也不断被提出。

我国内波研究起步较晚。上世纪 60 年代中科院海洋研究所在舟山外海进行

了内波的观测，直到 70 年代起才开始进行系统研究 (方欣华 等, 2005)。20 世纪

90 年代初，美国石油公司在南海发现内波造成的强流；近年来在南海得到的大

量第二模态内孤立波观测资料和罕见的内波极性转换观测记录等，使得南海内

波受到国内外广泛关注 (Rayson等, 2019;姜希明, 2015; Yang等, 2010; Helfrich等,

2006)。事实上，我国渤海、黄海、东海、南海都存在性质各异的内波，但还需要

进行更多的研究 (蒋国荣 等, 2009)。

1.3 海洋内波的观测与内孤立波

内波基本分布在中纬度和热带近海海域 (蒋国荣 等, 2009)。就具体的观测数

据而言，百米及以上的大振幅内波曾在苏禄海，马斯克林海脊，直布罗陀海峡等

地被观测到 (Massel, 2015)。1969年，Ziegenbein在直布罗陀海峡观测到内孤立波

振幅数十米，周期不到二十分钟；Apel等人 1985年在苏禄海观测到 17个内孤立

波，周期为一小时，波长达 16 千米；黄海内孤立波据观测传播速度约 1m/s，吕

宋海峡的内孤立波诱导水平流速超过 2m/s，垂直流速超过 0.7m/s(黄晓冬, 2013)。

内孤立波是一种能较稳定传播的内波，是一个典型且重要的观测对象。它主

要可分为第一斜压模态和第二斜压模态。第一模态内孤立波结构简单，具有最

快的相速度，而第二模态的内孤立波的相速度较慢，大约只有第一模态的三分

之一 (Liu 等, 2019)。第一模态内孤立波可分为上凸和下凸两个类型，分别表现

为等密度面向上凸起和向下凹陷。第二模态内孤立波较第一模态的少见，它也

可分为两个类型，分别为凸波和反凸波（或称凹波）。凸波的等密度面在深度较
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浅处向上凸起，但在深处向下凹陷，被称为双峰或曲张形态。凹波则正相反，具

有漏斗状的向中层凸出的等密度面 (Yang 等, 2010)。由于凸波和凹波的独特形态

特征，前者对于输运流体十分有效，后者则不太擅长 (Rayson 等, 2019; Deepwell

等, 2016)。第二模态内孤立波波数小，能诱导更强的剪切效应，因此促进海水混

合的能力也更强，但相应地衰减或发生不稳定而破碎也更快 (Rayson 等, 2019)。

内孤立波的观测受到海洋中多种因素的影响。对第一模态内孤立波而言，观

测到的大部分波是向下凹陷的形态 (Liu 等, 2019)。而第二模态内孤立波的观测

条件，Rayson等 (2019)分析得出如下三点：首先必须有特定的海洋几何结构，其

次在传播路径上需要有较好的分层条件，最后它们不能由于湍流或波相互作用

而过度耗散。近年来，随着对第二模态内孤立波的关注增加和技术装备发展，获

得了不少观测资料。如在新西兰观测到第二模态内孤立波后方跟随一串第一模

态内孤立波，中国南海观测到第二模态内孤立波在第一模态内孤立波之后经过；

马斯克林海脊、新泽西大陆架、加里利海等地也都有第二模态内波的观测记录

(Liu 等, 2019; Rayson 等, 2019; Deepwell 等, 2016; Yang 等, 2010; Moum 等, 2008)。

1.4 内波理论研究现状

关于内波的理论模型众多。首先可以分为二维模型和三维模型。绝大部分研

究采用二维模型，即认为在与波传播平面垂直的方向上流场和波的性质没有变

化。其次可以分为浅水波模型如 KdV 理论，和深水波模型如 Benjamin-Ono 理论

等。虽然实际海洋环境更贴合深水波模型，但事实上浅水模型的结果更符合实验

与实际中的内孤立波，因此浅水模型受到的关注更多 (Helfrich 等, 2006)。

对于浅水波模型而言，进一步可以依照所设定的密度变化规律分出双层、三

层的简化模型和密度连续层化模型等。在内波研究中，常采用 Boussinesq 假设

（即只在重力项中考虑密度变化），刚盖假设（滤除表面波影响），平坦海底地形

假设（消除地形影响）等来简化模型。关于流体性质，则可依据海洋水体的参数

和所研究内波的尺度，采用无地转，无粘不可压缩等假设。

内波的振幅大小关系着非线性效应的强弱，对理论分析有着重要影响。最简

单的情况是小振幅非线性项可忽略的线性内波，给定背景密度环境后可直接由

Euler 方程得出解析解 (Cushman-Roisin 等, 2011)。对于有限振幅的内波，又可分

为弱非线性和完全非线性两种情况。
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弱非线性理论指出在非线性效应与色散效应平衡的情况下（即振幅与水深

的比值，水深与波长比值的平方两参量同量级且远小于 1）可通过 KdV 及其推

广理论得出内孤立波解 (Helfrich 等, 2006)。例如Yang 等 (2010) 通过 KdV 理论，

在流体三层密度分别为不同常数的情况下得出了不同模态内孤立波的解析解。

Grimshaw 等 (2002) 在连续分层模型下导出了 KdV 方程与更高阶的 KdV 方程。

弱非线性理论的优点是它考虑了时间相关项，能帮助认识非线性内波的发展过

程，对于观测具有指导意义；但它不能描述不同模态的波的相互作用，只能认为

它们是独立传播，且预测的波速也与完全非线性模型有较大出入 (Liu 等, 2019)。

对于完全非线性模型，则可采用分层流体的MCC理论或连续分层流体的 DJL方

程 (Dunphy 等, 2011; Helfrich 等, 2006; Jo 等, 2002; Choi 等, 1999)。其中 DJL 方程

仅在密度线性变化时才有显式的解析解 (Dunphy 等, 2011)。

另一些研究讨论流体密度环境的变化及简化假设的影响，例如 Boussinesq

近似主要在跃层处产生较大误差 (方欣华 等, 2005)，存在背景流的影响 (邓冰 等,

2014; Stastna等, 2002)等。考虑地形，可研究内孤立波模态转换，共振效应与其他

性质变化 (Liu 等, 2019; Yuan 等, 2018; Grimshaw 等, 1986)，“呼吸”状内波的形成

(Terletska 等, 2016)。地转效应是否可以忽略，也需要进一步探讨 (刘永军, 2009;

方欣华 等, 2005)。考虑地转则能得到 Ostrovsky 方程，OH 方程，KP 方程，地转

MCC 等模型方程，其描述的内波也具有与非地转的内波不同的性质，如没有稳

态孤立波解，科氏力的色散效应抑制孤立波产生，存在抛物线解等 (Stepanyants,

2020; Farmer 等, 2009; Gerkema, 1996; Grimshaw 等, 1989; Grimshaw, 1985)。

三维模型虽然分析难度较高，但能更好地解释各种效应与内波生成机制

(Helfrich 等, 2006)，特别是在地转效应研究上具有天然的优势。有关三维模型

的研究主要以 KdV 方程的扩展——KP 方程为中心 (Akylas, 1994)，如 KP 方程

的提出和求解 (Freeman 等, 1983; Manakov 等, 1977)，利用 KP 方程研究地转效应

(Grimshaw 等, 1989; Grimshaw, 1985)，此外还有三维第二模态内孤立波质量输运

的模拟 (Deepwell 等, 2016) 等。

关于内孤立波的生成机制也有不少研究。对于第一模态内孤立波而言，有正

压潮汐流经过地形，由第二模态内孤立波产生等理论；对第二模态内孤立波而

言，有第一模态内孤立波进入浅水时不稳定，分层流体重力塌陷，海洋内部振动

传导至密跃层激发等理论，其中重力塌陷法常被用于实验室研究第二模态内孤
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立波 (Liu 等, 2019; Rayson 等, 2019)。

对内孤立波的数值模拟主要有两种方法，一是在运动坐标系下求无粘稳定

解，二是直接对分层流体 NS 方程数值模拟。在研究第二模态孤立波时，由于

可能在双峰形态中部产生涡核，在流动接近不稳定时，往往需要引入粘性项才

能较好地进行描述 (Terez 等, 1998)。在数值模拟中具有代表性的结果是 DJL 方

程的数值求解工具，其主要依赖于Turkington 等 (1991) 提出的变分方法，迭代

程序和Dunphy 等 (2011) 提出的相应的谱方法。依据此方法可数值求解连续密度

分层情况下的第一模态内孤立波 (Helfrich 等, 2006)。在研究波的相互作用或地

形的作用时，也有其他的数值方法，如计算 RANS 方程 (Rayson 等, 2019)，使用

MITgcm(MIT general circulation model) 进行模拟 (Yuan 等, 2018) 等。

1.5 本文内容与章节安排

本文主要研究创新点为在三维三层浅水长波模型下，利用渐近分析导出流

过地形与波过地形时内波方程及其高阶形式，并对流过地形时的二维形式方程

及其高阶形式作数值模拟进行对比，显示了正负五阶项在流过地形共振与非共

振时所产生的不同效应。

具体的章节内容安排如下。第 2 章首先介绍带有地形的三维三层浅水方程

结构，然后基于流体基本方程导出弱非线性浅水方程组。接着利用渐近分析对方

程组进行求解，导出流过地形时内波的演化方程。在色散项系数较小的假定之

下，对量级假设作一定调整，导出流过地形时内波的高阶演化方程。对于波过地

形的情形，推导过程与流过地形十分类似，故文中只阐明需要调整的假设，省略

推导过程而直接给出波过地形的内波演化方程。

第 3 章对流过地形方程中的二维部分进行数值模拟。首先对波速，方程系

数等与环境参数相关的参量作了其分布的分析，其次将系数归一化为与环境参

数无关的常数，并根据正负性分布相应地作反相处理，将各种情况化为两个高

阶方程。对这两个方程与不含五阶项的低阶方程，利用带积分因子的谱方法与

Runge-Kutta 方法进行数值模拟，在不同的共振情形下得到各自的内波演化结果，

对比说明五阶项在方程中起的作用。

第 4 章对所做的工作作一总结并略加探讨。在全文最后则给出了本研究的

不足之处与潜在的研究方向。
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第 2章 三层模型内波演化方程推导

2.1 三层浅水模型简介

ζ1(x, t)

ζ2(x, t)

b(x, t)

H1

H2

H3

h1(x, t)

h2(x, t)

h3(x, t)

z = η1 = H1

z = η2 = ζ1

z = η3 = −H2 + ζ2

z = η4 = −(H2 +H3) + b

z
y

x

H

图 2.1三层浅水结构示意图

Figure 2.1 Illustration of the three-layer shallow water model

如图2.1所示为三层浅水结构示意图。假设流体由浅至深，可分为密度各自

为常数的三层，顶部采取刚盖假设，底部则在平底上叠加一小地形，通过地形厚

度函数 𝑏(𝒙, 𝑡) 描述。各层密度分别记为 𝜌1, 𝜌2, 𝜌3，有 𝜌1 < 𝜌2 < 𝜌3。未受到扰动

时，不计地形厚度，各层厚度记为 𝐻1, 𝐻2, 𝐻3。总厚度 𝐻 = 𝐻1 + 𝐻2 + 𝐻3。

模型中由浅至深共存在四个界面，这四个界面在 𝑧 方向上的坐标由 𝜂1 至

𝜂4 表示，它们分别为：刚盖 𝜂1，第一层与第二层的分界面 𝜂2，第二层与第三层

的分界面 𝜂3，底部地形面 𝜂4。其中，两分界面相对于平衡位置的振幅又分别以

𝜁1 与 𝜁2 表示。考虑底部地形，分界面受到扰动时当前三层流体的厚度分别记为

ℎ1, ℎ2, ℎ3。显然，成立以下关系式

𝜂1 = 𝐻1 𝜂2 = 𝜁1 𝜂3 = −𝐻2 + 𝜁2 𝜂4 = −(𝐻2 + 𝐻3) + 𝑏 … (2.1)

ℎ1 = 𝐻1 − 𝜁1 ℎ2 = 𝐻2 + 𝜁1 − 𝜁2 ℎ3 = 𝐻3 + 𝜁2 − 𝑏 … (2.2)

2.2 弱非线性浅水方程的导出

Choi 等 (1996) 导出了二层三维模型的弱非线性基本方程。本节将基于他们

的思想方法，导出三层三维弱非线性浅水模型的基本方程。

海洋流体运动具有尺度大，流速较慢的特点，故可采取无粘不可压缩假设。
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从基本流体方程出发，即

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∇ ⋅ 𝒖𝑖 + 𝜕𝑧𝑤𝑖 = 0

𝐷𝑖𝒖𝑖 + 𝑤𝑖𝜕𝑧𝒖𝑖 = − 1
𝜌𝑖

∇𝑝𝑖

𝐷𝑖𝑤𝑖 + 𝑤𝑖𝜕𝑧𝑤𝑖 = − 1
𝜌𝑖

𝜕𝑧𝑝𝑖 − 𝑔

… (2.3)

其中 𝐷𝑖 ≔ 𝜕𝑡 + 𝒖𝑖 ⋅ ∇，∇ = (𝜕𝑥, 𝜕𝑦)。本文中若无特别说明，𝑖 的取值均为 1, 2, 3。

在界面附近，有边界条件

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑤1|𝑧=𝜂−
1

= 0

(𝐷1𝜂2 − 𝑤1) |𝑧=𝜂+
2

= 0 (𝐷2𝜂2 − 𝑤2) |𝑧=𝜂−
2

= 0 𝑝1|𝑧=𝜂+
2

= 𝑝2|𝑧=𝜂−
2

(𝐷2𝜂3 − 𝑤2) |𝑧=𝜂+
3

= 0 (𝐷3𝜂3 − 𝑤3) |𝑧=𝜂−
3

= 0 𝑝2|𝑧=𝜂+
3

= 𝑝3|𝑧=𝜂−
3

(𝐷3𝜂4 − 𝑤3) |𝑧=𝜂+
4

= 0

… (2.4)

对方程作无量纲化，取垂直方向特征尺度为 𝐻，将水平方向特征尺度记为

𝐿。首先对质量方程作一分析，可得 𝑤𝑖 ∼ 𝒖𝑖𝐻/𝐿。由于模型为浅水长波模型，故

𝐻/𝐿 为一小量，用 𝜖 表示，即

𝜖 ≔ 𝐻
𝐿 … (2.5)

由 𝑤𝑖 ∼ 𝜖𝒖𝑖，可按照以下方式进行无量纲化。

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(𝑥, 𝑦) = 𝐿 (𝑥∗, 𝑦∗) 𝑧 = 𝐻𝑧∗ 𝑡 = 𝐿
√𝑔𝐻

𝑡∗

𝒖𝑖 = √𝑔𝐻𝒖∗
𝑖 𝑤𝑖 = 𝜖√𝑔𝐻𝑤∗

𝑖 𝑝𝑖 = 𝜌0𝑔𝐻𝑝∗
𝑖 𝜌𝑖 = 𝜌0𝜌∗

𝑖

(𝐻𝑖, ℎ𝑖, 𝜂𝑗 , 𝜁𝑘) = 𝐻 (𝐻𝑖, ℎ∗
𝑖 , 𝜂∗

𝑗 , 𝜁∗
𝑘 ) 𝑗 = 1, 2, 3, 4 𝑘 = 1, 2

… (2.6)

由此导出偏导数关系

∇ = 𝐿−1∇∗ 𝜕𝑧 = 𝐻−1𝜕𝑧∗ (𝜕𝑡, 𝐷𝑖) = 𝐿−1√𝑔𝐻 (𝜕𝑡∗ , 𝐷∗
𝑖 ) … (2.7)

略去星号，无量纲化后的方程成为

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∇ ⋅ 𝒖𝑖 + 𝜕𝑧𝑤𝑖 = 0

𝐷𝑖𝒖𝑖 + 𝑤𝑖𝜕𝑧𝒖𝑖 = − 1
𝜌𝑖

∇𝑝𝑖

𝜖2(𝐷𝑖𝑤𝑖 + 𝑤𝑖𝜕𝑧𝑤𝑖) = − 1
𝜌𝑖

𝜕𝑧𝑝𝑖 − 1

… (2.8)
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边界条件则在形式上没有发生变化。

根据式 (2.8) 中第三式，可知可以将未知函数按照 𝜖2 展开，即

𝑓 = 𝑓 (0) + 𝜖2𝑓 (1) + O (𝜖4) 𝑓 = 𝒖𝑖, 𝑤𝑖, 𝑝𝑖 … (2.9)

下面引入垂直积分平均记号

𝑓(𝒙, 𝑡) ≔ 1
ℎ𝑖 ∫

𝜂−
𝑖

𝜂+
𝑖+1

𝑓(𝒙, 𝑧, 𝑡)d𝑧 … (2.10)

由质量方程和水平动量方程，在各层垂直方向上作积分平均，则可导出如下方

程

⎧⎪
⎨
⎪⎩

𝜕𝑡ℎ𝑖 + ∇ ⋅ (ℎ𝑖𝒖𝑖) = 0

𝜕𝑡 (ℎ𝑖𝒖𝑖) + ℎ𝑖∇ ⋅ (𝒖𝑖 ⊗ 𝒖𝑖) + 𝒖𝑖 ⊗ 𝒖𝑖 ⋅ ∇ℎ𝑖 = −ℎ𝑖
𝜌𝑖

∇𝑝𝑖
… (2.11)

在上述方程的导出过程中，采用了在各层中，垂直方向上水平速度分别变化不大

的假定，并用垂直平均后的水平速度替代界面上的水平速度，即

𝒖𝑖
(0) = 𝒖𝑖

(0)(𝒙, 𝑡) 𝒖𝑖|𝑧=𝜂−
𝑖

, 𝒖𝑖|𝑧=𝜂+
𝑖+1

≈ 𝒖𝑖 … (2.12)

这一假定常在以下三种情况中满足：无旋流，强水平旋转流动，弱剪切或弱分层

(Choi 等, 1996)。本研究则基于初始无旋度，则流体将一直保持无旋的状态这一

条件，采用此假定。在该假定下，可导出

𝒖𝑖 ⊗ 𝒖𝑖 = 𝒖𝑖 ⊗ 𝒖𝑖 + O (𝜖4) … (2.13)

将其代入垂直平均后的水平动量方程，化简得

𝜕𝑡𝒖𝑖 + 𝒖𝑖 ⋅ ∇𝒖𝑖 = − 1
𝜌𝑖

∇𝑝𝑖 + O (𝜖4) … (2.14)

由这一假定，还可根据不可压缩条件求得

𝑤(0)
𝑖 = − (∇ ⋅ 𝒖(0)

𝑖 ) (𝑧 − 𝜂𝑖+1) + 𝐷(0)
𝑖 𝜂𝑖+1 𝐷(0)

𝑖 ≔ 𝜕𝑡 + 𝒖(0)
𝑖 ⋅ ∇ … (2.15)

下面对压强项进行分析。由垂直动量方程，即式 (2.8) 中第三式，利用压强

展开式得

𝜕𝑧𝑝(0)
𝑖 = −𝜌𝑖 𝜕𝑧𝑝(1)

𝑖 = −𝜌𝑖 (𝐷(0)
𝑖 𝑤(0)

𝑖 + 𝑤(0)
𝑖 𝜕𝑧𝑤(0)

𝑖 ) … (2.16)
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将式 (2.15) 代入，得一阶压强方程

𝜕𝑧𝑝(1)
𝑖 = 𝜌𝑖𝐺

(0)
𝑖 (𝒙, 𝑡) (𝑧 − 𝜂𝑖+1) + 𝜌𝑖𝐹

(0)
𝑖 (𝒙, 𝑡) … (2.17)

其中 𝐺(0)
𝑖 , 𝐹 (0)

𝑖 为与 𝑧 无关的项。

𝐺(0)
𝑖 (𝒙, 𝑡) = 𝐷(0)

𝑖 (∇ ⋅ 𝒖(0)
𝑖 ) − (∇ ⋅ 𝒖(0)

𝑖 )
2

𝐹 (0)
𝑖 (𝒙, 𝑡) = −𝐷(0)

𝑖 𝐷(0)
𝑖 𝜂(0)

𝑖+1 … (2.18)

积分后得到

𝑝(0)
𝑖 = −𝜌𝑖 (𝑧 − 𝜂𝑖) + 𝑃 (0)

𝑖 … (2.19)

𝑝(1)
𝑖 = 1

2𝐺(0)
𝑖 (𝒙, 𝑡) ((𝑧 − 𝜂𝑖+1)

2 − ℎ2
𝑖 ) + 𝐹 (0)

𝑖 (𝒙, 𝑡) (𝑧 − 𝜂𝑖) + 𝑃 (1)
𝑖 … (2.20)

其中 𝑃𝑖 为在第 𝑖 个分界面上的压强。由此可得压强梯度垂直平均如下，其中略

去了 𝐺(0)
𝑖 , 𝐹 (0)

𝑖 的角标。

∇𝑝𝑖 = ∇ (𝑝(0)
𝑖 + 𝜖2𝑝(1)

𝑖 ) + O (𝜖4)

= 𝜌𝑖∇𝜂𝑖 + ∇𝑃𝑖 − 𝜖2𝜌𝑖 (
1
ℎ𝑖

∇ (
1
3ℎ3

𝑖 𝐺𝑖 + 1
2ℎ2

𝑖 𝐹𝑖) + (
1
2ℎ𝑖𝐺𝑖 + 𝐹𝑖) ∇𝜂𝑖+1) + O (𝜖4)

… (2.21)

将其代入动量方程，并结合压强边界条件即可得到封闭的流体控制方程组。在此

暂时略去这些步骤，而是先引入弱非线性假设条件，即假定界面的振幅相比深度

为一小量，且内波导致的扰动速度相较于特征速度也是一小量。对于地形，则假

设至少为 𝜖2 的小量。此时由于无背景流，𝒖𝑖
(0), 𝑤(0)

𝑖 均为零。

O (𝜁𝑗/𝐻) = O (𝒖𝑖/√𝑔𝐻) = O(𝜇) 𝑗 = 1, 2 … (2.22)

利用浅水 KdV 假设，成立关系 𝜇 ∼ 𝜖2。由此，展开式 (2.9) 仍然成立。假定 𝒖𝑖
(1)

与 𝑧 无关，对 𝒖𝑖
(1), 𝑤(1)

𝑖 重复以上步骤，此时式 (2.14) 成为

𝜕𝑡𝒖𝑖 + 𝒖𝑖 ⋅ ∇𝒖𝑖 = − 1
𝜌𝑖

∇𝑝𝑖 + O (𝜖8) … (2.23)

考虑压强方程，第零阶保持不变。由于 𝒖𝑖
(0), 𝑤(0)

𝑖 均为零，且 𝜕𝑡𝜂𝑖+1 ∼ O (𝜖2)，则

第一阶方程式 (2.17) 与第二阶方程成为

𝜕𝑧𝑝(1)
𝑖 = 0 … (2.24)

𝜕𝑧𝑝(2)
𝑖 = −𝜌𝑖𝜕𝑡𝑤

(1)
𝑖 = 𝜌𝑖𝐺

(1)
𝑖 (𝒙, 𝑡) (𝑧 − 𝜂𝑖+1) + 𝜌𝑖𝐹

(1)
𝑖 (𝒙, 𝑡) … (2.25)
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其中

𝐺(1)
𝑖 (𝒙, 𝑡) = 𝜕𝑡∇ ⋅ 𝒖(1)

𝑖 𝐹 (1)
𝑖 (𝒙, 𝑡) = −𝜕𝑡𝑡𝜂

(1)
𝑖+1 … (2.26)

积分可得

𝑝(1)
𝑖 = 𝑃 (1)

𝑖 𝑝(2)
𝑖 = 1

2𝜌𝑖𝐺
(1)
𝑖 ((𝑧 − 𝜂𝑖+1)

2 − ℎ2
𝑖 ) + 𝜌𝑖𝐹

(1)
𝑖 (𝑧 − 𝜂𝑖) + 𝑃 (2)

𝑖 … (2.27)

这与式 (2.20) 形式类似，故式 (2.21) 也可类似导出。但再次对弱非线性条件加以

利用，并用 𝐻𝑖 + O (𝜖2) 代替 ℎ𝑖，导出此时的结果为

∇𝑝𝑖 = 𝜌𝑖∇𝜂𝑖 + ∇𝑃𝑖 − 𝜖4𝜌𝑖∇ (
1
3𝐻2

𝑖 𝐺(1)
𝑖 + 1

2𝐻𝑖𝐹
(1)
𝑖 ) + O (𝜖6) … (2.28)

代入动量方程，以 𝒖𝑖 代替 𝜖2𝒖(1)
𝑖 ，即得

𝜕𝑡𝒖𝑖 + 𝒖𝑖 ⋅ ∇𝒖𝑖 + ∇𝜂𝑖 + ∇𝑃𝑖
𝜌𝑖

= 𝜖2∇ (
1
3𝐻2

𝑖 𝜕𝑡∇ ⋅ 𝒖𝑖 − 1
2𝐻𝑖𝜕𝑡𝑡𝜂𝑖+1) + O (𝜖6) … (2.29)

由压强连续性条件 𝑃𝑖+1 = 𝑝𝑖|𝑧=𝜂𝑖+1，代入式 (2.19) 与式 (2.27) 得

𝑃𝑖+1 = 𝑃𝑖 + 𝜌𝑖ℎ𝑖 + 𝜖2𝜌𝑖 (−1
2𝐻2

𝑖 𝜕𝑡∇ ⋅ 𝒖𝑖 + 𝐻𝑖𝜕𝑡𝑡𝜂𝑖+1) + O (𝜖6) 𝑖 = 1, 2 … (2.30)

至此，6 个动量方程式 (2.29) 与 2 个压强条件式 (2.30)，以及 3 个质量方程

𝜕𝑡ℎ𝑖 + ∇ ⋅ (ℎ𝑖𝒖𝑖) = 0 … (2.31)

与几何条件 ℎ1 + ℎ2 + ℎ3 = 𝐻 − 𝑏 一起，构成了关于 ℎ𝑖, 𝒖𝑖, 𝑃𝑖 共 12 个变量的封闭

系统。其中动量方程含有一 O (𝜖6) 误差项，但这对下一步的渐近分析并无影响

（见后说明），故在此略去。为了方便之后的求解，先对方程作一些简单化简。代

入 ℎ, 𝜂 的定义式 (2.1) 与式 (2.2)，将变量化为两个振幅变量 𝜁1, 𝜁2，此时几何条件

自动满足。将压强项消去，并将方程组写为标量形式，得

𝜕𝑡𝜁1 − 𝐻1𝜕𝑥𝑢1 − 𝐻1𝜕𝑦𝑣1 = −𝜕𝑥(𝜁1𝑢1) − 𝜕𝑦(𝜁1𝑣1) … (2.32)

𝜕𝑡𝜁2 − 𝜕𝑡𝜁1 − 𝐻2𝜕𝑥𝑢2 − 𝐻2𝜕𝑦𝑣2 = −𝜕𝑥((𝜁2 − 𝜁1)𝑢2) − 𝜕𝑦((𝜁2 − 𝜁1)𝑣2) … (2.33)

𝜕𝑡𝜁2 − 𝜕𝑡𝑏 + 𝐻3𝜕𝑥𝑢3 + 𝐻3𝜕𝑦𝑣3 = −𝜕𝑥((𝜁2 − 𝑏)𝑢3) − 𝜕𝑦((𝜁2 − 𝑏)𝑣3) … (2.34)

𝜌2𝜕𝑡𝑢2 − 𝜌1𝜕𝑡𝑢1 + (𝜌2 − 𝜌1)𝜕𝑥𝜁1 = −𝐾2,𝑢 + 𝐾1,𝑢 + 𝜖2𝜕𝑥 (𝑀2 + 𝑁1) … (2.35)

𝜌3𝜕𝑡𝑢3 − 𝜌2𝜕𝑡𝑢2 + (𝜌3 − 𝜌2)𝜕𝑥𝜁2 = −𝐾3,𝑢 + 𝐾2,𝑢 + 𝜖2𝜕𝑥 (𝑀3 + 𝑁2) … (2.36)

𝜌2𝜕𝑡𝑣2 − 𝜌1𝜕𝑡𝑣1 + (𝜌2 − 𝜌1)𝜕𝑦𝜁1 = −𝐾2,𝑣 + 𝐾1,𝑣 + 𝜖2𝜕𝑦 (𝑀2 + 𝑁1) … (2.37)

𝜌3𝜕𝑡𝑣3 − 𝜌2𝜕𝑡𝑣2 + (𝜌3 − 𝜌2)𝜕𝑦𝜁2 = −𝐾3,𝑣 + 𝐾2,𝑣 + 𝜖2𝜕𝑦 (𝑀3 + 𝑁2) … (2.38)
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其中 𝐾 表示非线性项。

𝐾𝑖,𝑢 = 𝜌𝑖𝑢𝑖𝜕𝑥𝑢𝑖 + 𝜌𝑖𝑣𝑖𝜕𝑦𝑢𝑖 𝐾𝑖,𝑣 = 𝜌𝑖𝑢𝑖𝜕𝑥𝑣𝑖 + 𝜌𝑖𝑣𝑖𝜕𝑦𝑣𝑖 … (2.39)

𝑀, 𝑁 表示色散项。

𝑀2 = 1
3𝜌2𝐻2

2 (𝜕𝑥𝑡𝑢2 + 𝜕𝑦𝑡𝑣2) − 1
2𝜌2𝐻2𝜕𝑡𝑡𝜁2 … (2.40)

𝑀3 = 1
3𝜌3𝐻2

3 (𝜕𝑥𝑡𝑢3 + 𝜕𝑦𝑡𝑣3) − 1
2𝜌3𝐻3𝜕𝑡𝑡𝑏 … (2.41)

𝑁1 = 1
6𝜌1𝐻2

1 (𝜕𝑥𝑡𝑢1 + 𝜕𝑦𝑡𝑣1) − 1
2𝜌1𝐻1𝜕𝑡𝑡𝜁1 … (2.42)

𝑁2 = 1
6𝜌2𝐻2

2 (𝜕𝑥𝑡𝑢2 + 𝜕𝑦𝑡𝑣2) − 1
2𝜌2𝐻2𝜕𝑡𝑡𝜁2 … (2.43)

至此，已经获得了振幅与层平均水平速度所满足的基本方程组。下一节将用

渐近分析来求解这些方程。

2.3 流过地形内波演化的方程导出

本节将基于上一节所得的基本方程组，推导恒定流以约线性波速经过底部

小地形时发生共振而产生内波的控制方程。渐近展开所用的假设前人已有大量

研究，但在三层三维模型中应用这些假设的工作则较为匮乏。

首先引入单向波假设 𝜉 = 𝑥 − 𝑐𝑡 + 𝜖2𝑡Δ，波速 𝑐 待定，其中 Δ 表示流速与线

性波速存在一 𝜖2 量级的差异。依照实际内波的性质，假定各函数在更大的时间

尺度 𝜏1 = 𝜖2𝑡 和更大的 𝑦 方向空间尺度 𝑌 = 𝜖𝑦 上才发生明显变化，令各函数均

为关于 𝜉, 𝜏1, 𝑌 的函数。

𝑓 = 𝑓(𝜉, 𝜏1, 𝑌 ) 𝑓 = 𝑢𝑖, 𝑣𝑖, 𝜁1, 𝜁2 … (2.44)

偏导数关系变为

𝜕𝑡 = −𝑐𝜕𝜉 + 𝜖2𝜕𝜏 𝜕𝜏 = 𝜕𝜏1 + Δ𝜕𝜉 𝜕𝑥 = 𝜕𝜉 𝜕𝑦 = 𝜖𝜕𝑌 … (2.45)

地形的量级假定为 O (𝜖4)，故用 𝜖4𝑏 替代 𝑏，使得此时 𝑏 ∼ O(1)。并且假定 𝑏 也是

𝜉, 𝜏, 𝑌 的函数。这并不是说明地形在以恒定速度平移运动，而是相应于考虑背景

流以恒定速度流过地形，产生共振的情况 (Grimshaw 等, 1986)。
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下面将利用渐近展开求解方程。除 𝑣𝑖 外，各函数展开方式均按照 𝜖2 展开，

而 𝑣𝑖 则假设其量级更小，从 O (𝜖3) 起按照 𝜖2 展开。即

𝑓 = 𝜖2𝑓 (1) + 𝜖4𝑓 (2) + O (𝜖6) 𝑓 = 𝑢𝑖, 𝜁1, 𝜁2 … (2.46)

𝑣𝑖 = 𝜖3𝑣𝑖
(1) + O (𝜖5) … (2.47)

在将渐近展开代入方程求解之前，首先对方程中的各项作一量级分析。从质

量方程，𝑥 方向与 𝑦 方向动量方程中各取一例，其中部分具有代表性项的最低量

级（即最小的 𝜖 指数）如下。

𝜕𝑡𝜁1 𝜕𝑥𝑢1 𝜕𝑦𝑣1 𝜕𝑥 (𝜁1𝑢1) 𝜕𝑦 (𝜁1𝑣1)
2 2 4 4 6

… (2.48)

𝜕𝑡𝑢1 𝜕𝑥𝜁1 𝑢1𝜕𝑥𝑢1 𝑣1𝜕𝑦𝑢1 𝜖2𝜕𝑥𝑥𝑡𝑢1 𝜖2𝜕𝑥𝑦𝑡𝑣1 𝜖2𝜕𝑥𝑡𝑡𝜁1

2 2 4 6 4 6 4
… (2.49)

𝜕𝑡𝑣1 𝜕𝑦𝜁1 𝑢1𝜕𝑥𝑣1 𝑣1𝜕𝑦𝑣1 𝜖2𝜕𝑥𝑦𝑡𝑢1 𝜖2𝜕𝑦𝑦𝑡𝑣1 𝜖2𝜕𝑦𝑡𝑡𝜁1

3 3 5 7 5 7 5
… (2.50)

地形项最低阶量级分析为

𝜖4𝜕𝑡𝑏 𝜕𝑥(𝜖4𝑏𝑢3) 𝜕𝑦(𝜖4𝑏𝑣3) 𝜖2𝜕𝑥𝑡𝑡𝜖4𝑏 𝜖2𝜕𝑦𝑡𝑡𝜖4𝑏

4 6 8 6 7
… (2.51)

在后续的分析中，仅需要对 𝑢𝑖 展开两阶，对 𝑣𝑖 展开一阶即可，故在质量方程与

𝑥 方向动量方程中，O (𝜖6) 及以上的项可忽略；在 𝑦 方向动量方程中，O (𝜖5) 及

以上的项可忽略。

下面求解质量方程的第一阶方程如下，其量级为 O (𝜖2)。

−𝑐𝜕𝜉𝜁 (1)
1 − 𝐻1𝜕𝜉𝑢1

(1) = 0

−𝑐𝜕𝜉𝜁 (1)
2 + 𝑐𝜕𝜉𝜁 (1)

1 − 𝐻2𝜕𝜉𝑢2
(1) = 0

−𝑐𝜕𝜉𝜁 (1)
2 + 𝐻3𝜕𝜉𝑢3

(1) = 0

… (2.52)

利用无穷远处边界条件，𝑢𝑖 与 𝜁1, 𝜁2 同时取到零，从中解出 𝑢𝑖
(1) 的表达式如下。

𝑢1
(1) = − 𝑐

𝐻1
𝜁 (1)

1 𝑢2
(1) = − 𝑐

𝐻2
𝜁 (1)

2 + 𝑐
𝐻2

𝜁 (1)
1 𝑢3

(1) = 𝑐
𝐻3

𝜁 (1)
2 … (2.53)
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将其代入如下的 𝑥 方向的第一阶动量方程

−𝑐𝜌2𝜕𝜉𝑢2
(1) + 𝑐𝜌1𝜕𝜉𝑢1

(1) + (𝜌2 − 𝜌1)𝜕𝜉𝜁 (1)
1 = 0

−𝑐𝜌3𝜕𝜉𝑢3
(1) + 𝑐𝜌2𝜕𝜉𝑢2

(1) + (𝜌3 − 𝜌2)𝜕𝜉𝜁 (1)
2 = 0

… (2.54)

得到

𝐇
⎛
⎜
⎜
⎝

𝜕𝜉𝜁 (1)
1

𝜕𝜉𝜁 (1)
2

⎞
⎟
⎟
⎠

= 0 … (2.55)

𝐇 =
⎛
⎜
⎜
⎝

−𝑐2
(

𝜌2
𝐻2

+ 𝜌1
𝐻1 ) + (𝜌2 − 𝜌1) 𝑐2 𝜌2

𝐻2

𝑐2 𝜌2
𝐻2

−𝑐2
(

𝜌2
𝐻2

+ 𝜌3
𝐻3 ) + (𝜌3 − 𝜌2)

⎞
⎟
⎟
⎠

… (2.56)

为使得齐次线性方程组有解，必须有系数矩阵行列式为零，即 |𝐇| = 0。由此可

导出线性波速的色散关系如下。

𝑟1𝑐4 + 𝑟2𝑐2 + 𝑟3 = 0 … (2.57)

式中各系数如下

𝑟1 = 𝜌1𝜌2𝐻3 + 𝜌1𝜌3𝐻2 + 𝜌2𝜌3𝐻1

𝑟2 = − (𝜌1𝐻2𝐻3 (𝜌3 − 𝜌2) + 𝜌2𝐻1𝐻3 (𝜌3 − 𝜌1) + 𝜌3𝐻1𝐻2 (𝜌2 − 𝜌1))

𝑟3 = 𝐻1𝐻2𝐻3 (𝜌2 − 𝜌1) (𝜌3 − 𝜌2)

… (2.58)

在 |𝐇| = 0 的条件下，由方程组解得上下界面振幅第一阶成简单的比例关

系。记这一比例系数为 𝛾，即有

𝜁 (1)
2 = 𝛾𝜁 (1)

1 … (2.59)

𝛾 = 1 + 𝜌1𝐻2
𝜌2𝐻1

− 𝜌2 − 𝜌1
𝜌2

𝐻2
𝑐2 = (1 + 𝜌3𝐻2

𝜌2𝐻3
− 𝜌3 − 𝜌2

𝜌2

𝐻2
𝑐2 )

−1
… (2.60)

简明起见，记 𝜁 (1)
1 = 𝜁，𝜁 (1)

2 = 𝛾𝜁，重写 𝑢𝑖
(1) 的表达式 (2.53) 如下。

𝑢1
(1) = − 𝑐

𝐻1
𝜁 𝑢2

(1) = 𝑐
𝐻2

(1 − 𝛾)𝜁 𝑢3
(1) = 𝑐

𝐻3
𝛾𝜁 … (2.61)

𝑦 方向的第一阶动量方程暂时不进行操作，先求解第二阶的方程。仍然从质

量方程开始。

−𝑐𝜕𝜉𝜁 (2)
1 + 𝜕𝜏𝜁 (1)

1 − 𝐻1𝜕𝜉𝑢1
(2) = 𝐻1𝜕𝑌 𝑣1

(1) − 𝜕𝜉 (𝜁 (1)
1 𝑢1

(1)
)

−𝑐𝜕𝜉𝜁 (2)
2 + 𝜕𝜏𝜁 (1)

2 + 𝑐𝜕𝜉𝜁 (2)
1 − 𝜕𝜏𝜁 (1)

1 − 𝐻2𝜕𝜉𝑢2
(2) = 𝐻2𝜕𝑌 𝑣2

(1) + 𝜕𝜉 ((𝜁 (1)
1 − 𝜁 (1)

2 ) 𝑢2
(1)

)

−𝑐𝜕𝜉𝜁 (2)
2 + 𝜕𝜏𝜁 (1)

2 + 𝑐𝜕𝜉𝑏 + 𝐻3𝜕𝜉𝑢3
(2) = −𝐻3𝜕𝑌 𝑣3

(1) − 𝜕𝜉 (𝜁 (1)
2 𝑢3

(1)
)

… (2.62)
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从中解出 𝑢𝑖
(2)，并代入第一阶得到的相关结论，得

𝜕𝜉𝑢1
(2) = − 𝑐

𝐻1
𝜕𝜉𝜁 (2)

1 + 1
𝐻1

𝜕𝜏𝜁 − 2𝑐
𝐻2

1
𝜁𝜕𝜉𝜁 − 𝜕𝑌 𝑣1

(1) … (2.63)

𝜕𝜉𝑢2
(2) = − 𝑐

𝐻2
𝜕𝜉𝜁 (2)

2 + 𝑐
𝐻2

𝜕𝜉𝜁 (2)
1 + 𝛾 − 1

𝐻2
𝜕𝜏𝜁 − 2𝑐(1 − 𝛾)2

𝐻2
2

𝜁𝜕𝜉𝜁 − 𝜕𝑌 𝑣2
(1) … (2.64)

𝜕𝜉𝑢3
(2) = 𝑐

𝐻3
𝜕𝜉𝜁 (2)

2 − 𝛾
𝐻3

𝜕𝜏𝜁 − 2𝑐𝛾2

𝐻2
3

𝜁𝜕𝜉𝜁 − 𝜕𝑌 𝑣3
(1) − 𝑐

𝐻3
𝜕𝜉𝑏 … (2.65)

将其代入如下的第二阶 𝑥 方向动量方程。

−𝑐𝜌2𝜕𝜉𝑢2
(2) + 𝜌2𝜕𝜏𝑢2

(1) + 𝑐𝜌1𝜕𝜉𝑢1
(2) − 𝜌1𝜕𝜏𝑢1

(1) + (𝜌2 − 𝜌1) = −𝐾 (1)
2 + 𝐾 (1)

1 + 𝐽1

… (2.66)

−𝑐𝜌3𝜕𝜉𝑢3
(2) + 𝜌3𝜕𝜏𝑢3

(1) + 𝑐𝜌2𝜕𝜉𝑢2
(2) − 𝜌2𝜕𝜏𝑢2

(1) + (𝜌3 − 𝜌2) = −𝐾 (1)
3 + 𝐾 (1)

2 + 𝐽2

… (2.67)

其中 𝐾 (1)
𝑖 为 𝐾𝑖,𝑢（式 (2.39)）中的第一阶项

𝐾 (1)
𝑖 = 𝜌𝑖𝑢𝑖

(1)𝜕𝜉𝑢𝑖
(1) … (2.68)

𝐽1, 𝐽2 为 𝑀, 𝑁 中的第一阶项

𝐽1 = 1
3𝜌2𝐻2

2 (−𝑐)𝜕𝜉𝜉𝜉𝑢2
(1) − 1

2𝜌2𝐻2𝑐2𝜕𝜉𝜉𝜉𝜁 (1)
2 + 1

6𝜌1𝐻2
1 (−𝑐)𝜕𝜉𝜉𝜉𝑢1

(1) − 1
2𝜌1𝐻1𝑐2𝜕𝜉𝜉𝜉𝜁 (1)

1

… (2.69)

𝐽2 = 1
3𝜌3𝐻2

3 (−𝑐)𝜕𝜉𝜉𝜉𝑢3
(1) + 1

6𝜌2𝐻2
2 (−𝑐)𝜕𝜉𝜉𝜉𝑢2

(1) − 1
2𝜌2𝐻2𝑐2𝜕𝜉𝜉𝜉𝜁 (1)

2 … (2.70)

代入并应用一阶方程中得到的结论后，得到

− 𝐇
⎛
⎜
⎜
⎝

𝜕𝜉𝜁 (2)
1

𝜕𝜉𝜁 (2)
2

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑅1

𝑅2

⎞
⎟
⎟
⎠

… (2.71)

其中

𝑅1 = 𝑞11𝜕𝜏𝜁 + 𝑞21𝜁𝜕𝜉𝜁 + 𝑞31𝜕𝜉𝜉𝜉𝜁 + 𝑉1

𝑅2 = 𝑞12𝜕𝜏𝜁 + 𝑞22𝜁𝜕𝜉𝜁 + 𝑞32𝜕𝜉𝜉𝜉𝜁 + 𝑉2 + 𝑐2 𝜌3
𝐻3

𝜕𝜉𝑏

𝑉1 = 𝑐𝜌2𝜕𝑌 𝑣2
(1) − 𝑐𝜌1𝜕𝑌 𝑣1

(1) 𝑉2 = 𝑐𝜌3𝜕𝑌 𝑣3
(1) − 𝑐𝜌2𝜕𝑌 𝑣2

(1)

… (2.72)
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各系数为

𝑞11 = 2𝑐 (
𝜌1
𝐻1

+ 𝜌2
𝐻2

(1 − 𝛾)) 𝑞12 = 2𝑐 (
𝜌3
𝐻3

𝛾 + 𝜌2
𝐻2

(𝛾 − 1)) … (2.73)

𝑞21 = 3𝑐2
(

− 𝜌1
𝐻2

1
+ 𝜌2

𝐻2
2

(1 − 𝛾)2
)

𝑞22 = 3𝑐2
(

− 𝜌2
𝐻2

2
(1 − 𝛾)2 + 𝜌3

𝐻2
3

𝛾2
)

… (2.74)

𝑞31 = 𝑐2

3 (𝜌1𝐻1 + (1 + 𝛾
2) 𝜌2𝐻2) 𝑞32 = 𝑐2

3 (𝜌3𝐻3𝛾 + (
1
2 + 𝛾) 𝜌2𝐻2)

… (2.75)

由于系数矩阵 𝐌 的行列式为零，故为使得线性方程组有解，必须有

𝛾𝑅2 + 𝑅1 = 0 … (2.76)

故导出 KP 方程

𝑞1𝜕𝜏𝜁 + 𝑞2𝜁𝜕𝜉𝜁 + 𝑞3𝜕𝜉𝜉𝜉𝜁 + 𝑐2 𝜌3
𝐻3

𝛾𝜕𝜉𝑏 + 𝑉 = 0 𝑉 = 𝑉1 + 𝛾𝑉2 … (2.77)

相关系数列于最后。此处先利用如下的一阶 𝑦 方向动量方程

𝑐𝜌2𝜕𝜉𝑣2
(1) − 𝑐𝜌1𝜕𝜉𝑣1

(1) = (𝜌2 − 𝜌1)𝜕𝑌 𝜁 … (2.78)

𝑐𝜌3𝜕𝜉𝑣3
(1) − 𝑐𝜌2𝜕𝜉𝑣2

(1) = (𝜌3 − 𝜌2)𝛾𝜕𝑌 𝜁 … (2.79)

导出 𝑉 的表达式

𝜕𝜉𝑉 = ((𝜌3 − 𝜌2)𝛾2 + (𝜌2 − 𝜌1)) 𝜕𝑌 𝑌 𝜁 … (2.80)

利用代换式 (2.60)，可得

(𝜌3 − 𝜌2)𝛾2 + (𝜌2 − 𝜌1) = 𝑐2
(

𝜌3
𝐻3

𝛾2 + 𝜌2
𝐻2

(𝛾 − 1)2 + 𝜌1
𝐻1 ) … (2.81)

KP 方程的三个系数为

𝑞1 = 𝛾𝑞12 + 𝑞11 = 2𝑐 (
𝜌3
𝐻3

𝛾2 + 𝜌2
𝐻2

(𝛾 − 1)2 + 𝜌1
𝐻1 )

𝑞2 = 𝛾𝑞22 + 𝑞21 = 3𝑐2
(

𝜌3
𝐻2

3
𝛾3 + 𝜌2

𝐻2
2

(1 − 𝛾)3 − 𝜌1
𝐻2

1 )

𝑞3 = 𝛾𝑞32 + 𝑞31 = 𝑐2

3 (𝜌3𝐻3𝛾2 + 𝜌2𝐻2(𝛾2 + 𝛾 + 1) + 𝜌1𝐻1)

… (2.82)

可见式 (2.81) 括号中的表达式恰好与 𝑞1 相同，故最终导出的 KP 方程为

𝜕𝜉𝑄1 + 𝑐
2𝑞1𝜕𝑌 𝑌 𝜁 = 0

𝑄1 = 𝑞1𝜕𝜏𝜁 + 𝑞2𝜁𝜕𝜉𝜁 + 𝑞3𝜕𝜉𝜉𝜉𝜁 + 𝑐2 𝜌3
𝐻3

𝛾𝜕𝜉𝑏
… (2.83)

16



第 2 章 三层模型内波演化方程推导

2.4 五阶项的导出

在三阶色散项 𝜁𝜉𝜉𝜉 的系数较小时，需要引入更高阶的色散项来与非线性项

平衡。此时所得到的一种方程称为 fifth-order KdV 方程 (Hunter 等, 1988)，具有

如下包含五阶导数的 KdV 方程形式

𝜁𝜏 + 𝜁𝜁𝜉 + 𝜁𝜉𝜉𝜉 + 𝜁𝜉𝜉𝜉𝜉𝜉 = 0 … (2.84)

下面将在前文的框架下通过类似的方法，来导出带有五阶项的 KP 方程及相

应的系数。首先，需要对之前的量级估计作一些调整。通过观察相平衡的非线性

项与五阶导数项可知，𝜁 与 𝜕4
𝜉 同量级，故此时 𝜁 应是一 O (𝜖4) 小量。相应地，也

有 𝜕𝜏 ∼ O (𝜖4)。

由于最初的垂直动量方程（即式 (2.8) 中第三式）中 𝜖2 项没有发生变化，故

压强总是按照 𝜖2 来展开。为了配合压强的展开式，这里 𝜁 则也应按照 𝜖2 的间隔

来展开。需要展开的总阶数，则可通过回顾上一节导出方程的过程来确定。在最

后一阶方程中，应当正好出现非线性项。在这里，由于 𝜁 是四阶小量，故非线性

项为八阶小量，因此总共需要展开四、六、八阶，共三阶方程。

关于 𝑦 方向的量级分析，需要确定 𝑣𝑖 和 𝜕𝑦 的量级。由于希望 𝑦 方向仍然能

保持其原来的形式而不产生干扰，参考之前导出方程的过程，可知需要满足

𝜕𝑌 𝑣𝑖 ∼ 𝜖4𝜕𝜉𝑢𝑖 ∼ O (𝜖8) 𝜕𝜉𝑣𝑖 ∼ 𝜕𝑌 𝜁𝑖 … (2.85)

由此可得 𝜕𝑌 ∼ O (𝜖2) , 𝑣𝑖 ∼ O (𝜖6)

关于地形项的量级，也可通过期望地形项仍然出现在原位置上导出，故有

𝜕𝜉𝜖𝑘𝑏 ∼ 𝜖4𝜕𝜉𝑢𝑖 ⇒ 𝑘 = 8 … (2.86)

根据上面的分析，整理得新的展开方式如下。

𝑓 = 𝜖4𝑓 (1) + 𝜖6𝑓 (2) + 𝜖8𝑓 (3) + O (𝜖10) 𝑓 = 𝜁1, 𝜁2, 𝑢𝑖 … (2.87)

𝑣𝑖 = 𝜖6𝑣𝑖
(1) + O (𝜖8) … (2.88)

𝜉 = 𝑥 − 𝑐𝑡 + 𝜖4𝑡Δ 𝜏1 = 𝜖4𝑡 𝑌 = 𝜖2𝑦 … (2.89)

偏导数变为

𝜕𝑥 = 𝜕𝜉 𝜕𝑡 = −𝑐𝜕𝜉 + 𝜖4𝜕𝜏 𝜕𝜏 = 𝜕𝜏1 + Δ𝜕𝜉 𝜕𝑦 = 𝜖2𝜕𝑌 … (2.90)
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下面将按照类似的步骤来导出水平动量方程。在导出动量方程时，为简明起

见，将 𝑢𝑖, 𝑣𝑖 展开形式视为相同，对 𝒖𝑖 进行分析。由于此时 𝒖𝑖 展开至八阶，故也

需要计算压强项直至八阶。在垂直动量方程中代入 𝑤𝑖 展开式（由于在质量方程

同阶，它与 𝒖𝑖 展开式形式相同），得

𝜕𝑧𝑝(0)
𝑖 = −𝜌 𝜕𝑧𝑝(1,2)

𝑖 = 0 𝜕𝑧𝑝(3,4)
𝑖 = −𝜌𝑖𝜕𝑡𝑤

(1,2)
𝑖 … (2.91)

其中形如 (1, 2) 的标记表示各阶分别对应相等。通过质量方程求解 𝑤。同样假定

𝒖(1), 𝒖(2), 𝒖(3) 在 𝑧 方向上变化很小，注意到 𝜂𝑖 = 𝜂(0)
𝑖 + O (𝜖4)，得

𝑤(1,2)
𝑖 = − (∇ ⋅ 𝒖𝑖

(1,2)
) (𝑧 − 𝜂(0)

𝑖 ) + 𝜕𝑡𝜂
(1,2)
𝑖 … (2.92)

记

𝐺(𝑘)
𝑖 = 𝜕𝑡∇ ⋅ 𝒖𝑖

(𝑘) 𝐹 (𝑘)
𝑖 = −𝜕𝑡𝑡𝜂

(𝑘)
𝑖 𝑘 = 1, 2 … (2.93)

𝐺𝑖 = 𝐺(1)
𝑖 + 𝜖2𝐺(2)

𝑖 𝐹𝑖 = 𝐹 (1)
𝑖 + 𝜖2𝐹 (2)

𝑖 … (2.94)

则有

𝜕𝑧𝑝𝑖 = −𝜌𝑖 + 𝜌𝑖𝜖6 (𝐺𝑖(𝑧 − 𝜂𝑖) + 𝐹𝑖) + O (𝜖10) … (2.95)

注意到 ℎ𝑖 = 𝐻𝑖 + O (𝜖4)，可得到压强相关量

𝑝𝑖 = −𝜌𝑖(𝑧 − 𝜂𝑖) + 𝑃𝑖 + 𝜖6𝜌𝑖 (
1
2𝐺𝑖(𝑧 − 𝜂𝑖)2 + 𝐹𝑖(𝑧 − 𝜂𝑖)) + O (𝜖10) … (2.96)

∇𝑝𝑖 = 𝜌𝑖∇𝜂𝑖 + ∇𝑃𝑖 + 𝜖6𝜌𝑖 (
1
6∇𝐺𝑖𝐻2

𝑖 − 1
2∇𝐹𝑖𝐻𝑖) + O (𝜖10) … (2.97)

∇ (𝑃𝑖+1 − 𝑃𝑖) = 𝜌𝑖∇ℎ𝑖 + 𝜖6𝜌𝑖∇ (
1
2𝐺𝑖𝐻2

𝑖 − 𝐹𝑖𝐻𝑖) + O (𝜖10) 𝑖 = 1, 2 … (2.98)

下面将写出相应的浅水方程组。质量方程保持不变。

𝜕𝑡ℎ𝑖 + ∇ ⋅ (ℎ𝑖𝒖𝑖) = 0 … (2.99)

对于动量方程，首先考虑式 (2.13)，此时成为

𝒖𝑖 ⊗ 𝒖𝑖 = 𝒖𝑖 ⊗ 𝒖𝑖 + O (𝜖12) … (2.100)

故新的动量方程为

𝜕𝑡𝒖𝑖 + 𝒖𝑖 ⋅ ∇𝒖𝑖 + ∇𝜂𝑖 + ∇𝑃𝑖
𝜌𝑖

= 𝜖6
(−1

6∇𝐺𝑖𝐻2
𝑖 + 1

2∇𝐹𝑖𝐻𝑖) + O (𝜖10) … (2.101)
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此外，压强条件为式 (2.98)。由此便构建了当前假设下的浅水方程组。由于只需

要 𝒖𝑖 展开到 O (𝜖8)，故动量方程中最后的误差项没有影响。

下面将通过与前节类似的方法对该方程组进行求解，此时需要区别 𝑢𝑖, 𝑣𝑖 量

级的不同。首先应对方程中各项进行量级分析，但由于在前节与本节开头已经作

过类似工作，故这里不再详细列出各项量级。

第一阶方程量级为 O (𝜖4)。事实上，它与前一节的第一阶方程式 (2.52)，式

(2.54) 在形式上完全相同，因此可得到完全相同的结论，即关于波速的线性色

散关系式 (2.57)，上下层振幅成比例，比例系数为 𝛾，𝛾 满足式 (2.60)，同样记

𝜁 (1)
1 = 𝜁, 𝜁 (1)

2 = 𝛾𝜁，有

𝑢1
(1) = − 𝑐

𝐻1
𝜁 𝑢2

(2) = 𝑐
𝐻2

(1 − 𝛾)𝜁 𝑢3
(1) = 𝑐

𝐻3
𝛾𝜁 … (2.102)

以及行列式为零的系数矩阵

𝐇 = 𝑐2𝜌2
𝐻2

⎛
⎜
⎜
⎝

−𝛾 1

1 −𝛾−1

⎞
⎟
⎟
⎠

… (2.103)

第二阶方程量级为 O (𝜖6)，由于非线性项量级为 O (𝜖8)，故此阶方程组中未

出现非线性项，而只多了动量方程右端色散项。质量方程在项数上没有变化，故

𝑢𝑖
(2) 与 𝜁 (2)

1 , 𝜁 (2)
2 的关系也与第一阶方程的结论相同，即

𝑢1
(2) = − 𝑐

𝐻1
𝜁 (2)

1 𝑢2
(2) = 𝑐

𝐻2 (𝜁 (2)
1 − 𝜁 (2)

2 ) 𝑢3
(2) = 𝑐

𝐻3
𝜁 (2)

2 … (2.104)

将其代入 𝑥 方向动量方程，得到

− 𝐇
⎛
⎜
⎜
⎝

𝜕𝜉𝜁 (2)
1

𝜕𝜉𝜁 (2)
2

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑆1

𝑆2

⎞
⎟
⎟
⎠

… (2.105)

其中

𝑆1 = −1
6𝜌2𝐻2

2 𝑐𝜕𝜉𝜉𝜉𝑢2
(1) + 1

2𝜌2𝐻2𝑐2𝜕𝜉𝜉𝜉𝜁 (1)
1 − 1

3𝜌1𝐻2
1 𝑐𝜕𝜉𝜉𝜉𝑢1

(1)

= 𝐸1 (
1
6𝑐2𝜕𝜉𝜉𝜉𝜁)

… (2.106)

𝑆2 = −1
6𝜌3𝐻2

3 𝑐𝜕𝜉𝜉𝜉𝑢3
(1) + 1

2𝜌3𝐻3𝑐2𝜕𝜉𝜉𝜉𝜁 (1)
2 − 1

3𝜌2𝐻2
2 𝑐𝜕𝜉𝜉𝜉𝑢2

(1) + 1
2𝜌2𝐻2𝑐2𝜕𝜉𝜉𝜉𝜁 (1)

1

= 𝐸2 (
1
6𝑐2𝜕𝜉𝜉𝜉𝜁)

… (2.107)
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其中系数

𝐸1 = 𝜌2𝐻2𝛾 + 2𝜌2𝐻2 + 2𝜌1𝐻1 𝐸2 = 2𝜌3𝐻3𝛾 + 2𝜌2𝐻2𝛾 + 𝜌2𝐻2 … (2.108)

由于 |𝐇| = 0，需要成立 𝑆1 + 𝛾𝑆2 = 0，即

(
1
3𝑐2𝜕𝜉𝜉𝜉𝜁) (𝜌3𝐻3𝛾2 + 𝜌2𝐻2 (𝛾2 + 𝛾 + 1) + 𝜌1𝐻1) = 0 … (2.109)

这一等式似乎并不成立，但是如果回想起前一节方程所导出的系数，就会发现这

正是式 (2.82)中的 𝑞3。而本节开头即已假设了三阶色散项的系数较小。假设其为

𝜖2 小量，取 𝑞′
3 = 𝑞3/𝜖2 使其为 O(1)。

𝑞′
3 = 𝑐2

3𝜖2 (𝜌3𝐻3𝛾2 + 𝜌2𝐻2 (𝛾2 + 𝛾 + 1) + 𝜌1𝐻1) … (2.110)

则有

𝑆1 + 𝛾𝑆2 = 𝜖2𝑞′
3𝜕𝜉𝜉𝜉𝜁 … (2.111)

这说明 𝑆1 + 𝛾𝑆2 中混入了高阶项，这一高阶项实际上应出现在下一阶的方程中，

而在这一阶则成立 𝐹1 + 𝛾𝐹2 = 0 与 𝐸1 + 𝛾𝐸2 = 0。如此方程组存在解

− 𝛾𝜁 (2)
1 + 𝜁 (2)

2 = 𝐻2
𝑐2𝜌2

𝐸1 (−1
6𝑐2𝜕𝜉𝜉𝜁) … (2.112)

下面求解第三阶方程。对于质量方程，其形式与式 (2.62) 类似，从中解得

𝜕𝜉𝑢1
(3) = − 𝑐

𝐻1
𝜕𝜉𝜁 (3)

1 + 1
𝐻1

𝜕𝜏𝜁 − 𝑐
𝐻2

1
𝜕𝜉𝜁2 − 𝜕𝑌 𝑣1

(1) … (2.113)

𝜕𝜉𝑢2
(3) = 𝑐

𝐻2
𝜕𝜉𝜁 (3)

1 − 𝑐
𝐻2

𝜁 (3)
2 + 1

𝐻2
(𝛾 − 1)𝜕𝜏𝜁 − 𝑐

𝐻2
2

(1 − 𝛾)2𝜕𝜉𝜁2 − 𝜕𝑌 𝑣2
(1)

… (2.114)

𝜕𝜉𝑢3
(3) = 𝑐

𝐻3
𝜕𝜉𝜁 (3)

2 − 1
𝐻3

𝛾𝜕𝜏𝜁 − 𝑐
𝐻2

3
𝛾2𝜕𝜉𝜁2 − 𝑐

𝐻3
𝜕𝜉𝑏 − 𝜕𝑌 𝑣3

(1) … (2.115)

将其代入 𝑥 方向动量方程中，将得到与式 (2.72) 相类似的结论，但略有一些变

化。

− 𝐇
⎛
⎜
⎜
⎝

𝜕𝜉𝜁 (3)
1

𝜕𝜉𝜁 (3)
2

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑅′
1

𝑅′
2

⎞
⎟
⎟
⎠

… (2.116)

𝑅′
1 = 𝑞11𝜕𝜏𝜁 + 𝑞21𝜁𝜕𝜉𝜁 + 𝑉1 + 𝐼1 … (2.117)

𝑅′
2 = 𝑞12𝜕𝜏𝜁 + 𝑞22𝜁𝜕𝜉𝜁 + 𝑉2 + 𝑐2 𝜌3

𝐻3
𝜕𝜉𝑏 + 𝐼2 … (2.118)
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其中

𝐼1 = −1
6𝜌2𝐻2

2 𝑐𝜕𝜉𝜉𝜉𝑢2
(2) + 1

2𝜌2𝐻2𝑐2𝜕𝜉𝜉𝜉𝜁 (2)
1 − 1

3𝜌1𝐻2
1 𝑐𝜕𝜉𝜉𝜉𝑢1

(2)

= (
𝑐2

6 𝜕𝜉𝜉𝜉) ((2𝜌2𝐻2 + 2𝜌1𝐻1) 𝜁 (2)
1 + 𝜌2𝐻2𝜁 (2)

2 )
… (2.119)

𝐼2 = −1
6𝜌3𝐻2

3 𝑐𝜕𝜉𝜉𝜉𝑢3
(2) + 1

2𝜌3𝐻3𝑐2𝜕𝜉𝜉𝜉𝜁 (2)
2 − 1

3𝜌2𝐻2
2 𝑐𝜕𝜉𝜉𝜉𝑢2

(2) + 1
2𝜌2𝐻2𝑐2𝜕𝜉𝜉𝜉𝜁 (2)

1

= (
𝑐2

6 𝜕𝜉𝜉𝜉) ((2𝜌3𝐻3 + 2𝜌2𝐻2) 𝜁 (2)
2 + 𝜌2𝐻2𝜁 (2)

1 )

… (2.120)

计算 𝐼1 + 𝛾𝐼2 得

𝐼1 + 𝛾𝐼2 = 𝑐2

6 𝜕𝜉𝜉𝜉 (𝐸1𝜁 (2)
1 + 𝐸2𝜁 (2)

2 ) = 𝐸2
𝑐2

6 𝜕𝜉𝜉𝜉 (−𝛾𝜁 (2)
1 + 𝜁 (2)

2 ) … (2.121)

代入上一阶方程的结论式 (2.112)，可得

𝐼1 + 𝛾𝐼2 = 𝐸2 (
𝑐2

6 𝜕𝜉𝜉𝜉)
𝐻2

𝑐2𝜌2
𝐸1 (−𝑐2

6 𝜕𝜉𝜉𝜁) = 𝑞4𝜕𝜉𝜉𝜉𝜉𝜉𝜁

𝑞4 = 𝑐2

36
𝐻2
𝜌2

𝛾 (2𝜌3𝐻3𝛾 + 2𝜌2𝐻2𝛾 + 𝜌2𝐻2)
2

… (2.122)

由 𝑅′
1 + 𝛾𝑅′

2 = 0，并结合上一阶方程中出现的高阶项式 (2.111)，导出五阶 KP 方

程。

𝜕𝜉𝑄2 + 𝑐
2𝑞1𝜕𝑌 𝑌 = 0

𝑄2 = 𝑞1𝜕𝜏𝜁 + 𝑞2𝜁𝜕𝜉𝜁 + 𝑞′
3𝜕𝜉𝜉𝜉𝜁 + 𝑞4𝜕𝜉𝜉𝜉𝜉𝜉𝜁 + 𝑐2 𝜌3

𝐻3
𝛾𝜕𝜉𝑏

… (2.123)

2.5 波过地形内波演化方程的导出

本节将基于第二节所得到的基本方程，求解波经过地形时的控制方程。求解

的过程与前两节几乎相同，故不再赘述，只说明需要调整的假定。

在前两节推导流过地形时，地形的量级比波振幅的量级更小（在第三节中

𝑏 ∼ 𝜖2𝜁，第四节中 𝑏 ∼ 𝜖4𝜁），但在研究波经过地形时，地形的量级可以和波振幅

的量级相同，即 𝑏 ∼ 𝜁。单向波假设也无需考虑偏差项，即只需设 𝜉 = 𝑥 − 𝑐𝑡。但

此时地形 𝑏 不随时间变化，故方程中不存在 𝜕𝑡𝑏 项。在这些假定之下，中间的推

导步骤几乎完全相同。得到关于 𝜉 的方程后，需要换回原坐标系，这是由于地形

是以 𝑥 而非 𝜉 为自变量。记 𝑞′
1 = 𝑞1/𝜖2, 𝑞″

1 = 𝑞1/𝜖4，由此得到的方程形式为

𝜕𝑥𝑄3 + 𝑐
2𝑞1𝜕𝑌 𝑌 𝜁 = 0 … (2.124)
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𝑄3 = 𝑞′
1 (𝜕𝑡𝜁 + 𝑐𝜕𝑥𝜁) + 𝑞2𝜁𝜕𝑥𝜁 + 𝑞3𝜕𝑥𝑥𝑥𝜁 − 𝑐2 𝜌3

𝐻2
3

𝛾2𝜕𝑥(𝑏𝜁) … (2.125)

考虑五阶项，则 𝑄3 变为 𝑄4。

𝑄4 = 𝑞″
1 (𝜕𝑡𝜁 + 𝑐𝜕𝑥𝜁) + 𝑞2𝜁𝜕𝑥𝜁 + 𝑞′

3𝜕𝑥𝑥𝑥𝜁 + 𝑞4𝜕𝑥𝑥𝑥𝑥𝑥𝜁 − 𝑐2 𝜌3
𝐻2

3
𝛾2𝜕𝑥(𝑏𝜁) … (2.126)

2.6 本章内容小结与讨论

本章基于三层浅水模型，推导出流过地形与波过地形两种情形下内波的演

化方程，以及相应的带有五阶项的方程。

这些结果存在较多的相似之处。在所有情形下，内波的线性波速 𝑐 均满足如

下的线性色散关系。

𝑟1𝑐4 + 𝑟2𝑐2 + 𝑟3 = 0 … (2.127)

其中

𝑟1 = 𝜌1𝜌2𝐻3 + 𝜌1𝜌3𝐻2 + 𝜌2𝜌3𝐻1

𝑟2 = − (𝜌1𝐻2𝐻3 (𝜌3 − 𝜌2) + 𝜌2𝐻1𝐻3 (𝜌3 − 𝜌1) + 𝜌3𝐻1𝐻2 (𝜌2 − 𝜌1))

𝑟3 = 𝐻1𝐻2𝐻3 (𝜌2 − 𝜌1) (𝜌3 − 𝜌2)

… (2.128)

且不计高阶小量，上下界面振幅均成比例，即 𝜁2 = 𝛾𝜁1。因此只需研究其中一个

振幅的变化规律即可。记 𝜁 = 𝜁1，此后方程中出现的 𝜁 均表示上界面的振幅。比

例系数 𝛾 为关于环境参数的常数。

𝛾 = 1 + 𝜌1𝐻2
𝜌2𝐻1

− 𝜌2 − 𝜌1
𝜌2

𝐻2
𝑐2 = (1 + 𝜌3𝐻2

𝜌2𝐻3
− 𝜌3 − 𝜌2

𝜌2

𝐻2
𝑐2 )

−1
… (2.129)

线性波速与比例系数的表达式与Barros 等 (2020) 导出的二维三层模型吻合，说

明在三维框架下波的基本性质没有发生变化。线性色散关系是一个关于 𝑐2 的二

次方程，𝑐2 的两个解分别对应第一模态与第二模态的内孤立波，而 𝑐 的四个解

则分别对应两模态的左传波与右传波。值得一提的是，对于 𝑛 层模型，通过类似

方法将得到一个关于 𝑐2 的 𝑛 − 1 次方程，从而有 𝑛 − 1 个不同的波速解，这是 𝑛

层模型只能描述 𝑛 − 1 个模态内孤立波的一个原因。

比例系数 𝛾 的取值与 𝑐 相关。可以证明，对于较大的线性波速 𝑐，其对应的

𝛾 总为正，上下层振幅方向相同，相应于第一模态内波；对于较小的 𝑐，其对应
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的 𝛾 总为负，上下层振幅方向相反，相应于第二模态内波。因此，第一模态内波

的线性波速相较于第二模态内波更大，这与前人研究和观测结果一致。

另一个相似之处在于所考虑的情形在 𝑦 方向上都具有相同的变化规律，方

程存在相同的“KP 壳”形式，即四个方程都可写为

𝜕𝜉𝑄 + 𝑐
2𝑞1𝜕𝑌 𝑌 𝜁 = 0 或 𝜕𝑥𝑄 + 𝑐

2𝑞1𝜕𝑌 𝑌 𝜁 = 0 … (2.130)

𝑄 为传统的二维KdV理论部分，对于不同情形只有 𝑄 不同（𝜕𝜉 与 𝜕𝑥 没有本质区

别）。这一共同特征也与传统的 KP 方程完全吻合 (Grimshaw 等, 1989; Grimshaw,

1985)，不过此处并未考虑地转效应。此外，方程中也没有出现地形的 𝑌 偏导数

项，这是由于作了地形量级较小，且在 𝑦 方向上也变化较慢的假定。

下面来分别考察几种情形的 𝑄 项。首先，需要明确各物理量的实际量级与

相应的假设。在渐近分析中，各物理量已经通过各类变换成为 O(1) 量级，而实

际量级与相应假设整理在表2.1中。

表 2.1量级假定

Table 2.1 Order assumptions

情形 实际振幅 实际地形 时间尺度 单向波假设 𝑦 方向尺度

流过地形无五阶项 𝑄1 𝜖2𝜁 𝜖4𝑏 𝜏1 = 𝜖2𝑡 𝜉 = 𝑥 − 𝑐𝑡 + 𝜖2𝑡Δ 𝑌 = 𝜖𝑦

流过地形有五阶项 𝑄2 𝜖4𝜁 𝜖8𝑏 𝜏1 = 𝜖4𝑡 𝜉 = 𝑥 − 𝑐𝑡 + 𝜖4𝑡Δ 𝑌 = 𝜖2𝑦

波过地形无五阶项 𝑄3 𝜖2𝜁 𝜖2𝑏 𝜏1 = 𝜖2𝑡 𝜉 = 𝑥 − 𝑐𝑡 𝑌 = 𝜖𝑦

波过地形有五阶项 𝑄4 𝜖4𝜁 𝜖4𝑏 𝜏1 = 𝜖4𝑡 𝜉 = 𝑥 − 𝑐𝑡 𝑌 = 𝜖2𝑦

考察流过地形的情形，不考虑与考虑五阶项的方程分别对应 𝑄1, 𝑄2，有

𝑄1 = 𝑞1𝜕𝜏𝜁 + 𝑞2𝜁𝜕𝜉𝜁 + 𝑞3𝜕𝜉𝜉𝜉𝜁 + 𝑐2 𝜌3
𝐻3

𝛾𝜕𝜉𝑏 … (2.131)

𝑄2 = 𝑞1𝜕𝜏𝜁 + 𝑞2𝜁𝜕𝜉𝜁 + 𝑞′
3𝜕𝜉𝜉𝜉𝜁 + 𝑞4𝜕𝜉𝜉𝜉𝜉𝜉𝜁 + 𝑐2 𝜌3

𝐻3
𝛾𝜕𝜉𝑏 … (2.132)
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其中系数为

𝑞1 = 2𝑐 (
𝜌3
𝐻3

𝛾2 + 𝜌2
𝐻2

(𝛾 − 1)2 + 𝜌1
𝐻1 )

𝑞2 = 3𝑐2
(

𝜌3
𝐻2

3
𝛾3 + 𝜌2

𝐻2
2

(1 − 𝛾)3 − 𝜌1
𝐻2

1 )

𝑞3 = 𝑐2

3 (𝜌3𝐻3𝛾2 + 𝜌2𝐻2(𝛾2 + 𝛾 + 1) + 𝜌1𝐻1)

𝑞4 = 𝑐2

36
𝐻2
𝜌2

𝛾 (2𝜌3𝐻3𝛾 + 2𝜌2𝐻2𝛾 + 𝜌2𝐻2)
2

… (2.133)

以及 𝑞′
3 = 𝑞3/𝜖2，𝜕𝜏 = 𝜕𝜏1 + Δ𝜕𝜉。

观察 𝑄1，可见其可分为基本KdV方程与地形项两个部分。考虑不存在地形，

即当 𝑏 = 0 时，𝑄1 = 0 成为

𝑞1𝜕𝜏𝜁 + 𝑞2𝜁𝜕𝜉𝜁 + 𝑞3𝜕𝜉𝜉𝜉𝜁 = 0 … (2.134)

方程的形式与传统 KdV 方程一致，且方程中的系数表达式与Barros 等 (2020) 的

结果相吻合。这表明在底部不存在地形的情形，内波演化规律符合前人 KdV 理

论所得结果。

地形的存在使得 𝑄 单独增加了一项，且这一地形项与振幅变量 𝜁 无关。这

表明地形可以视为一个在 KdV 传播规律基础上的一个外强迫，这一外强迫的存

在使得可以在初始没有波，仅有流的情形下产生内波，即流与地形的共振效应。

后续的数值模拟也将基于这一点进行。此时 𝑄1 = 0 成为

𝑞1𝜕𝜏𝜁 + 𝑞2𝜁𝜕𝜉𝜁 + 𝑞3𝜕𝜉𝜉𝜉𝜁 + 𝑐2 𝜌3
𝐻3

𝛾𝜕𝜉𝑏 = 0 … (2.135)

此为 forced KdV 方程。Grimshaw 等 (1986) 导出了连续分层模型下的 forced KdV

方程，注意到 𝜕𝜏 = 𝜕𝜏1 + Δ𝜕𝜉，可见虽然推导是基于间断分层模型，但是最后所

得的方程，与连续分层模型的结果也仅有系数上的差别。

五阶方程是在 𝑞3 较小时对三阶方程的一个修正。对于 𝑄2 而言，也具有和以

上 𝑄1 性质相类似的结论。除此之外，𝑄2 较 𝑄1 多一项五阶导数项，且其系数正

负与 𝛾 相关。当地形 𝑏 = 0 时，𝑄2 = 0 为

𝑞1𝜕𝜏𝜁 + 𝑞2𝜁𝜕𝜉𝜁 + 𝑞′
3𝜕𝜉𝜉𝜉𝜁 + 𝑞4𝜕𝜉𝜉𝜉𝜉𝜉𝜁 = 0 … (2.136)

这与 fifth-order KdV 方程形式相同 (Hunter 等, 1988)。在非线性波理论中，五阶

导数项和三阶导数项类似，也表征了色散效应，但是其正负性将对色散关系造成

较大影响，下一章将结合数值结果来讨论这一点。
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下面讨论波过地形的演化方程。不考虑与考虑五阶项的方程分别对应 𝑄3, 𝑄4。

𝑄3 = 𝑞′
1 (𝜕𝑡𝜁 + 𝑐𝜕𝑥𝜁) + 𝑞2𝜁𝜕𝑥𝜁 + 𝑞3𝜕𝑥𝑥𝑥𝜁 − 𝑐2 𝜌3

𝐻2
3

𝛾2𝜕𝑥(𝑏𝜁) … (2.137)

𝑄4 = 𝑞″
1 (𝜕𝑡𝜁 + 𝑐𝜕𝑥𝜁) + 𝑞2𝜁𝜕𝑥𝜁 + 𝑞′

3𝜕𝑥𝑥𝑥𝜁 + 𝑞4𝜕𝑥𝑥𝑥𝑥𝑥𝜁 − 𝑐2 𝜌3
𝐻2

3
𝛾2𝜕𝑥(𝑏𝜁) … (2.138)

其中 𝑞′
1 = 𝑞1/𝜖2, 𝑞″

1 = 𝑞1/𝜖4。和流过地形的情形相比，𝑄3, 𝑄4 除为将自变量换回

𝑥 而将 𝜕𝜏 项还原成 𝜕𝑡 与 𝜕𝑥 的组合之外，只有地形项存在些许不同。

第一个不同之处为此处地形项系数总是为负，而流过地形的方程中地形项

系数的正负性与 𝛾 有关。这在之后的归一化处理中（见节3.2）略有影响，但由

于未进行对波过地形情形的数值模拟与相关研究，我们不再作进一步探讨。

第二个不同之处为地形项包含 𝑏𝜁 乘积项。这说明地形必须依赖于现存的波

才能产生作用，而不能像流过地形的情形中作为一个源项出现，且此时也无法在

初始无波的情形下产生波，与物理实际相吻合。若将乘积偏导数拆开，注意 𝑏 为

预先给定的固定地形形状，则 𝑏𝜕𝑥𝜁 项可以视为一个对波速的修正项，𝜁𝜕𝑥𝑏 项则

相当于 𝜁 乘以一个关于 𝑥 的常函数，暗示了振幅指数增长或衰减的可能性。
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第 3章 流过地形的数值计算

第 2 章导出了流过地形与波过地形两种情形下内波的演化方程。本章将对

流过地形方程中的 KdV 部分作一些数值分析。

3.1 方程系数分析

第 2 章中所得到的流过地形的五阶 KP 方程中的 KdV 部分为

𝜕𝜏𝜁 + 𝑎1𝜁𝜕𝜉𝜁 + 𝑎2𝜕𝜉𝜉𝜉𝜁 + 𝑎3𝜕𝜉𝜉𝜉𝜉𝜉𝜁 + 𝑎4𝜕𝜉𝑏 = 0 … (3.1)

各系数表达式如下。

𝑞1 = 2𝑐 (
𝜌3
𝐻3

𝛾2 + 𝜌2
𝐻2

(𝛾 − 1)2 + 𝜌1
𝐻1 ) … (3.2)

𝑞2 = 3𝑐2
(

𝜌3
𝐻2

3
𝛾3 + 𝜌2

𝐻2
2

(1 − 𝛾)3 − 𝜌1
𝐻2

1 )
… (3.3)

𝑞3 = 𝑐2

3𝜖2 (𝜌3𝐻3𝛾2 + 𝜌2𝐻2 (𝛾2 + 𝛾 + 1) + 𝜌1𝐻1) … (3.4)

𝑞4 = 𝑐2

36
𝐻2
𝜌2

𝛾 (2𝜌3𝐻3𝛾 + 2𝜌2𝐻2𝛾 + 𝜌2𝐻2)
2 … (3.5)

𝑞5 = 𝑐2 𝜌3
𝐻3

𝛾 … (3.6)

𝑎1 = 𝑞2/𝑞1 𝑎2 = 𝑞3/𝑞1 𝑎3 = 𝑞4/𝑞1 𝑎4 = 𝑞5/𝑞1 … (3.7)

式中含有 𝛾 与 𝑐，线性波速的计算式为

𝑟1𝑐4 + 𝑟2𝑐2 + 𝑟3 = 0 … (3.8)

其中

𝑟1 = 𝜌1𝜌2𝐻3 + 𝜌1𝜌3𝐻2 + 𝜌2𝜌3𝐻1 … (3.9)

𝑟2 = − (𝜌1𝐻2𝐻3 (𝜌3 − 𝜌2) + 𝜌2𝐻1𝐻3 (𝜌3 − 𝜌1) + 𝜌3𝐻1𝐻2 (𝜌2 − 𝜌1)) … (3.10)

𝑟3 = 𝐻1𝐻2𝐻3 (𝜌2 − 𝜌1) (𝜌3 − 𝜌2) … (3.11)

下层振幅与上层的比值 𝛾 计算式为

𝛾 = 1 + 𝜌1𝐻2
𝜌2𝐻1

− 𝜌2 − 𝜌1
𝜌2

𝐻2
𝑐2 = (1 + 𝜌3𝐻2

𝜌2𝐻3
− 𝜌3 − 𝜌2

𝜌2

𝐻2
𝑐2 )

−1
… (3.12)
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这些系数与参数，均仅依赖于三层流体的厚度与密度 𝜌𝑖, 𝐻𝑖，但是依赖关系

十分复杂，难以进行理论分析，故直接通过数值计算给出这些系数的分布。注意

这里的 𝜌𝑖 与 𝐻𝑖 是经过标准密度 𝜌0 与总水层厚度 𝐻 无量纲化后的量，故存在关

系

𝐻1 + 𝐻2 + 𝐻3 = 1 … (3.13)

而密度则可选为 𝜌1 = 0.99, 𝜌2 = 1.00, 𝜌3 = 1.01。这一组参数能够较好地代表实验

室模拟与实际海洋密度分布。

下面将以 𝐻1, 𝐻3 为变量，给出两种模态的线性波速，上下层振幅比以及四

个参数的分布图。

(a) (b)

图 3.1线性波速。(a)第一模态，(b)第二模态

Figure 3.1 Linear Wave Speed. (a) mode-1 case, (b) mode-2 case

图3.1中所示的线性波速为经过 √𝑔𝐻 无量纲化后的线性波速。从中可见，第

一模态的线性波速总是大于第二模态的线性波速，第一模态的线性波速范围在

0.04 − 0.06 之间，第二模态的线性波速范围则在 0.01 − 0.035 之间。两种模态的

线性波速均在存在较厚水层时取到较小值。第一模态线性波速在中间层厚度趋

向零，上下层厚度接近时取到较大值，第二模态线性波速则在三层厚度较平均时

取到较大值。

图3.2中所示为两模态的振幅比 𝛾 值。由图中可见对于第一模态 𝛾 总为正，对

于第二模态 𝛾 总为负，这映证了第一模态与第二模态的定义。仅考虑绝对值，可

见在 𝐻1 = 𝐻3 的对称情况下对两模态均有 |𝛾| = 1，即上下层振幅大小相等。但

事实上这对密度分布也有对称的要求。在非对称的情况下，下层振幅可以是上层
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(a) (b)

图 3.2下层振幅与上层振幅比值。(a)第一模态，(b)第二模态

Figure 3.2 Ratio of amplitude of lower layer to upper layer. (a) mode-1 case, (b) mode-2 case

的 1/4 至 4 倍。且对于第一模态，上层厚度较小，下层厚度适中的情况下层振幅

较大；对于第二模态则是下层厚度较小，上层厚度适中的情况下层振幅较大。

(a) (b)

图 3.3非线性项系数 𝑎1。(a)第一模态，(b)第二模态

Figure 3.3 Coefficient of nonlinear term. (a) mode-1 case, (b) mode-2 case

图3.3中所示为非线性项系数 𝑎1 的分布。从图中可见对于两种模态，非线性

项系数均有正有负，并可能取到零。非线性项系数与振幅的正负相关，而非线性

项系数取到零时，说明此时无非线性效应，不存在稳定的内孤立波；初始的波将

逐步耗散能量而无法维持稳定状态。对于第一模态，𝑎1 在 ±0.4 之间取值，正值

分布在下层厚度适中的区域；对于第二模态 𝑎1 则是在 ±1 之间取值，正值分布

在中层厚度较小的区域。整体而言，第二模态内波的非线性效应的强度和第一模

态没有太大差别。
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(a) (b)

图 3.4色散项系数 𝑎2𝜖2。(a)第一模态，(b)第二模态

Figure 3.4 Coefficient of dispersion term. (a) mode-1 case, (b) mode-2 case

由于 𝑞3 中含有较难确定具体值的 𝜖2，故在图3.4中给出的是色散项系数乘以

𝜖2，即 𝑎2𝜖2 的分布。由图中可见对于两种模态色散项系数均总为正，且变化范

围不大。对于第一模态，在中层厚度较小，上下层厚度较平均时取到较大值；对

于第二模态则是在三层厚度较平均时取到较大值，变化规律和线性波速的规律

类似。值得注意的是第一模态的 𝑎2𝜖2 为 10−3 量级，而第二模态为 10−4 量级，说

明第二模态的色散效应强度弱于第一模态。

(a) (b)

图 3.5五阶项系数 𝑎3。(a)第一模态，(b)第二模态

Figure 3.5 Coefficient of fifth-order term. (a) mode-1 case, (b) mode-2 case

图3.5中所示为五阶导数项系数 𝑎3 的分布，由图中可知，第一模态 𝑎3 总大

于零，第二模态 𝑎3 总小于零。五阶项的符号对波的性质有较大的影响，将在之

后结合数值结果讨论。两模态 𝑎3 量级均较小，最大为 10−4 量级；但是量级变化
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范围很大，可以在极端构型下趋向于零，这说明五阶项效应在某些特定构型下较

弱。具体而言，对于第一模态，上层厚度较大时系数 𝑎3 趋向于零；对于第二模

态，则在上层厚度较小或中层厚度较小时系数趋向于零。

(a) (b)

图 3.6地形项系数 𝑎4。(a)第一模态，(b)第二模态

Figure 3.6 Coefficient of topography term. (a) mode-1 case, (b) mode-2 case

图3.6所示为地形项系数 𝑎4 的分布。由图可见，对于地形项系数，第一模态

为 10−2 量级，比第二模态大一量级，且第一模态系数总为正，第二模态系数总

为负。这说明地形对第一模态内波的影响更大，且正（负）地形对第一模态内波

的影响，与负（正）地形对第二模态内波的影响类似。对于第一模态，在上层水

深 𝐻1 较大，下层水深 𝐻3 适中时 𝑎4 取到较大值，地形效应较强；对于第二模态

则是在上下层水深均适中时效应较强。

3.2 方程系数的归一化

为了对方程进行数值模拟，首先通过变换将方程系数全部化为与参数无关

的常数。且为了之后方便进行对比，将方程化为与 (Grimshaw等, 1986)中相同的

形式。即对第 2 章中导出的如下方程

𝜕𝜏1𝜁 + Δ𝜕𝜉𝜁 + 𝑎1𝜁𝜕𝜉𝜁 + 𝑎2𝜕𝜉𝜉𝜉𝜁 + 𝑎3𝜕𝜉𝜉𝜉𝜉𝜉𝜁 + 𝑎4𝜕𝜉𝑏 = 0 … (3.14)

作如下变换

𝜁 = 𝑟1𝜁∗ 𝜉 = 𝑟2𝜉∗ 𝑏 = 𝑟3𝑏∗ 𝜏1 = −𝑟4𝜏∗ Δ = −𝑟2𝑟−1
4 Δ∗ … (3.15)
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其中

𝑟1 = 6 |𝑎1|
−1

|𝑎2|
2

|𝑎3|
−1 𝑟2 = |𝑎2|

−1/2
|𝑎3|

1/2

𝑟3 = 6 |𝑎1|
−1

|𝑎2|
4

|𝑎3|
−2

|𝑎4|
−1 𝑟4 = |𝑎2|

−5/2
|𝑎3|

3/2
… (3.16)

去掉星号后方程成为

− 𝜕𝜏𝜁 − Δ𝜕𝜉𝜁 + 6 𝑎1

|𝑎1|
𝜁𝜕𝜉𝜁 + 𝑎2

|𝑎2|
𝜕𝜉𝜉𝜉𝜁 + 𝑎3

|𝑎3|
𝜕𝜉𝜉𝜉𝜉𝜉𝜁 + 𝑎4

|𝑎4|
𝜕𝜉𝑏 = 0 … (3.17)

由上一节的结果，可知只有 𝑎1 在两种模态下正负均有可能（为零的不存在稳定

内孤立波的情况不考虑），𝑎2 总是为正，𝑎3 与 𝑎4 均是在第一模态中为正，第二

模态中为负。此外，还有两种手段可采取：反相振幅和反相地形。其中反相振幅

为以 −𝜁 代入 𝜁，结果能使得非线性项与地形项变号；反相地形则能使得地形项

变号。基于此，提出如表3.1所示的反相操作方案。

表 3.1方程系数归一化反相操作方式

Table 3.1 Inverting method of coefficient normaliziation

第一模态 第二模态

𝑎1 > 0 不进行操作 反相地形

𝑎1 < 0 反相振幅与反相地形 反相振幅

经过表3.1所示的反相操作方案后，方程中只有 𝑎3 项的正负无法统一，只能

分开考虑。即对于第一模态的内波，所有情况可归结为对如下方程的模拟。

− 𝜕𝜏𝜁 − Δ𝜕𝜉𝜁 + 6𝜁𝜕𝜉𝜁 + 𝜕𝜉𝜉𝜉𝜁 + 𝜕𝜉𝜉𝜉𝜉𝜉𝜁 + 𝜕𝜉𝑏 = 0 … (3.18)

对于第二模态的内波，则归结于如下方程的模拟。

− 𝜕𝜏𝜁 − Δ𝜕𝜉𝜁 + 6𝜁𝜕𝜉𝜁 + 𝜕𝜉𝜉𝜉𝜁 − 𝜕𝜉𝜉𝜉𝜉𝜉𝜁 + 𝜕𝜉𝑏 = 0 … (3.19)

由此可见，当不计五阶导数项，只对传统的 KdV 方程进行模拟时，两模态

内波在各种情况下都遵循相同的方程。但是在考虑五阶导数项后，两种模态就无

法通过简单变换归为同一方程，说明在五阶方程的模型中它们的性质存在一定

的差异，这将在后面的模拟中体现出来。
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3.3 数值模拟算法

对式 (3.18) 与式 (3.19) 两式的数值模拟将采用空间上带有积分因子的谱方

法，与时间方向上的四阶 Runge-Kutta 方法 (Trefethen, 2000)。以式 (3.18) 为例，

首先介绍空间上的谱方法。本节换用常用的记号，以 𝑢 代替 𝜁，𝑡 代替 𝜏，𝑥 代替

𝜉。方程为

− 𝑢𝑡 − Δ𝑢𝑥 + 3 (𝑢2)𝑥 + 𝑢𝑥𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑥 + 𝑏𝑥 = 0 … (3.20)

对其作 Fourier 变换，得

− ̂𝑢𝑡 − Δi𝑘 ̂𝑢 + 3i𝑘ℱ (𝑢2) − i𝑘3 ̂𝑢 + i𝑘5 ̂𝑢 + i𝑘 ̂𝑏 = 0 … (3.21)

利用积分因子法，可消去其中的线性部分。令

𝑈 = ̂𝑢𝑒𝐾𝑡 𝐾 = Δi𝑘 + i𝑘3 − i𝑘5 … (3.22)

得

𝜕𝑡𝑈 = 3i𝑘e𝐾𝑡ℱ (ℱ−1 (e−𝐾𝑡𝑈)
2
) + i𝑘e𝐾𝑡 ̂𝑏 = e𝐾𝑡𝑓(e−𝐾𝑡𝑈) … (3.23)

𝑓(𝑉 ) ≔ 3i𝑘ℱ (ℱ−1 (𝑉 )2) + i𝑘 ̂𝑏 … (3.24)

对此方程，采用四阶 Runge-Kutta 方法来求解，但是算法与标准方案略有一些区

别。记 𝑈𝑖 为 ̂𝑢𝑖𝑒𝐾𝑡𝑖，ℎ 为步长 d𝑡，则四阶 Runge-Kutta 方法的标准迭代步骤为

𝑈𝑖+1 − 𝑈𝑖 = 1
6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) … (3.25)

其中

𝑘1 = ℎe𝐾𝑡𝑖𝑓 (e−𝐾𝑡𝑖𝑈𝑖)

𝑘2 = ℎe𝐾𝑡𝑖+1/2𝑓 (e−𝐾𝑡𝑖+1/2
(𝑈𝑖 + 𝑘1

2 ))

𝑘3 = ℎe𝐾𝑡𝑖+1/2𝑓 (e−𝐾𝑡𝑖+1/2
(𝑈𝑖 + 𝑘2

2 ))

𝑘4 = ℎe𝐾𝑡𝑖+1𝑓 (e−𝐾𝑡𝑖+1 (𝑈𝑖 + 𝑘3))

… (3.26)

代入 𝑈𝑖 的定义可知

𝑈𝑖+1 − 𝑈𝑖 = ̂𝑢𝑖+1e𝐾𝑡𝑖+1 − ̂𝑢𝑖e𝐾𝑡𝑖 … (3.27)

记

𝑘′
1 = 𝑘1e−𝐾𝑡𝑖 𝑘′

2 = 𝑘2e−𝐾𝑡𝑖+1/2 𝑘′
3 = 𝑘3e−𝐾𝑡𝑖+1/2 𝑘′

4 = 𝑘4e−𝐾𝑡𝑖+1

… (3.28)
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在式 (3.25) 两端除以 e𝐾𝑡𝑖+1，得

̂𝑢𝑖+1 = ̂𝑢𝑖e−𝐾ℎ + 1
6 (𝑘′

1e−𝐾ℎ + 2e−𝐾ℎ/2 (𝑘′
2 + 𝑘′

3) + 𝑘′
4) … (3.29)

式 (3.26) 变为

𝑘1 = ℎ𝑓 (e−𝐾𝑡𝑖𝑈𝑖) = ℎ𝑓 ( ̂𝑢𝑖)

𝑘2 = ℎ𝑓 (e−𝐾𝑡𝑖+1/2
(𝑈𝑖 + e𝐾𝑡𝑖

𝑘′
1

2 )) = ℎ𝑓 (e−𝐾ℎ/2
( ̂𝑢𝑖 +

𝑘′
1

2 ))

𝑘3 = ℎ𝑓 (e−𝐾𝑡𝑖+1/2
(𝑈𝑖 + e𝐾𝑡𝑖+1/2

𝑘′
2

2 )) = ℎ𝑓 (e−𝐾ℎ/2 ̂𝑢𝑖 +
𝑘′

2
2 )

𝑘4 = ℎ𝑓 (e−𝐾𝑡𝑖+1 (𝑈𝑖 + e𝐾𝑡𝑖+1/2𝑘′
3)) = ℎ𝑓 (e−𝐾ℎ ̂𝑢𝑖 + e−𝐾ℎ/2𝑘′

3)

… (3.30)

式 (3.24)，式 (3.29) 与 式 (3.30) 即为修改后的四阶 Runge-Kutta 算法，此时各表

达式中不显含当前时间 𝑡𝑖，方便进行直接迭代处理。对于式 (3.19) 而言，只需将

𝐾 中的 −i𝑘5 换为 +i𝑘5 即可。此外，在进行非线性项 ℱ (ℱ−1 (𝑉 )2) 的计算时，还

需要采用 De-aliasing 方法来消除频谱干扰。

3.4 流过正地形的响应

本节与下一节将给出方程式 (3.18) 与式 (3.19)，在初始条件 𝜁(𝜉, 0) = 0 下的

的数值结果，即模拟初始没有波，仅有流以约线性波速的速度经过地形时，发生

的共振效应所产生的波随时间的演化情况，以说明这些内波方程性质的差异。本

节研究正地形的情况，而下一节研究负地形的情况。需要注意的是，这里的“正

负地形”指的是经过3.2节中一系列归一化操作后，𝑏 > 0 或 𝑏 < 0 的情形，这与实

际地形的正负并非直接对应。

根据Grimshaw 等 (1986) 的工作，流过地形的模型在不同的 Δ 取值下具有不

同的性质，可以分为共振区，跨临界区，亚临界区与超临界区。他们在不同的参

数下对不含五阶项的 forced-KdV 方程进行了模拟，而本文将选取相同的参数组

合，对含有五阶项（记其系数为 𝑞，𝑞 可取 +1 或 −1）与不含五阶项的方程（𝑞 取

0）进行对比。所选取的地形函数为

𝑏(𝜉) = 𝐵 sech2 (𝑙(𝜉 − 𝜉0)) … (3.31)

这表示一个以 𝜉0 为中心，𝐵 为最大高度，特征长度为 𝑙−1 的一个单峰起伏地形。
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(a)

(b)

(c)

图 3.7共振情形瀑布图，Δ = 0, 𝑙 = 0.3, 𝐵 = 1。(a) 𝑞 = 0, 𝜉0 = −40，(b) 𝑞 = −1, 𝜉0 = −40，(c)

𝑞 = 1, 𝜉0 = 140

Figure 3.7 Resonant case waterfall plot with Δ = 0, 𝑙 = 0.3, 𝐵 = 1. (a) 𝑞 = 0, 𝜉0 = −40, (b)

𝑞 = −1, 𝜉0 = −40, (c) 𝑞 = 1, 𝜉0 = 140
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(c)

图 3.8共振情形波形图，Δ = 0, 𝑙 = 0.3, 𝐵 = 1。(a) 𝑞 = 0, 𝜉0 = −40，(b) 𝑞 = −1, 𝜉0 = −40，(c)

𝑞 = 1, 𝜉0 = 140

Figure 3.8 Resonant case wave plot with Δ = 0, 𝑙 = 0.3, 𝐵 = 1. (a) 𝑞 = 0, 𝜉0 = −40, (b)

𝑞 = −1, 𝜉0 = −40, (c) 𝑞 = 1, 𝜉0 = 140
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图3.7与图3.8为 Δ = 0 共振情形下三个方程的波形发展图与 𝜏 = 12, 24 两个

时刻的波形图，其中图 (a)，图 (b)，图 (c) 分别对应无五阶项的方程，五阶项系

数 𝑞 = −1 的方程与五阶项系数 𝑞 = 1 的方程，在计算 𝑞 = 1 方程时调整了地形的

位置。此后的结果也都依照相同规律排列。从图 (a) 中可见，共振情形下在地形

附近产生一向下凹陷的波，在地形下游较大范围内产生一较小振幅且振幅随距

离逐渐减小的波列，为调制椭圆余弦波列；在地形上游较小范围内产生一较大振

幅且振幅基本不随距离变化的波列，为孤立波波列。两波列的振幅均约为 1，波

数均随着时间发展而增加。从图 (b) 中可见，对于 𝑞 = −1 的情况，总体特征没

有发生很大变化，只有椭圆余弦波列的振幅略变小，且延伸的范围更远。而从图

(c) 中可见，𝑞 = 1 的情况具有很大的不同之处。在地形上游有一较宽，振幅约为

0.6 的高波，其后为一长段振幅不变，振幅约为 0.4 的波列，再之后为振幅衰减

的波列。而在地形下游的一小段范围内为一些振幅约为 −1 的无规则波。

图3.9与图3.10为临界共振情形，Δ = 3 的取值趋向于共振区上界 Δ+ = 3.3，

此时地形后方的孤立波列发展缓慢 (Grimshaw 等, 1986)。从图 (a) 中可见，在

𝜏 = 24 时也只产生了两个孤立波，但此时孤立波的振幅可达 2.5，而下游的椭圆

余弦波列振幅则只有约 0.2。由图 (b) 可见，在 𝑞 = −1 的情况下上游的内孤立波

向上游传播变得非常缓慢，其位置在 𝜏 = 24 与 𝜏 = 12 两个时间上几乎没有发生

变化，仅有振幅的增加。但此时内孤立波的振幅在 𝜏 = 24 时也只有 1.4。对于

图 (c) 所示的 𝑞 = 1 的情况，也与前两图有较大区别。其地形上游首先为一类似

𝑞 = −1 情况的几乎不动的内孤立波，振幅约为 1，再接着有较大范围的逐渐衰减

的波列，且其振幅约为 0.5。而在地形下游首先为一较矮的平缓凹陷，振幅约为

−0.05，其后也为一些振幅约为 −0.2 的无规则向下游运动的波。

图3.11与图3.12为向亚临界情形跨临界的情形，即 Δ = −1.7，处于共振范围

之外。由图 (a) 可见，这一情形下地形上游的孤立波列被振幅逐渐增加的椭圆余

弦波取代，但最大振幅只有 0.6，而地形下游的椭圆余弦波则具有最大约 1.5 的

振幅。当 𝑞 = −1 时，两波列均振幅略减小，椭圆余弦波列延伸范围更大。而当

𝑞 = 1 时，地形上游具有较明显的一较宽的平缓台阶波，波幅约为 0.3，其后较大

范围内相继有振幅不变与振幅逐渐减小的波列，但其振幅很小，约为 0.2。在地

形下游的波列，此时具有较明显的内孤立波特征，且其振幅较大，可达 −1.5。这

反而与共振态的情况较为类似（即图3.7c）。
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(a)

(b)

(c)

图 3.9临界共振情形瀑布图，Δ = 3, 𝑙 = 0.3, 𝐵 = 1。(a) 𝑞 = 0, 𝜉0 = −40，(b) 𝑞 = −1, 𝜉0 = −40，

(c) 𝑞 = 1, 𝜉0 = 160

Figure 3.9 Critical resonant case waterfall plot with Δ = 3, 𝑙 = 0.3, 𝐵 = 1. (a) 𝑞 = 0, 𝜉0 = −40,

(b) 𝑞 = −1, 𝜉0 = −40, (c) 𝑞 = 1, 𝜉0 = 160

38



第 3 章 流过地形的数值计算

-250 -200 -150 -100 -50 0 50 100 150 200 250
0

1

2
=12

-250 -200 -150 -100 -50 0 50 100 150 200 250
0

1

2
=24

(a)

-250 -200 -150 -100 -50 0 50 100 150 200 250

0

0.5

1
=12

-250 -200 -150 -100 -50 0 50 100 150 200 250

0

0.5

1
=24

(b)

-250 -200 -150 -100 -50 0 50 100 150 200 250

0

0.5

1
=12

-250 -200 -150 -100 -50 0 50 100 150 200 250

0

0.5

1
=24

(c)

图 3.10临界共振情形波形图，Δ = 3, 𝑙 = 0.3, 𝐵 = 1。(a) 𝑞 = 0, 𝜉0 = −40，(b) 𝑞 = −1, 𝜉0 = −40，

(c) 𝑞 = 1, 𝜉0 = 160

Figure 3.10 Critical resonant case wave plot with Δ = 3, 𝑙 = 0.3, 𝐵 = 1. (a) 𝑞 = 0, 𝜉0 = −40, (b)

𝑞 = −1, 𝜉0 = −40, (c) 𝑞 = 1, 𝜉0 = 160
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(a)

(b)

(c)

图 3.11跨临界情形瀑布图，Δ = −1.7, 𝑙 = 0.3, 𝐵 = 1。(a) 𝑞 = 0, 𝜉0 = −80，(b) 𝑞 = −1, 𝜉0 = −80，

(c) 𝑞 = 1, 𝜉0 = 100

Figure 3.11 Transition case waterfall plot with Δ = −1.7, 𝑙 = 0.3, 𝐵 = 1. (a) 𝑞 = 0, 𝜉0 = −80,

(b) 𝑞 = −1, 𝜉0 = −80, (c) 𝑞 = 1, 𝜉0 = 100
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(c)

图 3.12跨临界情形波形图，Δ = −1.7, 𝑙 = 0.3, 𝐵 = 1。(a) 𝑞 = 0, 𝜉0 = −80，(b) 𝑞 = −1, 𝜉0 = −80，

(c) 𝑞 = 1, 𝜉0 = 100

Figure 3.12 Transition case wave plot with Δ = −1.7, 𝑙 = 0.3, 𝐵 = 1. (a) 𝑞 = 0, 𝜉0 = −80, (b)

𝑞 = −1, 𝜉0 = −80, (c) 𝑞 = 1, 𝜉0 = 100
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(a)

(b)

(c)

图 3.13亚临界情形瀑布图，Δ = −4, 𝑙 = 0.3, 𝐵 = 1。(a) 𝑞 = 0, 𝜉0 = −120，(b) 𝑞 = −1, 𝜉0 = −120，

(c) 𝑞 = 1, 𝜉0 = 60

Figure 3.13 Subcritical non-resonant case waterfall plot with Δ = −4, 𝑙 = 0.3, 𝐵 = 1. (a)

𝑞 = 0, 𝜉0 = −120, (b) 𝑞 = −1, 𝜉0 = −120, (c) 𝑞 = 1, 𝜉0 = 60
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图 3.14亚临界情形波形图，Δ = −4, 𝑙 = 0.3, 𝐵 = 1。(a) 𝑞 = 0, 𝜉0 = −120，(b) 𝑞 = −1, 𝜉0 = −120，

(c) 𝑞 = 1, 𝜉0 = 60

Figure 3.14 Subcritical non-resonant case wave plot with Δ = −4, 𝑙 = 0.3, 𝐵 = 1. (a) 𝑞 = 0, 𝜉0 =

−120, (b) 𝑞 = −1, 𝜉0 = −120, (c) 𝑞 = 1, 𝜉0 = 60
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图3.13与图3.14为亚临界情形，即 Δ = −4，位于亚临界区。从图 (a) 中可见，

此时在地形下游具有一固定的振幅为约 −0.4 的波，其后为调制的椭圆余弦波列，

振幅约为 0.15，且随距离存在较为明显的振幅起伏。而在地形上游则为极少的稳

定传播的振幅约为 0.25 的孤立波。对 𝑞 = −1 的情况，由图 (b) 可知只有下游的

椭圆余弦波列延伸范围变大，振幅略微变大，上游的孤立波振幅略减小，其他性

质没有变化。对 𝑞 = 1 的情况，由图 (c) 可知此时下游只存在同 𝑞 = 0, −1 情况的

固定波，其振幅偏小，约为 −0.33，不存在其他波。而地形上游的内孤立波振幅

只有约 0.18，在内孤立波上游则相继产生了振幅不变和随距离衰减的波列，其最

大振幅约为 0.1。

图3.15与图3.16为超临界情形，Δ = 4 位于超临界区。从图 (a) 中可见此时在

地形附近具有振幅约为 0.3 的固定波，在地形上游则没有波，下游为最大振幅为

0.2，快速衰减的椭圆余弦波列，且波列在向下游发展的同时也向下游运动。图

(b) 所示为 𝑞 = −1 的情形，除下游波列衰减较慢，延伸范围更远以外没有明显变

化。而图 (c) 所示 𝑞 = 1 的情形，在固定波的上游则产生了振幅非常小，但是发

展速度非常快的波列。在下游则产生了运动的，振幅约为 −0.2 的没有明显特征

的波列。其运动速度与 𝑞 = 0, −1 情形下椭圆余弦波列相同。
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(a)

(b)

(c)

图 3.15超临界情形瀑布图，Δ = 4, 𝑙 = 0.3, 𝐵 = 1。(a) 𝑞 = 0, 𝜉0 = −100，(b) 𝑞 = −1, 𝜉0 = −100，

(c) 𝑞 = 1, 𝜉0 = 180

Figure 3.15 Supercritical non-resonant case waterfall plot with Δ = 4, 𝑙 = 0.3, 𝐵 = 1. (a)

𝑞 = 0, 𝜉0 = −100, (b) 𝑞 = −1, 𝜉0 = −100, (c) 𝑞 = 1, 𝜉0 = 180

45



三层流体中非线性内波与地形的作用

-300 -200 -100 0 100 200 300
-0.1

0

0.1

0.2

0.3
=12

-300 -200 -100 0 100 200 300
-0.1

0

0.1

0.2

0.3
=24

(a)

-300 -200 -100 0 100 200 300
-0.1

0

0.1

0.2
=12

-300 -200 -100 0 100 200 300
-0.1

0

0.1

0.2
=24

(b)

-300 -200 -100 0 100 200 300

-0.1

0

0.1

0.2

0.3
=12

-300 -200 -100 0 100 200 300

-0.1

0

0.1

0.2

0.3
=24

(c)

图 3.16超临界情形波形图，Δ = 4, 𝑙 = 0.3, 𝐵 = 1。(a) 𝑞 = 0, 𝜉0 = −100，(b) 𝑞 = −1, 𝜉0 = −100，

(c) 𝑞 = 1, 𝜉0 = 180

Figure 3.16 Supercritical non-resonant case wave plot with Δ = 4, 𝑙 = 0.3, 𝐵 = 1. (a) 𝑞 =

0, 𝜉0 = −100, (b) 𝑞 = −1, 𝜉0 = −100, (c) 𝑞 = 1, 𝜉0 = 180
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3.5 流过负地形的响应

本节给出流经过负地形时的响应，即此时 𝑏 < 0。Grimshaw 等 (1986) 同样将

其分为了共振情形，亚临界情形与超临界情形。在下面的例子中，我们仅将地形

取负，即把 𝐵 从 +1 改为 −1。

图3.17与图3.18所示为 Δ = 0 的共振情形的结果。由图 (a)可见，此时在地形

附近有一具有较强的波，其振幅可达 1.5，且在地形附近不存在稳定的状态。在

变化途中，产生了向上游传播的孤立波。根据Grimshaw 等 (1986) 的描述，向上

游传播的孤立波必须获得足够的质量才能稳定传播，否则将会衰减消失。这在瀑

布图的图 (b) 中 𝜏 = 10 至 𝜏 = 15 一段体现得尤为明显。在地形下游则产生一列

调制波列，其振幅最大约为 0.4，且振幅随距离变化较大。图 (b) 所示 𝑞 = −1 的

情况差异不大，只有下游的调制波列振幅的变化更加缓慢，延伸到更远的距离。

图 (c) 所示为 𝑞 = 1 的情况，此时下游产生了一个振幅约为 −1 的孤立波，而上

游则主要是一延伸范围较广，最大振幅约为 0.4，且振幅变化较大的波列。在地

形附近，同样不存在稳定状态。

图3.19与图3.20所示为 Δ = −4 的亚临界情形。由图 (a) 可见在地形附近产生

一个振幅约 0.3 的较大固定波，地形上游产生一振幅随距离增大的波列，最大振

幅可达 0.2。在下游则产生振幅极小，约为 0.03 且随距离衰减极快的波列。图 (b)

所示 𝑞 = −1 的情形在上游区别不大，但是在下游产生了振幅同样很小，但是衰

减非常慢的波列。而图 (c)所示 𝑞 = 1 的情形下，不存在占据较大范围的波列，仅

存在地形附近振幅约 0.2 的固定波，与向上游运动的一个振幅可达 −0.3 的孤立

波包。

图3.21与图3.22所示为 Δ = 4 的超临界情况。由图 (a) 可知，此时几乎不存

在波列。在地形附近有一稳定的振幅约为 −0.2 的凹陷波，地形上游无波，下游

存在一个振幅约为 0.4 的运动的孤立波。图 (b) 所示为 𝑞 = −1 的情形，此时孤立

波的振幅减小至约 0.33，下游波列仍然不明显。图 (c) 所示为 𝑞 = 1 的情形，与

图 (a)(b) 有很大不同。地形附近的稳定凹陷波仍然存在，但其振幅达 −0.3。上游

则产生了一列振幅约为 0.2，随距离衰减的波列。其在下游也产生了一个孤立波，

振幅约为 0.2，但在孤立波之前存在一振幅约为 0.1 的波列，且孤立波的形态不

具有对称性，在下游方向衰减较缓慢，形成类似直角三角形的波形。
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(a)

(b)

(c)

图 3.17共振负地形情形瀑布图，Δ = 0, 𝑙 = 0.3, 𝐵 = −1。(a) 𝑞 = 0, 𝜉0 = −60，(b) 𝑞 = −1, 𝜉0 =

−60，(c) 𝑞 = 1, 𝜉0 = 60

Figure 3.17 Resonant case with negative topography waterfall plot with Δ = 0, 𝑙 = 0.3, 𝐵 = −1.

(a) 𝑞 = 0, 𝜉0 = −60, (b) 𝑞 = −1, 𝜉0 = −60, (c) 𝑞 = 1, 𝜉0 = 60
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图 3.18共振负地形情形波形图，Δ = 0, 𝑙 = 0.3, 𝐵 = −1。(a) 𝑞 = 0, 𝜉0 = −60，(b) 𝑞 = −1, 𝜉0 =

−60，(c) 𝑞 = 1, 𝜉0 = 60

Figure 3.18 Resonant case with negative topography wave plot with Δ = 0, 𝑙 = 0.3, 𝐵 = −1. (a)

𝑞 = 0, 𝜉0 = −60, (b) 𝑞 = −1, 𝜉0 = −60, (c) 𝑞 = 1, 𝜉0 = 60
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(a)

(b)

(c)

图 3.19 亚临界负地形情形瀑布图，Δ = −4, 𝑙 = 0.3, 𝐵 = −1。(a) 𝑞 = 0, 𝜉0 = −120，(b)

𝑞 = −1, 𝜉0 = −120，(c) 𝑞 = 1, 𝜉0 = 20

Figure 3.19 Subcritical non-resonant case with negative topography waterfall plot with Δ =

−4, 𝑙 = 0.3, 𝐵 = −1. (a) 𝑞 = 0, 𝜉0 = −120, (b) 𝑞 = −1, 𝜉0 = −120, (c) 𝑞 = 1, 𝜉0 = 20
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图 3.20 亚临界负地形情形波形图，Δ = −4, 𝑙 = 0.3, 𝐵 = −1。(a) 𝑞 = 0, 𝜉0 = −120，(b)

𝑞 = −1, 𝜉0 = −120，(c) 𝑞 = 1, 𝜉0 = 20

Figure 3.20 Subcritical non-resonant case with negative topography wave plot with Δ = −4, 𝑙 =

0.3, 𝐵 = −1. (a) 𝑞 = 0, 𝜉0 = −120, (b) 𝑞 = −1, 𝜉0 = −120, (c) 𝑞 = 1, 𝜉0 = 20
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(a)

(b)

(c)

图 3.21 超临界负地形情形瀑布图，Δ = 3, 𝑙 = 0.3, 𝐵 = −1。(a) 𝑞 = 0, 𝜉0 = −40，(b) 𝑞 =

−1, 𝜉0 = −40，(c) 𝑞 = 1, 𝜉0 = 80

Figure 3.21 Supercritical non-resonant case with negative topography waterfall plot with Δ =

3, 𝑙 = 0.3, 𝐵 = −1. (a) 𝑞 = 0, 𝜉0 = −40, (b) 𝑞 = −1, 𝜉0 = −40, (c) 𝑞 = 1, 𝜉0 = 80
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图 3.22 超临界负地形情形波形图，Δ = 3, 𝑙 = 0.3, 𝐵 = −1。(a) 𝑞 = 0, 𝜉0 = −40，(b) 𝑞 =

−1, 𝜉0 = −40，(c) 𝑞 = 1, 𝜉0 = 80

Figure 3.22 Supercritical non-resonant casewith negative topographywave plot withΔ = 3, 𝑙 =

0.3, 𝐵 = −1. (a) 𝑞 = 0, 𝜉0 = −40, (b) 𝑞 = −1, 𝜉0 = −40, (c) 𝑞 = 1, 𝜉0 = 80
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3.6 本章内容小结与讨论

本章利用数值方法对流过地形方程的 KdV 部分进行了研究。首先计算线性

波速，上下层振幅比值与方程中的各个系数在 𝜌1 = 0.99, 𝜌2 = 1.00, 𝜌3 = 1.01 的

条件下，值关于水层厚度的分布，并对两种模态内波进行比较。结果显示，两模

态的线性波速为 0.01√𝑔𝐻 量级，且第一模态线性波速大于第二模态。第一模态

上下层振幅同相，而第二模态反相；两模态在结构对称时上下层振幅大小相等，

其余情况随结构不同比值可在 1/4 至 4 的量级变化。两模态非线性效应强度相

近，第一模态的色散效应较强。五阶项效应强度相近，但在特定结构下其强度将

会显著减弱：对第一模态为上层厚度较大的情况，对第二模态为上层或中层厚度

较小的情况。第一模态的地形效应也较第二模态强。

对方程系数进行归一化处理，以方便数值模拟。处理主要包括两方面，一

是通过缩放变量，将其绝对值化为与环境参数无关的常数。二是通过振幅和地

形反相操作，使得方程正负号统一。但是这一操作并不能使得五阶项导数的正

负统一，即第一模态的所有情况归结于式 (3.18)，第二模态的所有情况归结于式

(3.19)。这说明在考虑五阶项时两模态内波将有不同的表现。

数值模拟所采用的方法为谱方法与四阶 Runge-Kutta 方法。在标准程序的

基础上，特别地采用了积分因子法，并对 Runge-Kutta 方法作了相应的等价调

整。基于数值模拟，分别给出了流经过正地形与负地形的数值结果。模拟参考

了Grimshaw 等 (1986) 的方案，在共振情形，跨临界情形，亚临界与超临界情形

下对无五阶项，五阶项系数为 ±1 的三个方程进行了对比研究。其中地形均选为

± sech2(0.3(𝜉 − 𝜉0)) 的单峰形式。

数值结果显示，流经过地形时，主要会在其上游与下游产生孤立波列或椭圆

余弦波列，在地形附近可能产生一固定的波。共振情形下所产生的波的振幅相

对于其余情形更大。纵观各个情形，当存在与三阶项异号的五阶项时，数值结果

与不存在五阶项的情形相差不大。存在异号的五阶项仅使得波的振幅略微减小，

椭圆余弦波包变得平缓，随距离衰减的速度减慢，延伸的范围更远，对波的能量

分布进行了略微调整，显示了更强的色散性。

对于存在同号五阶项的情形，虽然保留了一些共同特征，但是仍有与异号五

阶项，无五阶项差别非常大的性质。在一些情形中，存在同号五阶项使得地形下

游的椭圆余弦波列转变为地形上游的椭圆余弦波列，较大地改变了波列的振幅，

54



第 3 章 流过地形的数值计算

极大的扩展了波列的延伸范围。在亚临界情形中，使得地形下游无波产生。其余

不同之处有将地形附近的下陷波变为地形上游的抬升波，在地形下游产生振幅

较大且为负的不规则孤立波列等。

造成同号五阶项与异号五阶项差别如此之大的原因主要是色散关系的不同。

考虑所模拟的方程

− 𝜁𝜏 − Δ𝜁𝜉 + 𝜁𝜁𝜉 + 𝜁𝜉𝜉𝜉 + 𝑞𝜁𝜉𝜉𝜉𝜉𝜉 + 𝑏𝜉 = 0 … (3.32)

不考虑地形项与非线性项，则可知其色散关系为

𝜔 = Δ𝑘 + 𝑘3 − 𝑞𝑘5 … (3.33)

对于 𝑞 = 0 与 𝑞 = −1 的情形，𝑘3 与 𝑘3 + 𝑘5 在性质上差别不大。但是对于 𝑞 = 1

的情形，为 𝑘3 − 𝑘5，这在性质上就与前两个情形几乎完全不同。但是这一不同

如何导致结果产生如此大的变化，仍需要进一步的研究。

此外，在一些特定情形下，如图3.8c，图3.10c等所示的情况，所得波形具有

较为明显的 Dispersive Shock Wave 的特征。这是一种局部具有周期或近周期结

构，而在较大尺度上表现出振幅，频率缓慢变化的波。其在非线性光学，地球流

体等领域具有重要的研究价值，典型例子有波色-爱因斯坦凝聚中施加激光脉冲

得到的冲击波，与大气中滚筒状云（Morning Glory）等 (El 等, 2016)。
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第 4章 总结与讨论

4.1 主要结论

本文推导了三维非线性内波在流过地形与波过地形两种情形下的内波演化

方程及其高阶形式，并对流过地形对应方程中二维部分作了数值研究，探究了五

阶项的效应。

首先，本文在三层三维含小地形的结构下，由无粘不可压缩的基本流体方程

组出发，利用渐近分析的方法进行求解，导出流过地形与波过地形相应的内波的

演化方程。在三阶项系数较小的假定下，调整量级假定，导出了相应的含有五阶

导数项的修正方程。这四种方程对应的模型中，内波满足相同的线性色散关系，

并且从色散关系中可解得存在线性波速不同的两种模态的波，其中较快的为第

一模态内波，较慢的为第二模态内波。上层振幅与下层振幅均满足相同的比例关

系，其比例系数为关于环境参数和模态的常数，不随时间变化。因此只需考察上

层界面振幅，即可刻画整个内波的演化规律。

对流过地形，无五阶项的情形，方程由传统 KdV 演化方程，地形项与“KP

壳”三部分组成。传统 KdV 演化方程和“KP 壳”部分系数与前人的研究结果一致，

而地形项在方程中作为外强迫出现，可以使得在初始无波的情形下，由流与地形

共振而产生内波。存在五阶项的情形仅仅在方程中添加一五阶导数项，标志着色

散性质发生了一定的变化。而对波过地形的情形，方程和流过地形十分相似，只

在地形项上有所不同。此时地形项为振幅与地形的乘积形式，故其不能作为方程

的外强迫，而是在一定程度上影响了波速与波的增幅或衰减过程。

在数值计算方面，本文研究流过地形方程的二维部分。本文在设定的密度结

构下计算了水层厚度对两模态内波的线性波速，上下层振幅比例，方程中各系数

的影响，并给出了相应的分布图。结果显示，两模态的非线性效应强度，五阶项

效应强度相近，但是五阶项效应强度随层厚变化很大。第一模态的色散效应，地

形效应较第二模态强。此外也得到了系数正负性的分布，并基于这一分布，给出

了系数归一化方案，使得不同的水层结构对应的方程最终都归结为两个统一方

程，分别对应第一模态内波和第二模态内波。其中第一模态内波方程中五阶项与

三阶项同号，第二模态内波方程中则为异号。
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Grimshaw 等 (1986) 给出了无五阶项时流过地形的共振规律，大部分情形下

会在地形附近产生固定的波，在地形上游产生内孤立波列，在下游产生椭圆余弦

波列。为了探究五阶项的影响，本文选取了相同的参数与地形形状，并分为无五

阶项，同号五阶项与异号五阶项三组一并进行数值模拟以对比。无五阶项与异号

五阶项的结果较为相近，存在异号五阶项仅使得椭圆余弦波列发展变快，延伸的

范围变大，内孤立波振幅则相对减小，整体上略微改变了波的能量分布。存在同

号五阶项的情形则与无五阶项，异号五阶项的情形相去甚远。其影响有使得下游

的椭圆余弦波列转变为上游的波列，且极大地加快其发展速度，扩大延伸范围，

较大地改变了波列的振幅；在亚临界情形中，使得地形下游无波产生等。同号五

阶项与异号五阶项影响的差异可以利用色散关系性质不同解释，但是同号五阶

项如何使得波发生如此变化，仍然需要进一步研究。此外，在部分情形中，五阶

项的引入使得波形具有 Dispersive Shock Wave 的特征。

4.2 不足之处与展望

囿于时间精力所限，本研究仍然存在很多方面值得进一步分析探讨。在方程

推导部分，本研究采用了带有刚盖假设的三层浅水结构。而同样被广泛研究的模

型有深水结构 (Choi 等, 1996)，或是上层无穷深的大气结构等。在不同的结构下

将导出性质各异的方程。关于波与地形的振幅，本研究都假定至少为 O (𝜖2) 量级

的小量，故为弱非线性理论。若假定振幅为 O(1) 量级，则成为有限振幅情形，其

对应的理论为MCC等模型，可描述较大振幅的内波与地形 (Choi等, 1999)。但大

振幅模型现有的研究基本都集中在二维与二层模型上，对三维三层的情况所知

不多。在模型中考虑了 𝑦 方向上的变化，从而获得三维 KP 方程是本研究的一大

亮点，但是可以更进一步，利用三维模型考虑地转效应，所得结果可与Grimshaw

等 (1989) 的结论相对比，观察间断分层模型与连续分层模型的不同之处。本研

究基于色散项系数较小的假设导出了五阶方程，但在非线性项系数较小时，同样

也存在一个相应的修正方程，包含更高阶的非线性项，值得进行相应的研究。

通过理论推导，得到了波过地形与流过地形，三阶方程与五阶方程，KP 方

程与 KdV 方程，总共有八种可能的组合可供进一步分析研究。本研究仅仅做了

其中的八分之一，就已经得到了大量结果，故其余的七种情况仍然是待发掘的宝

藏。同时，在这八分之一的研究中，也有许多未竟之事。本文在数值模拟之前，
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对方程作了一些简单直观的分析，但是对其内蕴性质的分析较少，例如其可能

解的形式，不同情形的分界点，稳定状态的解等，都可以通过一定的近似理论推

知。通过这些非线性波理论分析的结果，能更好地对数值结果中包含的信息加以

读取分析，从而进一步诠释方程的性质与理论的不足之处。对于地形样式的选

择，本研究也仅考虑了一种表达式，但是地形的特征宽度，高度，函数形式等等

都将导致流过地形时产生不同的内波。

在方程推导与数值计算之外，本研究并未对模型与实际观测结果或实验结

果进行对比说明，而是将实际参数都进行归一化处理，并对系数固定的方程作数

值模拟，以说明可能会发生的现象。若要与实际结果进行对比，则需要考虑各尺

度变换比例与反相操作，将模拟结果进行相应的变换之后与实验数据进行比较。

虽然还有很多方面并未考虑周全，但是这一研究通过较为严格的渐近分析

给出了流过地形与波过地形的高阶 KP 方程，并通过数值模拟描述了流过地形可

能的性质与产生的现象，为内波理论的发展贡献了一份绵薄之力。人类对于世界

的探索总是由简单认知向复杂模型发展，相信将来三维，多层，高阶，包含多种

因素的内波模型将会越来越受到研究者们的关注。
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