
1 Basic equations
1.1 Introduction
Convection: using fluid to move heat or mass (species)

Transport energy and control temperature:

• environment: temperature in room.

• bio systems: blood, skin.

• technologics: heat exchanger, cars. $ 23 billion market!

• food heating

Big picture: conservation of mass, force-momentum balance, 1st law of thermodynamics,
transport models, conservation of species → governing equations and boundary conditions.
→ solution methods.

1.2 Mass and Momentum equation
Continuity - mass conservation
rate of accumulation of mass inside = net rate of mass flow into volume through surface.

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (1.1)

general 3-D continuity equation. If ρ is constant, then

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (1.2)

Momentum transport (3 direcitons). I=II+III, where

I: Time rate of momentum of fluid in volume

II: net force on fluid in volume

III: net rate pf momentum transport into volume.

x - direction:
I : =

∂

∂t
(ρdxdy dzu) =

∂(ρu)

∂t
dxdy dz (1.3)

For III, first calc the flow in x-dir

[(ρu dy dz)u]x − [(ρu dy dz)u]x+dx = −∂(ρu
2)

∂x
dxdy dz (1.4)

then same for y and z

III : = −u·
(
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z

)
dxdy dz−

(
ρu
∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z

)
dxdy dz (1.5)

For II, simply denote
II : = ρX dxdy dz + ρSx dxdy dz (1.6)

X is the body force per unit mass, Sx is the x direction surface force. In total,

ρ
∂u

∂t
+u

∂ρ

∂t
= −u

[
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z

]
−
(
ρu
∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z

)
+ρX+ρSx (1.7)
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use continuity equation to cancel:

ρ
∂u

∂t
+

(
ρu
∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z

)
= ρX + ρSx (1.8)

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
⇒ ρ

Du

Dt
= ρX + ρSx (1.9)

We get x-dir momentum equation. Also works for y

ρ
Dv

Dt
= ρY + ρSy = ρFy (1.10)

using another annotation,

(u, v, w) → (v1, v2, v3) (x, y, z) → (x1, x2, x3) (1.11)

so
ρ
Dvi
Dt

= ρFi (1.12)

1.3 Surface stresses

dxdx

dzdz

ppzyzydxdzdxdz

xx

zz

yy

ppxyxydxdzdxdz

(p(pxxxxdydz)dydz)x+dxx+dx

(p(pxxxxdydz)dydz)xx

xx x+dxx+dx

Figure 1: stress of control volume

take pxz dxdz for example, first place x means direction, second place z means surface
norm. p doesnot mean pressure, just a notation of force here.∑

ρFx dxdy dz = [(pxx)x+dx − (pxx)x] dy dz + [(pxz)z+dz − (pxz)z] dxdy + · · ·+ ρX dx dy dz

(1.13)

x-direction:
⇒ ρ

Du

Dt
=
∂pxx
∂x

+
∂pxz
∂z

+
∂pxy
∂y

+ ρX (1.14)

generally, with Einstein’s summation:

ρ
Dvi
Dt

= ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

=
∂pij
∂xj

+ ρXi (1.15)
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The decompose is (no subscript p is pressure)

pxx = −p+ τxx pxy = τxy pxz = τxz (1.16)

τxx is the viscous stress. And x-dir:

ρ
Du

Dt
= −∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂x

+
∂τxz
∂z

+ ρX (1.17)

= ρX − ∂p

∂x
+ µ∇2u+

µ

3

∂

∂x

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
(1.18)

− 2

3

∂µ

∂x

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ 2

∂u

∂x

∂µ

∂x
+
∂µ

∂y

(
∂u

∂y
+
∂v

∂x

)
+
∂µ

∂z

(
∂u

∂z
+
∂w

∂x

)
(1.19)

Simplification, firstly, with continuity eq,

Dρ

Dt
= 0 ⇒

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0 (1.20)

and secondly if viscosity is constant, then derivatives with µ vanish.
Sometimes viscosity is related with temperature, so we can use the following technique

instead:
∂µ

∂x
=
∂µ

∂T

(
∂T

∂x

)
(1.21)

and ∂T
∂x can be calculated from heat transfer.

We now have momentum equation, after simplication:

ρ
Du

Dt
= ρX − ∂p

∂x
+ µ∆u (1.22)

this is Navier-Stokes eq. same for y and z

1.4 Developed flow in pipe

ff11gg11hh11

Figure 2: internal flow regime: developing and developed flow

Internal flow regimes: developing flow and fully developed flow. The developed flow is
unchanging in x.

The cylinder is 2a in diameter. Continuity equation is

∂u

∂x
+
∂vr
∂r

+
vr
r

+
1

r

∂vθ
∂θ

= 0 (1.23)

symmetry tells no vr, vθ, so ∂u
∂x = 0 ⇒ u = u(r)
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x-dir momentum equation is

ρ

[
∂u

∂t
+ u

∂u

∂x
+ vr

∂u

∂r
+
vθ
r

∂u

∂θ

]
= X − ∂p

∂x
+ µ

[
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+
∂2u

∂x2

]
(1.24)

changing into
0 = −∂p

∂x
+ µ

1

r

∂

∂r

(
r
∂u

∂r

)
(1.25)

no slip cond: u = 0 at r = a. another cond ∂u
∂r = 0 at r = 0. Integrate momentum equation,

u =
a2

4µ

(
−dp

dx

)[
1−

( r
a

)2]
(1.26)

define

uavg, umean, um =
1

ρAc

(∫
Ac

ρu dAc

)
=

1

ρπa2

∫ a

0

ρu(2πr) dr =
a2

8µ

(
−dp

dx

)
(1.27)

substituting pressure term, then

u = 2umean

[
1−

( r
a

)2]
(1.28)

For the shear stress, in Newtonian fluid,

τxr = µ

(
∂vr
∂x

+
∂u

∂r

)
= µ

∂u

∂r
=
r

2

dp

dx
(1.29)

Take a dx length of the cylinder, the net force at two ends should be balanced by the
friction of wall. That is

pπa2 −
(
p+

dp

dx
dx

)
πa2 + (τxr)wall 2πa dx = 0 ⇒ (τxr)wall =

a

2

dp

dx
(1.30)

So this is consistent. Friction coefficient Cf is a ratio of friction of wall and the dynamic
pressure.

Cf =
τwall
ρu2m/2

=
8µum
aρu2m

=
16

Re
Re =

ρumD

µ
(1.31)

so in the Re − Cf log-log plot, the slope is −1. For turbulance as Re goes up (transition
about Re = 2000), the slope is about −0.2.

Cf is fanning friction factor. If using Darcy friction factor f then Cf = f/4
About the power,

Ẇ = ∆p(πa2)um (1.32)

1.5 Energy equation
In a control volume, derive from 1st law for control volume. We have input/output: conduc-
tion, convection and radiation. Work of the system Ẇ . So the law is the rate of Ecv should
be equal to net inflow of convection, conduction radiation and surface/body forces.

By definition, we have kinetic energy per unit mass

ke =
1

2
(u2 + v2 + w2) =

1

2
vkvk (1.33)

Ecv = ρ

(
e+

1

2
(u2 + v2 + w2)

)
Vcv (1.34)
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Figure 3: Energy equation C.V.

e is internal energy per unit mass. Then

∂

∂t

[
ρ

(
e+

1

2
vkvk

)]
dxdy dz = − ∂

∂xj
[ρvj(e+ ke)] dxdy dz −

∂q′′j
∂xj

dxdy dz (1.35)

+ ρdxdy dz(Xu+ Y v + Zw) +
∂

∂xj
(pijvi) dx dy dz (1.36)

+ ρdxdy dzR (1.37)

The first term on rhs is convection, second is conduction, last is radiation (may also include
chemical reactions and etc.). pij term represents for body force and shear stress.
pij = −pδij + τij

Cancel all dxdy dz,

∂

∂t
[ρ(e+ ke)] +

∂

∂xj
[ρvj(e+ ke)] = −

∂q′′j
∂xj

+ ρXjvj +
∂

∂xj
((−pδij + τij)vi) + ρR (1.38)

using continuity equation ∂ρ
∂t +

∂
∂xj

(ρvj) = 0 to simplify, then

ρ
∂(e+ ke)

∂t
+ ρvj

∂(e+ ke)

∂xj
= −

∂q′′j
∂xj

+ ρXjvj +
∂

∂xj
((−pδij + τij)vi) + ρR (1.39)

on the lhs we can use D
Dt notation. and

D(ke)

Dt
=

D

Dt

(vkvk
2

)
= vk

Dvk
Dt

(1.40)

we get
De

Dt
+ vj

Dvj
Dt

= −
∂q′′j
∂xj

+ ρXjvj +
∂

∂xj
((−pδij + τij)vi) + ρR (1.41)

using momentum equation, ρDviDt =
∂pij
∂xj

+ ρXi to simplify. Multiply it by velocity, we get
Mechanical energy equation

ρ
D(ke)

Dt
= ρvk

Dvk
Dt

= vi
∂pij
∂xj

+ ρviXi (1.42)

And use mechanical energy equation to simplify, getting thermal energy balance equation or
thermal transport equation

ρ
De

Dt
= −

∂q′′j
∂xj

+ pij
∂vi
∂xj

+ ρR (1.43)
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It can also be written

ρ

[
De

Dt
+
p

ρ

∂vi
∂xi

]
= −∂q

′′
i

∂xi
+ τij

∂vi
∂xj

+ ρR (1.44)

Then make use of continuity

∂vi
∂xi

= −1

ρ

Dρ

Dt
= ρ

Dρ−1

Dt
(1.45)

we get
ρ

[
De

Dt
+ p

D

Dt

(
1

ρ

)]
= −∂q

′′
i

∂xi
+ τij

∂vi
∂xj

+ ρR (1.46)

We want to use enthalpy, that is i = e+ p/ρ, we get

ρ
Di

Dt
− Dp

Dt
= −∂q

′′
i

∂xi
+Φ+ ρR Φ = τij

∂vi
∂xj

(1.47)

Φ is viscous dissipation function. Most of the time dissipation can be neglected in engineering.
Also for Dp

Dt .
For gases, Φ is less likely to take effect unless in turbines. Dp

Dt may be affective. For
liquids, it is often incomressible, so Dρ

Dt = 0, cv = cp = c,e = i,

ρ
De

Dt
= ρ

Di

Dt
= ρc(T )

DT

Dt
= −∂q

′′
i

∂xi
+Φ− ρR (1.48)

Integrating to get mean properties, we want to get thermal energy convected in axial
direction. Mean enthalpy im,

ṁim =

∫
Ac

ρui dAc (1.49)

If ρ = const, cp = const, i = cpT , define im = cpTm. For a cylinder tube, radius a, we have

in: πa2ρumim out: πa2ρum
(
im +

dim
dx

dx

)
(1.50)

while in the C.V. heat transfer from wall is q′′w(2πa dx). From out=in+tran, we get

πa2ρum
dim
dx

dx = q′′w(2πa) dx (1.51)

further,
Tm =

1

umAc

∫
uT dAc q′′w =

1

2
aρumcp

dTm
dx

(1.52)

1.6 Summary
Continuity

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (1.53)

If incompressible, can be simplified.

Momentum x-dir, incompressible flow, µ const

ρ
Du

Dt
= −∂p

∂x
+ µ

[
∂2u

∂x2
+
∂2v

∂y2
+
∂2w

∂z2

]
+X (1.54)
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Energy q′′i = −k ∂T∂xi
, i = cpT ,

ρcp
DT

Dt
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+Φ+ ρR (1.55)

= k∇2T +Φ+ ρR (const k) (1.56)

Example Fully Dev flow in round tube, lam. flow, energy eqn. Ignored heat gen, viscosity
diffusion.

ρucp
∂T

∂x
+ ρvrcp

∂T

∂r
=
k

r

∂

∂r

(
r
∂T

∂r

)
+

k

r2
∂2T

∂θ2
+ k

∂2T

∂x2
(1.57)

2 Fully Developed and developing flow
Fully developed: velocity field and thermal field.

2.1 FD flow in round pipe
Energy equation for round pipe, FD refers to fully

developed.

ρucp
∂T

∂x
+ ρvrcp

∂T

∂r
=
k

r

∂

∂r

(
r
∂T

∂r

)
+

k

r2
∂2T

∂θ2
+ k

∂2T

∂x2
(2.1)

the θ term need not to be considered. But ∂2T
∂x2 can also be neglected in common situation, as

it represents conduction, which is much slower than convection. We only need to consider
it if the velocity is slow or the liquid is highly conductive. And with vr = 0, we end up with

ρucp
∂T

∂x
=
k

r

∂

∂r

(
r
∂T

∂r

)
(2.2)

The FD flow provile is given by subsection 1.4

u = um

(
1−

( r
a

)2)
um =

a2

8µ

(
−dp

dx

)
(2.3)

In order to make use of FD condition, the unitless temperature is introduced.

ϕ =
Tw(x)− T (x, r)

Tw(x)− Tm(x)

∂ϕ

∂r
=

−1

Tw − Tm

∂T

∂r
(2.4)

And FD means ϕ is only a function of r. With ϕ, we can compute q′′w and h. note ∂ϕ
∂r

is also only a
function of r.

q′′w = −k∂T
∂r

∣∣∣∣
r=a

= k(Tw − Tm)
∂ϕ

∂r
(r = a) h =

q′′w
Tw − Tm

= k
∂ϕ

∂r
(a) (2.5)

We need to specify BCs to solve the problem. There are usually 2 cases.

case 1: constant heat flux q′′w = const

ϕ = f(r) ⇒ ∂ϕ

∂x
=

∂

∂x

[
Tw − T

Tw − Tm

]
= 0 (2.6)

⇒ 1

Tw − Tm

dTw
dx

− 1

Tw − Tm

∂T

∂x
− Tw − T

(Tw − Tm)2
d

dx
(Tw − Tm) = 0 (2.7)

⇒ dTw
dx

− ∂T

∂x
− ϕ

d

dx
(Tw − Tm) = 0 (2.8)
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as q′′w ∼ (Tw − Tm), q′′w = const means Tw − Tm is const, so Equation 2.8 turns
into dTw

dx = ∂T
∂x . Also Tw − Tm is const leads to dTw

dx = dTm

dx , then, consider heat
conservation Equation 1.52

dTw
dx

=
∂T

∂x
=

dTm
dx

(2.9)

substitute u with um in Energy equation Equation 2.2,

um
α

dTm
dx

(
1−

( r
a

)2)
=

1

r

∂

∂r

(
r
∂T

∂r

)
(2.10)

With BC, q′′w = −k ∂T∂r at r = a and ∂T
∂r = 0 at r = 0, and make use of Equation 1.52

dTm
dx

=
2q′′w

ρumacp
(2.11)

the solution is

T (x, r) = Tw(x)−
2uma

2

α

dTm
dx

[
3

16
+

1

16

( r
a

)4
− 1

4

( r
a

)2]
(2.12)

Tm(x) = Tw(x)−
11

96

(
2um
α

)
dTm
dx

a2 (2.13)

the relation of ∂xTm and q′′w, in this case, the convection coefficient is

h =
q′′w

Tw − Tm
=

48

11

k

2a
or NuD =

hD

k
=

48

11
≈ 4.364 (2.14)

case 2: constant wall temperature Tw. According to Equation 2.8,

∂T

∂x
− Tw − T

Tw − Tm

dTm
dx

= 0 ⇒ ∂T

∂x
= ϕ(r)

dTm
dx

(2.15)

using energy equation,

u

α
ϕ(r)

dTm
dx

=
1

r

∂

∂r

(
r
∂T

∂r

)
(2.16)

B.C., T (a) = Tw,
∂T
∂r |r=0 = 0. Assume the solution is of infinite series, then

ϕ(r) = 1.803

∞∑
n=0

c2n

( r
a

)2n
(2.17)

Question 1: The property of ϕ?
With the definition of ϕ, I found it would be strange if take average on it:

ϕ =
Tw − T

Tw − Tm
⇒ Tw − T = (Tw − Tm)ϕ (2.18)

take average on both side, as Tw and Tm is not function of r,

Tw − Tm = (Tw − Tm)
1

umAc

∫
uϕdAc (2.19)
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Cancel out Tw − Tm, we find

umAc =

∫
uϕ dAc (2.20)

and with the definition of um

um =
1

Ac

∫
udAc ⇒

∫
(u− uϕ) dAc = 0 (2.21)

For the case of fully developed flow in the pipe, as u is already known,∫ a

0

um

(
1−

( r
a

)2)
(1−ϕ)r dr = 0 ⇒

∫ a

0

(
1−

( r
a

)2)
(1−ϕ)r dr = 0

(2.22)
So is the eqn. above a condition that every ϕ should satisfy, or we can even
solve ϕ from it?

substitute, generate equations for coefficients that balance powers of r.

c0 = 1 c2 = −1

4
λ20 = −1.828397 c2n =

λ20
(2n)2

(c2n−4 − c2n−2) λ0 = 2.704364

(2.23)
In this situation, NuD = h(2a)

k = 3.657, q′′w = h(Tw − Tm) is getting smaller as Tm
increases. As h = 3.657 kD , if we want a higher h, then we need larger k or smaller
D.

Stanton number is a ratio of heat transfer and heat capacity.

St ≡ h

ρumcp
(2.24)

Nu = St · Pr ·Re Pr =
µcp
k

Re =
ρumD

µ
(2.25)

2.2 FD Flow in Rectangular Channel
Rectangular channals, flow in x, dir y, z length b, a. Fully developed steady flow, neglect
viscosity, dissipation, radiation and press work, const properties, neglect axial conduction.

Continuity: ∂u

∂x︸︷︷︸
=0

+
∂v

∂y
+
∂w

∂z
= 0 B.C. v = w = 0 (2.26)

so everywhere v = w = 0.

Momentum: ρ
(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂y2
+
∂2u

∂z2

)
(2.27)

⇒ ∂2u

∂y2
+
∂2u

∂z2
=

1

µ

∂p

∂x
(2.28)

as ∂p
∂x = const, this is poisson equation. We solve this with B.C. u = 0 on boundaries. And

we expect ∂u
∂y = ∂u

∂z = 0 at centerline.
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With u(y, z),

ρcp

u∂T∂x + v
∂T

∂y
+ w

∂T

∂z︸ ︷︷ ︸
=0

 = k

(
∂2T

∂y2
+
∂2T

∂z2

)
(2.29)

⇒ u(x, y)

α

∂T

∂x
=
∂2T

∂y2
+
∂2T

∂z2
(2.30)

We can solve the equation for T = Tw or q = qw at boundaries.
To solve, postulate temperature field T = ϕ(y, z)f(x), substitute into equation, we get

f ′

f
=

α∇2ϕ

u(y, z)ϕ
= const (2.31)

we can solve the combination for every a, b.

b/a Nu, Heat flux BC Nu, Temperature BC
Circle 4.364 3.66

Triangle 3.11 2.49
Rectangle 1.0 3.61 2.98
Rectangle 2.0 4.12 3.39
Rectangle 4.0 5.33 4.44
Rectangle 8.0 6.49 5.60
Rectangle ∞ 8.235 7.54

Table 1: Nussel number in different shape

Two affecting factors are the minimal distance from centerline to edges and internal corner
angles. We can also use Stanton number.

Colburn j factor, which is defined as

j ≡ StPr2/3 (2.32)

Since Nu is const for fully developed flow, StPr ∝ Re−1. Friction factor cf = fFanning =
16Re−1, so St ∝ cf , meaning when we raise St, the friction effect also increased. This is
heat/momentum transport analogy.

2.3 Thermal Entry Flow Between Parallel Plates
Garetz problemNow we want to know what is the condition of fully developed flow.
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Figure 4: Flow between parallel plates

DH =
4A0

Dw
=

4(2b)(1)

2
= 4b (2.33)

The energy equation is
ρucp

∂T

∂x∗
=

∂

∂y∗

(
k
∂T

∂y∗

)
(2.34)

For developing flow we can have

(1) velocity field and T developing

(2) velocity field fully developed, and T is developing. Can occur when unheated entry or
large Pr

we assume the second situation. The velocity profile is

u

um
=

3

2

[
1−

(
y∗

b

)2
]

(2.35)

take ρcp = const, α = k/ρcp, αref = kref/ρcp, dimensionless number

y =
y∗

b
x =

2x∗

3umb2/α
= 4

x∗

b

αref
ν

ν

um(4b)

2

3
=

2

3

x∗

b

4

Pe
(2.36)

where Pe is Peclet number, Pe = RePr. Partially dimensions form:

2

3

u

um

∂T

∂x
=

∂

∂y

(
α

αref

∂T

∂y

)
(2.37)

θ =
T − Tw
Ti − Tw

⇒ (1− y2)
∂θ

∂x
=

∂

∂y

(
α

αref

∂θ

∂y

)
(2.38)

BC: θ(0, y) = θi = 1, θ(x,±1) = θw = 0.
Postulate: θ(x, y) = X(x)Y (y), then

(1− y2)X ′Y =
α′(y)

αref
+
α(y)

αref
XY ′′ ⇒ X ′

X
=

α′

αref

Y ′

(1− y2)Y
+

α

αref

Y ′′

(1− y2)Y
= −β2

(2.39)
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First consider α is constant, we get

X ′ + β2X = 0 ⇒ X = Ce−β
2x (2.40)

Y ′′ + (1− y2)β2Y = 0 (2.41)

We can have different βs. This is called Sturm-Liouville problem.

Sturm-Liouville Problem
d

dy

(
r(y)

dϕ

dy

)
+ [q(y) + λp(y)]ϕ = 0 (2.42)

BC: a1ϕ(a)− a2ϕ
′(a) = 0, b1ϕ(b)− b2ϕ

′(b) = 0.

Usually there will be eigenvalues λm = {λ1, λ2, . . . }, and also eigenfunctions ϕm. Any
two eigenfactors are orhogonal.

Orthogonality: →
∫ b

a

p(y)ϕm(y)ϕn(y) dy = 0 n ̸= m (2.43)

Method of Frobenius: we postulate

Y =

∞∑
n=0

any
n+c (2.44)

so we get∑
an(n+ c)(n+ c− 1)yn+c−2 + β2

∑
any

n+c − β2
∑

any
n+c+2 = 0 (2.45)

then we get

n = 0 ⇒ a0c(c− 1) = 0 ⇒ c = 0, 1 (2.46)
n = 1 ⇒ a1c(c+ 1) = 0 ⇒ choose a1 = 0 (2.47)

repeat the process to get other coefficients. we set a1 = 0 only for
convenience, it does
not matter.

an =
−β2(an−2 − an−4)

(n+ c)(n+ c− 1)
(2.48)

Y = c1

[
1− β2

2
y2 +

β2

12

(
β2

2
+ 1

)
y4 + · · ·

]
+ c2

[
y − β2y3

16
+
β2

20

(
β

6
+ 1

)
y5 + · · ·

]
(2.49)

But the situation is symmetric with y = 0, so only have c1 term, or say c2 = 0. And the
remaining is the eigenfunction.

B.C. require Y (1) = 0, so β are the roots of

1− β2

2
+
β2

12

(
β2

2
+ 1

)
+ · · · = 0 ⇒ β0 = 1.67 β1 = 5.67 . . . (2.50)

Now
θ =

∑
cme−β

2
mxYm(y) (2.51)
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using B.C.,
θ(0, y) = 1 ⇒

∑
cmYm(y) = 1 (2.52)

multiply both sides by (1− y2)Yn and integrate,∫ 1

−1

(1− y2)Yn dy =
∑
m

∫ 1

−1

cmYmYn(1− y2) dy = cn

∫ 1

−1

Y 2
n (1− y2) dy (2.53)

so we get

cn =

∫ 1

−1
(1− y2)Yn dy∫ 1

−1
(1− y2)Y 2

n dy
(2.54)

Once we get the function,

Nu =
h · 4b
k

=
4bqw

k(Tw − Tm)
= − 4

θm

(
∂θ

∂y

)
y=1

(2.55)

=
4
∑
cme−β

2
mxY ′

m(1)
3
2

∑
cme−β

2
mxY ′

m(1)/β2
m

(2.56)

At large x, only the first term dominates, and Nussel number → 8β2
0/3 = 7.56. The process

is

Nu(x = 0.0067) = 13.1 Nu(x = 0.0667) = 8.20 Nu(x = 0.2) = 7.52 Nu(x = 1) = 7.52
(2.57)

2.4 Developing Flow in Round Tube
constant heat flux

u
∂T

∂x∗
=
α

r

∂

∂r

(
r
∂T

∂r

)
T (0, r) = Ti = 0

∂T

∂r

∣∣∣∣
r=0

= 0
∂T

∂r

∣∣∣∣
r=rw

=
qw
k

(2.58)

we solve for T − TFD, as T − TFD → 0 as x∗ → ∞. Fully developed solution for this case
can be written as

TFD
qwrw/k

=
4x∗/rw
RePr

− 4

[
3

16
− 1

4

(
r

rw

)2

+
1

16

(
r

rw

)4
]

(2.59)

we postulate solution of the form

T = TFD +
qwrw
k

V (x∗, r) (2.60)

substitute and use the fact that

u
∂TFD
∂x

=
α

r

∂

∂r

(
r
∂TFD
∂r

)
(2.61)

leads to

2um

(
1−

(
r

rw

)2
)
∂V

∂x∗
=
α

r

∂

∂r

(
r
∂V

∂r

)
(2.62)

we define dimensionless

r+ =
r

rw
x =

x∗

rw

(
1

RePr

)
Re =

um(2rw)

ν
Pr =

ν

α
(2.63)
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then get
(1− (r+)2)

∂V

∂x
=

1

r+
∂

∂r+

(
r+

∂V

∂r+

)
(2.64)

BCs
∂V

∂r+

∣∣∣∣
r+=0

= 0
∂V

∂r+

∣∣∣∣
r+=1

= −3

4
V |x=0 =

3

4
− (r+)2 +

1

4
(r+)4 (2.65)

We still use separation of variables. Same methdology as flat plate case except eigenfunctions
are different. Result is

Nux =

[
1

Nu∞
− 1

2

∑
m

1

Amγ4m
e−γ

2
mx

]−1

(2.66)

γ21 = 25.68 γ22 = 83.86 Am = 7.63× 10−3 Am = 2.053× 10−3 (2.67)
Then compute x with Nu,

Nux(0) = ∞ Nux(0.002) = 12.00 Nux(0.010) = 7.49 (2.68)
Nux(0.040) = 5.19 Nux(0.100) = 4.51 Nux(∞) = 4.36 (2.69)

Now constant wall temperature Tw case

u
∂T

∂x
= α

[
1

r

∂

∂r

(
r
∂T

∂r

)]
+ α

∂2T

∂x2
(2.70)

Non-dimensionalize,

r+ =
r

rw
u+ =

u

um
x+ =

2(x/2rw)

RePr
θ =

Tw − T

Tw − Ti
(2.71)

we get
u+

2

∂θ

∂x+
=

∂2θ

∂(r+)2
+

1

r+
∂θ

∂r+
+

1

(RePr)2
∂θ

∂(x+)
(2.72)

as θ, u+, x+, r+ are expected to have order 1, if Pe = RePr is very large, then the last term
can be neglected. But if Pe is very small, it will become important.

We assume this is hydrodynamically fully developed, so u+ = 2(1−r+2). Then postulate
speparation of variables.

θ(x+, r+) = R(r+)X(x+) ⇒ X ′

X
= −λ2 (2.73)

the solution has the form

θ(x+, r+) =

∞∑
n=0

cnRn(r
+)e−λ

2
nx

+

(2.74)

cn and Rn(r
+) are determined using Sturm-Liouville process. Then we can have Tm(x+),

qw and h, Nu

Nu(0) = ∞ Nu(0.001) = 12.80 Nu(0.01) = 6.00 (2.75)
Nu(0.10) = 3.71 Nu(∞) = 3.66 (2.76)

FD conditions reached at x+ ≈ 0.10.
2(x/D)

RePr
= 0.1 ⇒ (x/D)FD = 0.05RePr ∼ 5 for air at Re = 100 (2.77)
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2.5 Summary
FD flow and heat transfer.

round pipe:
u

um
= 2

(
1− r2

r2w

)
f =

τw
ρu2m/2

=
16

Re
(2.78)

ϕ =
Tw − T

Tw − Tm
= ϕ(r) ⇒ hFD =

qw
Tw − Tm

= const (2.79)

hFDD

k
= NuFD = const (2.80)

u(r)
∂T

∂x
=

k

ρcp

1

r

∂

∂r

(
r
∂T

∂r

)
(2.81)

∂T
∂x is const if qw is const, and NuFD = 4.36, geometry affects.

Thermally developing flows. velocity field FD. T (x, r), u(r), v = 0

u(r)
∂T

∂x
=

k

ρcp

1

r

∂

∂r

(
r
∂T

∂r

)
(2.82)

Isothermal wall T (x = 0, r) = Tm, T (x, rw) = Tw, ∂T
∂r (x, r = 0) = 0

Figure 5: Nussel number along developing.

3 Boundary Layer

Solution strategies
• Analytical solutions or solving PDEs using math tools.

• PDE to ODE, using similarity, solve PDE with math tools or numerically.

• PDE, use finite difference or finite element equations, solve numerically.

15



3.1 Leveque Models
Near inlet heat transfer Two parallel plates. Hydrodynamically to fully developed:

u = u(y) v = 0 ⇒ u

um
= 6

(
h

H
− y2

H2

)
(3.1)

Thermally developing, Leveque I model.

u
∂T

∂x
= α

∂2T

∂y2
(3.2)

At the boundary, want to linearize u.

u = uw︸︷︷︸
=0

+
∂u

∂y

∣∣∣∣
w

y +
1

2

∂2u

∂y2

∣∣∣∣
w

y2 + · · · = τw
µ
y (3.3)

so u = βy, β = τw/µ, and

βy
∂T

∂x
= α

∂2T

∂y2
(3.4)

BC: at x = 0, T = Ti; at y = 0, T = Tw; at y = H/2, ∂T
∂y = 0. But we replace the last one

with T = Ti as y → ∞.
Define a similarity variable, usually let

η = cynx−p, and go
through the process,
choose suitable param
value to let
x-dependent terms
(both in equation and
BC) drop off.

η =

(
β

9αx

)1/3

y
∂

∂x
=

d

dη

∂η

∂x

∂

∂y
=

d

dη

∂η

∂y
(3.5)

then we get
d2T

dη2
= −3η2

dT

dη
T = Tw, η = 0 T = Ti, η → ∞ (3.6)

can show the solution is

T − Tw
Ti − Tw

=

∫ η
0
e−s

3

ds∫∞
0

e−s3 ds
=

1

0.893

∫ η

0

e−s
3

ds (3.7)

h =
−k

Tw − Ti

∂T

∂y

∣∣∣∣
y=0

=
k

0.893

(
β

9αx

)1/3

∼ x−1/3 (3.8)

We expect h ∼ k/δt, so δt ∼ x1/3.

Nu =
hDH

k
=
h(2H)

k
=

(
DH

k

)1/3(
12umDH

9α

)1/3
1

0.893
= 1.23

(
DH

x

)1/3(
umDH

ν

)1/3 ( ν
α

)1/3
(3.9)

qw = −k∂T
∂y

∣∣∣∣
y=0

=
k

0.893(9)1/3

(
β

αx

)1/3

(Tw − Ti) (3.10)

⇒ qw = 0.538k

(
τw
µαx

)1/3

(Tw − Ti) (3.11)

This implies qw ∼ τ
1/3
w , so increasing qw will lead to increase of τw.
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Leveque I model

Cy
∂T

∂x
= α

∂2T

∂y2
(3.12)

qw ∼ x−1/3(Tw − Ti), h ∼ x−1/3, Nux = hx
k ∼ x2/3

There are other models.

Slug Flow
Slug flow is where
u = c is constant

C
∂T

∂x
= α

∂2T

∂y2
(3.13)

qw ∼ x−1/2(Tw − Ti), h = qw
Tw−Ti

∼ x−1/2, Nux = hx
k ∼ x1/2

For round tubes,
u(r)

∂T

∂x
=
α

r

∂

∂r

(
r
∂T

∂r

)
(3.14)

FD flow u = 2um(1− (r/a)2). Also use Leveque I approximation,

u =
∂u

∂r

∣∣∣∣
r=a

(r − a) (3.15)

set transformation s = a− r, assume s≪ a so a− s ≈ a

4ums

a

∂T

∂x
= α

∂2T

∂s2
(3.16)

With similar approach, the result is

Nux =
hx

k
= 1.077(2aPe/x)1/3 = 1.36(x+)−1/3 Pe = ReDPr x+ =

x/a

ReDPr
(3.17)

this models the left part of Figure 5, and when the slope changes in the graph, it comes to
fully developed state.

Leveque II, Thermal and quasi-hydro development. Parallel plates.

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3.18)

take u = u(x, y), and v ∂T∂y is small enough to negect. Take u = τw(x)y/µ = β(x)y. Integrate
continuity equation,

v = −
∫
∂u

∂x
dy = −dτw

dx

∫
y

µ
dy (3.19)

assume v ∂T∂y ≪ u∂T∂x , we find

u
∂T

∂x
= α

∂2T

∂y2
⇒ τw(x)

αµ

∂T

∂x
=

1

y

∂2T

∂y2
(3.20)

let ds = αµ/τw(x) dx, s =
∫ x
0
αµ/τw(x) dx. Then equation becomes

∂T

∂s
=

1

y

∂2T

∂y2
(3.21)
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define η = y/(9s)1/3, and the solution is

T − Tw
Ti − Tw

=
1

0.893

∫ η

0

e−λ
3

dλ qw(s) =
(Tw − Ti)kα

−1/3µ−1/3

9−1/30.893

∫ x

x=0

dx

τw(x)
(3.22)

Leveque III T (x, y), u(x, y), v(x, y). Again,

ρcp

[
u
∂T

∂x
+ v

∂T

∂y

]
= k

∂2T

∂y2
(3.23)

apply the von mises transform (x, y) → (x, ψ), ψ is stream function, u = ψy, v = −ψx.
Convert T (x, y) to T (x, ψ(x, y)).

u

(
∂T

∂x

)
y

=

(
∂ψ

∂y

)
x

[(
∂T

∂x

)
ψ

+

(
∂T

∂ψ

)
x

+

(
∂ψ

∂x

)
y

]
(3.24)

v

(
∂T

∂y

)
x

= −
(
∂ψ

∂x

)
y

(
∂T

∂ψ

)
x

(
∂ψ

∂y

)
x

(3.25)

k

ρcp

∂2T

∂y2
=

k

ρcp
u

(
∂

∂ψ

)
x

(
u

(
∂T

∂ψ

)
x

)
(3.26)

⇒ u

(
∂T

∂x

)
ψ

=
k

ρcp
u

(
∂

∂ψ

)
x

(
u

(
∂T

∂ψ

)
x

)
(3.27)

this equation includes v ∂T∂y term explicitly. Assume in the boundary layer region, u =

τw(x)y/µ,

⇒ ∂ψ

∂y
=
τw(x)y

µ
⇒ ψ =

τw(x)y
2

2µ
(3.28)

so the actual transfrom is

y =

√
2µ

τw(x)
ψ1/2 u =

√
2τw(x)

µ
ψ1/2 (3.29)

⇒ 1

k/ρcp

1

(2τw(x)/µ)1/2
∂T

∂x
=

∂

∂ψ

[
ψ1/2 ∂T

∂ψ

]
(3.30)

let z = ψ0.5 V =
1

4

∫ x

0

k

ρcp

(
2τw(x)

µ

)1/2

dx (3.31)

⇒ ∂T

∂V
=

1

z

∂2T

∂z2
(3.32)

this is equivalent to Leveque II equation if V replaces s and z replaces y. The solution is

q′′ = −k∂T
∂z

∣∣∣∣
z=0

=
(Tw − Ti)kV

−1/3

9−1/3(0.893)
(3.33)

rearrange it in physical terms,

∂T

∂z
=
∂T

∂y

(
2µ

τw(x)

)1/2

(3.34)

q′′w = −k
(
∂T

∂y

)
y=0

= −k
(
∂T

∂z

)
z=0

√
τw(x)

2µ
=

(Tw − Ti)k(µα)
−1/3τw(x)

1/2

3
√
9(0.893)

[∫ x
0

√
τw(x) dx

]1/3 (3.35)
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Entry Flow solutions (Approx formulations)

Leveque I (
6um
H

)
︸ ︷︷ ︸

=u

yTx = αTyy ⇒ q′′w ∼ Tw − Ti
x1/3

(3.36)

for slug flow q′′w ∼ (Tw − Ti)/x
1/2

Leveque II

τw(x)

µ
yTx = αTyy ⇒ q′′w =

Tw − Ti
0.893

(
k

[9αµ]1/3

)(∫ x

0

dx

τw(x)

)−1/3

(3.37)

Leveque III (
τw(x)

y

)
Tx −

dτw(x)

dx

y2

2µ
Tx = αTyy (3.38)

q′′w refers to Equation 3.35

For τw(x), the results of boundary layer flow theory can bu used. For BL laminar
flow,

τw = 0.332µ

(
u
3/2
∞

ν1/2

)
x−1/2 (3.39)

For leveque III,

q′′w =
(Tw − Ti)k

x1/2

( ν
α

)1/3 (u∞
ν

)1/2 (0.332)(3/4)1/3

3
√
9(0.893)

(3.40)

Nux =
q′′wx

(Tw − Ti)k
= 0.339

(u∞x
ν

)1/2 ( ν
α

)1/3
= 0.339Re1/2x Pr1/3 (3.41)

Assessment of Axial Fluid Conduction

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂x2
+ k

∂2T

∂y2
(3.42)

axial conduction
axial convection =

k∂2xT

ρcpu∂xT
∼ α

UcLc
=

1

RePr
= Pe−1 (3.43)

axial conduction is negligable for RePr ≫ 1

3.2 Variable Wall Temperature

um
∂T

∂x
= α

∂2T

∂y2
(3.44)

Two steps:

T (x < 0) = Ti T (0 ≤ x ≤ ξ) = Tw0 T (x > ξ) = Tw1 (3.45)
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In the first range, up to x = ξ, the solution is already known as

T − Ti = (Tw − Ti)

[
1− erf

(
y

2(αx/um)0.5

)]
(3.46)

Beyond x = ξ, the effect of step change (Tw1 − Tw0) at x = ξ is

(Tw1 − Tw0)

[
1− erf

(
y

2(α(x− ξ)/um)0.5

)]
(3.47)

State the full solution as

x < ξ : T − Ti = (Tw − Ti)

[
1− erf

(
y

2(αx/um)0.5

)]
(3.48)

x ≥ ξ : T − Ti = (Tw0 − Ti)[· · · ] + (Tw1 − Tw0)

[
1− erf

(
y

2(α(x− ξ)/um)0.5

)]
(3.49)

Three steps:

T (x < 0) = Ti T (0 ≤ x ≤ ξ1) = Tw0 T (ξ1 ≤ x ≤ ξ2) = Tw1 T (x > ξ) = Tw2

(3.50)
Can state similar solutions. Use f(x, y) to denote the 1− erf terms, For other ducts, we

may have different fs
then we can summarize:

for a change in a wall temperature ∆Tw at x = ξ,

∆(solution) = ∆(T − Ti) = ∆Tw · f(x− ξ, y) (3.51)

Generalize for N step change, for x > ξN , solution is

T (x, y)−Ti =
N∑
n=1

f(x−ξn, y)(Tw(ξn)−Tw(ξn−1)) =

N∑
n=1

f(x−ξn, y)
Tw(ξn)− Tw(ξn−1)

ξn − ξn−1
(ξn−ξn−1)

(3.52)
We want to know when the distance between steps ξn − ξn−1 are very small = dξ, and we
end up with an integral solution.

T (x, y)− Ti =

∫ x

ξ=0

f(x− ξ, y)
dTw
dξ

dξ (3.53)

This is called a stieltjes integral. Consider

I =

∫
ψ(x)

dg

dx
dx (3.54)

we are interested in when g(x) has a jump ∆gat some point x = ξ,

I =

∫ x

0

x
dg

dx
dx =

(∫ ξ−ϵ

0

+

∫ ξ+ϵ

ξ−ϵ
+

∫ x

ξ+ϵ

)
ψ(x)

dg

dx
dx (3.55)

The middle term need to be considered. As in the small region, we expect ψ = ψ(ξ) stays
constant. ∫ ξ+ϵ

ξ−ϵ
ψ
dg

dx
dx = ψ(ξ)

∫ ξ+ϵ

ξ−ϵ
dg = ψ(ξ)∆g (3.56)

we end up with
I =

∫ x

0

ψ(x)
dg

dx
dx+ ψ(ξ)∆g (3.57)

If there are n jumps, we can treat it similarily. So for multiple jumps in wall temperature,

T (x, y)− Ti =

∫ x

ξ=0

f(x− ξ, y)
dTw
dξ

dξ +
∑
n

f(x− ξn, y)∆Tw(ξn) (3.58)
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Example 3.1: Const Temp and Linearly incr Temp
For slug flow past a plate for Tw = const,

T − T∞ = (Tw − T∞) erf

(
y

2
√
αx/um

)
(3.59)

qw = −k∂T
∂y

∣∣∣∣
y=0

= (Tw − T∞)

√
um
παx

(3.60)

Nux =
qwx

k(Tw − T∞)
= 0.564Re1/2x Pr1/2 (3.61)

slug flow with Tw − T∞ = Bx, no jumps

T (x, y)− T∞ =

∫ x

0

dT

dξ
erf

(
y

2
√
αx/um

)
dξ

dT

dξ
= B (3.62)

Evaluate integral and qw,

qw =
2kB√
πα/um

x1/2 Nux =
qwx

(Tw − T∞)k
=

2√
πα/um

x1/2 = 1.128Re1/2x Pr1/2

(3.63)

Method extends to Leveque I, II, III models.

Example 3.2: Wall temp jump in Leveque I
u = βy, leads to

T − Ti = (Tw − Ti)

[
1− 1

0.893

∫ w

0

e−s
3

ds

]
w =

(
β

9αx

)1/3

y (3.64)

Actually, the term after (Tw − Ti) here is defined as f(x, y).

3.3 Variable Heat Flux Case
slug flow, const qw,

u∞
∂T

∂x
= α

∂2T

∂y2
T (0, y) = Ti T (x,∞) = T∞ = Ti qw = −k∂T

∂y

∣∣∣∣
y=0

= const (3.65)

the solution

T (x, y)− Ti =
2qw
k

[√
xα

u∞π
exp

(
−y

2u∞
4xα

)
− y

2
erf

(
y

2

√
u∞
αx

)]
(3.66)

Nux =
qwx

(Tw − Ti)k
=
x

2

√
u∞π

αx
= 0.886Re1/2x Pr1/2 (3.67)

For y = 0,
T (x, 0)− Ti = Tw(x)− Ti =

2qw
k

√
αx

u∞π
(3.68)
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so we know a step change of qw at x = 0 can lead to

Tw(x)− Ti = qw0B
√
x B =

2

k

√
α

u∞π
(3.69)

So for multiple jumps. at ξi, qw jump to qw1; at ξ2, qw jump to qw2.

Tw(x)− Ti = qw1B
√
x− ξ1 + (qw2 − qw1)B

√
x− ξ2 (3.70)

generalized case,
Tw(x)− Ti = B

∑
(qw,n − qw,n−1)

√
x− ξn (3.71)

For continuously change case, ξn − ξn−1 → dξ,

Tw(x)− Ti = B

∫ x

0

dqw
dξ

√
x− ξ dξ

(
+
∑
n

B∆qw,n
√
x− ξn

)
(3.72)

Example 3.3: Linear heat flux case
dqw
dx

= C = const ⇒ Tw − Ti =
2

k

√
α

u∞π
C

∫ x

ξ=0

√
x− ξ dξ (3.73)

Example 3.4: Extend with Leveque I
u = βy case, for const qw,

βy
∂T

∂x
= α

∂2T

∂y2
qw = −k∂T

∂y

∣∣∣∣
y=0

= C T (0, y) = Ti T (x,∞) = T∞ = Ti

(3.74)
solution is

Tw(x)− Ti = 0.355
qw
k

(
α

β

)1/3
x1/3

1/3
= qwF (x) F (x) =

0.355

k

(
α

β

)1/3
x1/3

1/3
(3.75)

so
Tw(x)− Ti =

∫ x

ξ=0

F (x− ξ)
dqw
dξ

dξ (3.76)

which can decompose into cont. integration and jump terms.

Example 3.5: Extend to round tube developing flow
Developing flow in round tube, constant qw solution subsection 2.4 Equation 2.66.

Tw − Tm =
qwD

k

[
1

Nu∞
− 1

2

∑
m

1

Amγ4m
e−γ

2
mx

+

]
(3.77)

x+ =
x

rw

α

2rwum
D = 2rw (3.78)
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as Tw − Ti = Tw − Tm + Tm − Ti, Tm − Ti = 2qwx/(ρcprwum) = 2qwDx
+/k,

Tw − Ti =
qwD

k

[
1

Nu∞
− 1

2

∑
m

1

Amγ4m
e−γ

2
mx

+

+ 2x+

]
= qwF (x

+) (3.79)

so for variable qw case,

Tw − Ti =

∫ x+

0

dqw
dξ

F (x+ − ξ) dξ (+∆ . . . ) (3.80)

3.4 Full Boundary Layer Problem
Steady 2D problem. First analyze the order of magnitude,

u ∼ U∞
∂u

∂y
∼ U∞

δ

∂u

∂x
∼ U∞

x
(3.81)

In boundary layer we suggest boundary layer δ ≪ x. δ ≪ x because δ will
only be of same
magnitude of
hydraulic diameter on
FD condition

So ∂u
∂y ≫ ∂u

∂x . The continuity equation,

∂v

∂y
= −∂u

∂x
⇒ v = −

∫
∂u

∂x
dy ∼ U∞δ

x
(3.82)

which says v is small compared to U∞. x-dir momentum:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+
µ

ρ

(
∂2u

∂x2
+
∂2v

∂y2

)
+

µ

3ρ

∂

∂x

(
∂u

∂x
+
∂v

∂y

)
(3.83)

Note the left 2 terms has same magnitude, ∂2u
∂x2 ≪ ∂2u

∂y2 , and the last term is vanished due to
continuity. The remaining,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

∂2u

∂y2
(3.84)

U2
∞
x

∼ νU∞

δ2
⇒ δ

x
=

√
ν

U∞x
= Re−1/2

x (3.85)

So δ ≪ x holds in large Raynolds flow. For the y-dir equation

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν

[
∂2v

∂x2
+
∂2v

∂y2

]
(3.86)

The magnitude of left 2 terms are U2
∞
x

δ
x and U2

∞
x

δ2

x2 , which is relatively small compare to the
magnitude of u∂u∂x , and also works for viscous terms. Then the only thing left is

0 = −1

ρ

∂P

∂y
⇒ P = P∞ ∀y (3.87)

But note P∞ can be a function of x.
Outer inviscid flow, governing equation:

∂u

∂x
+
∂v

∂y
= 0 − 1

ρ

dP

dx
= U∞

dU∞

dx
(3.88)

This can be solved to get U∞(x) and P∞(x) for a given body.
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In the B.L,
∂u

∂x
+
∂v

∂y
= 0 u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

∂2u

∂y2
(3.89)

B.C.

u(x = 0) = U∞ u(y = 0) = 0 v(y = 0) = 0 u(y → ∞) = U∞ (3.90)

The method is to introduce a similarity variable.

General approach for similarity solutions
postulate streamfunction ψ = a(x)f(η), where η = b(x)y. Substitute into equations
and BCs, get

f(η, a, b, a′, b′) = 0 (3.91)

So what forms ob a, b, make the x dependence in f go away? This should work both
in equation and BCs.

In this case, define

ψ =
√
νxU∞f(η) = νRe−1/2

x f(η) η =
y√

νx/U∞
(3.92)

where a(x) =
√
νxU∞, b(x) = 1/

√
νx/U∞.

With the definition of ψ,

u =
∂ψ

∂y
= U∞f

′ ⇒ f ′ =
u

U∞
(3.93)

v = −∂ψ
∂x

=
1

2

√
νU∞

x
(ηf ′ − f) (3.94)

The equation and BC becomes

ff ′′ + 2f ′′′ = 0 f(0) = 0 f ′(0) = 0 f ′(∞) = 1 (3.95)

Which can solve with shooting method. This is known as Blassius flow. Properties are

τw = µ
∂u

∂y

∣∣∣∣
y=0

= µU∞

√
U∞

νx
f ′′(0) (3.96)

Cf (x) =
τw(x)

ρU2
∞/2

=
2f ′′(0)√
U∞x/ν

=
0.664√
Rex

(3.97)

Characteristic BL definitions, δ0.99 and δ0.999 means y value where f ′ = 0.99 or 0.999 respec-
tively. For displacement thickness, means displacement of leading edge flow that corresponds
to mass transport loss.

ρU∞δ1 =

∫ ∞

0

ρ(U∞ − u) dy (3.98)

δ1 =

√
νx

U∞
(η∞ − f(η∞)) ⇒ δ1

x
=

1.73√
Rex

(3.99)
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For momentum thickness, means displacement of leading edge flow that corresponds to mo-
mentum transport loss

ρU2
∞δ2 =

∫ ∞

0

ρu(U∞ − u) dy (3.100)

δ2 = 0.664

√
νx

U∞
⇒ δ2

x
=

0.664√
Rex

(3.101)

3.5
Heat transfer for B.L. flow over a flat plae. Energy equation for 2D flow

ρcp

[
u
∂T

∂x︸ ︷︷ ︸+v ∂T∂y
]
−
[
u
∂P

∂x
+ v

∂p

∂y

]
= Φ+ k

[
∂2T

∂x2
+
∂2T

∂y2

]
(3.102)

u
∂T

∂x
∼ U∞∆T

x
v
∂T

∂y
∼ U∞δ

x

∆T

δt
(3.103)

u
∂P

∂x
∼ U∞

ρU2
∞
x

v
∂P

∂y
∼ U∞δ

x
· 0 (3.104)

∂2T

∂x2
∼ ∆T

x2
∂2T

∂y2
∼ ∆T

δ2t
(3.105)

Φ = 2µ

(
∂u

∂x

)2

+ 2µ

(
∂v

∂y

)2

+ µ

[
∂u

∂y
+
∂v

∂x

]2
− 2

3
µ

[
∂u

∂x
+
∂v

∂y

]2
(3.106)

Keeping largest term,

Φ =

(
∂u

∂y

)2

(3.107)

So Dominant terms are

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
+ u

∂P

∂x
+ µ

(
∂u

∂y

)2

(3.108)

The last 2 terms are often negligible, and our problem becomes

∂u

∂x
+
∂v

∂y
= 0 u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3.109)

B.C., at y = 0, u = v = 0, T = Tw; at y = ∞ u = U∞, T = T∞.
Use similarity transformation,

ψ = ν
√
Rexf(η) Rex =

U∞x

ν
η =

y

2
√
νx/U∞

ϕ =
T − T∞
Tw − T∞

(3.110)

note here η differs by factor of 1/2. Equations and B.C.s transform to

ff ′′ + ff ′′′ = 0 ϕ′′ + Prfϕ′ = 0 f(0) = f ′(0) = 0, ϕ(0) = 1 f ′(∞) = ϕ(∞) = 0
(3.111)

Solve numerically for specified Pr = ν/α,

q′′w = −k∂T
∂y

∣∣∣∣
y=0

= −k
(
dϕ

dη

∂η

∂y

)
y=0

(Tw − T∞) = −kϕ′(0) 1

2x

√
Rex(Tw − T∞) (3.112)

Nux =
hx

k
=

q′′wx

k(Tw − T∞)
= −1

2
ϕ′(0)

√
Rex (3.113)

where ϕ′(0) is function of Pr.
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• Large Pr leads to δt ≪ δ, Nux = 0.332Pr1/3Re
1/2
x . Recall Lighthill Leveque III,

Nux = 0.339Pr1/3Re
1/2
x .

• Small Pr leads to δt ≫ δ, Nux = 0.564Pr1/2Re
1/2
x , agrees with slug flow model.

3.6 Other Types of Boundary Layer Flows
Wedge flows wedge angle β. Outer flow over wedge is dictated by potential flow solution

U∞ = cxm m =
β/π

2− β/π
(3.114)

c determined from potential flow solution. If β = π, it is just a stagnation flow.
momentum eq.

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP∞

dx
+ ν

∂2u

∂y2
(3.115)

in potential flow, Bernoulli’s equation dictates

P∞ − 1

2
ρU2

∞ = const ⇒ −1

ρ

dP∞

dx
= U∞

dU∞

dx
= c2mx2m−1 =

U2
∞m

x
(3.116)

so the momentum equation becomes

u
∂u

∂x
+ v

∂u

∂y
=
mU4

∞(x)

x
+ ν

∂2u

∂y2
(3.117)

B.C., at y = 0, u = v = 0; at y = ∞, u = U∞. Note different m for different angles.
Introduce similarity transform

η = y

√
U∞(x)

νx
ψ =

√
νxU∞(x)ζ(η) (3.118)

this converts u-momentum equation and B.C. to

ζ ′′′ +
1

2
(m+ 1)ζζ ′′ +m(1− ζ ′2) = 0 ζ(0) = ζ ′(0) = 0 ζ ′(∞) = 1 (3.119)

Could be solved numerically. The surface drag coefficient can be related to results of the
similarity solution

Cf =
τw(x)

ϕU2
∞/2

= 2ζ ′′(0)Re−1/2
x (3.120)

ζ ′′(0) varies with wedge angle.

m β ζ ′′(0)
Alligned Plate 0 0 0.332
Inclined Plate 0.111 0.627 0.510

Stagnation 1 π 1.233
Separation -0.09 -0.625 0

Table 2: Wedge flow

Energy equation

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3.121)
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define

η =
y

x

√
U∞(x)x

ν
θ =

T − Tw
T∞ − Tw

(3.122)

then we find
θ′′ +

Pr

2
(m+ 1)ζθ′ = 0 θ(0) = 0 θ(∞) = 1 (3.123)

Integrating twice from 0 to η and using B.C.s yieds

θ(η) =

∫ η
0
exp

[
−Pr

2 (m+ 1)
∫ η
0
ζ(w) dw

]
dη∫∞

0
exp

[
−Pr

2 (m+ 1)
∫ η
0
ζ(w) dw

]
dη

(3.124)

and

h =
q′′w

Tw − T∞
= k

∂θ

∂y

∣∣∣∣
y=0

= kθ′(0)

√
U∞(x)

νx
= kθ′(0)

√
C

ν
x

m−1
2 (3.125)

hx

k
= Nux = θ′(0)

√
U∞x

ν
= θ′(0)Re0.5 (3.126)

For Pr = 1.0,

β m θ′(0) ζ ′′(0) Rex h
0 0 0.332 0.332 ∼ x ∼ 1/

√
x

0.627 0.111 0.378 0.510 ∼ x1.11 ∼ x−0.445

1.57 0.333 0.440 0.759 ∼ x1.33 ∼ x−0.333

π

Buoyancy induced boundary layer flow and heat transfer, transport close to a vertical or
nearly vertical surface.

Figure 6: Buoyancy Convection

• neglecting streamwise viscous transport and viscous dissipation

• constant µ, cp, k

• include gravity body force
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• Assume Boundary Layer (2D) orders of magnitude apply

Governing equations:
∂u

∂x
+
∂v

∂y
= 0 (3.127)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
− g + ν

∂2u

∂y2
(3.128)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3.129)

in the u-momentum equation, ∂P
∂x is decomposed

∂P

∂x
= −ρ∞g +

∂Pm
∂x

(3.130)

the first term is hydrostatic, the second is applied motion-inducing gradiant if any. Here it
is 0. Then the equation becomes

u
∂u

∂x
+ v

∂v

∂y
= g

ρ∞ − ρ

ρ
+ ν

∂2u

∂y2
(3.131)

ρ∞ − ρ may be due to temperature differences or concentration differences.
For buoyancy driven flows, it is common to invoke the two Boussineseq approximations:

• density is tanken to be constant, except for the density variation in the buoyancy force
term

• differences in density in the buoyancy force term are linearly proportional to tempera-
ture differences.

For liquids, imcompressible so ρ = ρ(T ). For common natural convection flows in gases,
pressure differences are small. Ideal gas: ρ = P/RT . Taylor series expansion for small ρ
changes:

ρ∞ − ρ =

(
∂ρ

∂t

)
P

(T∞ − T ) +

(
∂ρ

∂P

)
T

(P∞ − P ) +H.O.T (3.132)(
∂ρ
∂P

)
T

is pretty small. so

ρ∞ − ρ

ρ
=

1

ρ

(
∂ρ

∂T

)
P

(T∞ − T ) = −β(T∞ − T ) (3.133)

this is second Boussinesq approximation. u-momentum equation becomes

u
∂u

∂x
+ v

∂u

∂y
= gβ(T − T∞) + ν

∂2u

∂y2
(3.134)

For B.L. flow, we expect

u ∼ Uc v ∼ Ucδ/L x ∼ L y ∼ δ (3.135)

what is characteristic velocity Uc? We expect accelerating force ∼ g(ρ∞−ρ). The accelerating
force acting through distance x should increase the K.E. of the flow, then

1

2
ρu2 ∼ gx(ρ∞ − ρ) (3.136)
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take Uc so that

1

2
ρU2

c = gx(ρ∞ − ρ) = gxρβ(Tw − T∞) ⇒ Uc =
√
gxβ(Tw − T∞) (3.137)

so for u-momentum equation,

u
∂u

∂x
∼ Uc

Uc
x

v
∂u

∂y
∼ Ucδ

x

Uc
δ

ν
∂2u

∂y2
∼ νUc

δ2
(3.138)

for momentum and buoyancy terms to be compressible,

U2
c

x
=
gxβ(Tw − T∞)

x
∼ gβ(Tw − T∞) (3.139)

also, for momentum and viscous terms to be comparable,

U2
c

x
∼ ν

Uc
δ2

⇒ δ

x
∼ 1√

Ucx/ν
(3.140)

where
Ucx

ν
=

√
gx3β(Tw − T∞)

ν2
(3.141)

This is known as Grashof number,

Grx =
gx3β(Tw − T∞)

ν2
(3.142)

so δ/x ∼ Gr
−1/4
x

For energy equation,

u
∂T

∂x
∼ Uc

Tw − T∞
x

v
∂T

∂y
∼ Ucδ

x

Tw − T∞
δt

α
∂2T

∂y2
∼ α

Tw − T∞
δ2t

(3.143)

for convection to be comparable to conduction,

Uc(Tw − T∞)

x
∼ α

Tw − T∞
δt

⇒ δt
x

∼ 1

Gr
1/4
x Pr1/2

(3.144)

thus boundary layer flow results only if Grx is large. Laminar B.L. analysis expected to be
valid for

104 < Grx < 109
δ

x
< 10−1 (3.145)

For Grx > 109, transitions to turbulent flow is expected. Note Re =
√
Grx, it is consistant

with flat plate FC BL transition Re = 3.5× 105.
So governing equations and B.C.s for natural convection BL flows are

∂u

∂x
+
∂v

∂y
= 0 (3.146)

u
∂u

∂x
+ v

∂u

∂y
= gβ(Tw − T∞) + ν

∂2u

∂y2
(3.147)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3.148)
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At y = 0, u = v = 0, T = Tw; At y = ∞, u = 0, T = T∞. This can be solved using a
similarity transformation:

η =
y

x

(
Grx
4

)1/4

Grx =
gβ(Tw − T∞)x3

ν2
(3.149)

ψ = f(η)

(
4ν

(
Grx
4

)1/4
)

ϕ =
T − T∞
Tw − T∞

(3.150)

then
u =

∂ψ

∂y
=

2ν

x
Gr1/2x f ′(η) (3.151)

v is similarily determined using v = −∂ψ
∂x . substituting converts momentum equation, energy

equation and B.C.s to

f ′′′ + 3ff ′′ − 2f ′2 + ϕ = 0 ϕ′′ + 3Prfϕ′ = 0 (3.152)

At η = 0, f = f ′ = 0, ϕ = 1; At η = ∞, f ′ = 0, ϕ = 0

q′′w = −k∂T
∂y

∣∣∣∣
y=0

= −kϕ′(0) 1
x

(
Grx
4

)1/4

(Tw − T∞) (3.153)

h =
q′′w

Tw − T∞
= −k

x

ϕ′(0)√
2
Gr1/4x (3.154)

Nux =
hx

k
= −ϕ

′(0)√
2
Gr1/4x (3.155)

ϕ′(0) is determined for a specific Pr value.

3.7 Integral Relations for BL Transport

Assume steady flow and constant density.
Inflow must equal outflow,

ρ
∂v

∂y
= −ρ∂u

∂x
⇒ ρ

∫ δ

0

∂v

∂y
dy = −ρ

∫ δ

0

∂u

∂x
dy (3.156)

ρv|δ0 = −ρ d

dx

∫ δ

0

udy + ρu|δ0
dδ

dx
(3.157)
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rearrange to get

ρ
d

dx

∫ δ

0

udy = ρU∞
dδ

dx
− ρv∞ (3.158)

τw∆x =

[
ρ

∫ δ

0

u2 dy

]x
x+∆x

+

(
ρU∞

dδ

dx
− ρv∞

)
∆xU∞ (3.159)

expanding each term,

µ
∂u

∂y

∣∣∣∣
y=0

∆x = −ρ d

dx

∫ δ

0

u2 dy∆x+ ρ
d

dx

∫ δ

0

uU∞ dy∆x (3.160)

combining integrals yields

ρ
d

dx

∫ δ

0

(U∞ − u)udy = µ
∂u

∂y

∣∣∣∣
y=0

(3.161)

can show that order of differentiation and integral does not matter here.

d

dx

∫ δ

0

(U∞ − u)udy = [(U∞ − u)u]δ
dδ

dx︸ ︷︷ ︸
=0

+

∫ δ

0

∂

∂x
[(U∞ − u)u] dy (3.162)

31



qw∆x =

[
ρcp

∫ δt

0

uT dy

]x+∆x

x

− ṁnetcpT∞ (3.163)

−k∂T
∂y

∣∣∣∣
y=0

= ρcp
d

dx

∫ δt

0

tU dy∆x− ρ
d

dx

∫ δt

0

uT∞ dycp∆x (3.164)

ρcp
d

dx

∫ δt

0

u(T∞ − T ) dy = k
∂T

∂y

∣∣∣∣
y=0

= −qw (3.165)

3.8 Integral solution of the blasius flow problem

ρ

∫ δ

0

∂

∂x
[(U∞ − u)u] dy = µ

∂u

∂y

∣∣∣∣
y=0

(3.166)

postulate
u

U∞
=

3

2

y

δ
− 1

2

(y
δ

)3
(3.167)

the equation changes into ∫ δ

0

(
U∞

∂u

∂x
− ∂u2

∂x

)
dy = ν

∂u

∂y

∣∣∣∣
y=0

(3.168)

U∞
∂u

∂x
= U∞

∂u

∂δ

dδ

dx
= U2

∞−3

2

y

δ2
+

3

2

y3

δ4
dδ

dx
(3.169)

u2 = U2
∞

[
9

4

y2

δ2
− 3

2

y4

δ4
+

1

4

y6

δ6

]
(3.170)

∂u2

∂x
= U2

∞

[
−9

2

y2

δ3
+ 6

y4

δ5
− 3

2

y6

δ7

]
dδ

dx
(3.171)

∂u

∂y

∣∣∣∣
0

= U∞

[
3

2δ
− 3y2

2δ3

]
y=0

=
3U∞

2δ
(3.172)

substitute into equation, integrate polynomial and simplify to get

δ
dδ

dx
=

140

13

ν

U∞
(3.173)

Integrate, ∫ δ

0

δ dδ =
140

13

ν

U∞

∫ x

0

dx ⇒ δ2

2
=

140ν

13U∞
x (3.174)

δ = 4.64x

√
ν

xU∞
(3.175)

Cfx =
(τw)x
ρU2

∞/2
=

0.646√
Rex

(3.176)

This result is very close to Blasius similarity result.
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Integral method for Thermal BL

ρcp
d

dx

∫ δt

0

u(T∞ − T ) dy = k
∂T

∂y

∣∣∣∣
y=0

= −qw (3.177)

define
θ =

T − T0
T∞ − T0

⇒ T = θ(T∞ − T0) + T0 (3.178)

we find
ρcp

d

dx

∫ δt

0

u(1− θ) dy = k
∂θ

∂y

∣∣∣∣
y=0

(3.179)

postulate

θ =
3

2

y

δt
− 1

2

y3

δ3t
(3.180)

and same polynomial for u/U∞,

ρcp
d

dx

∫ δt

0

U∞

[
3

2

y

δ
− 1

2

y3

δ3

] [
1− 3

2

y

δt
+

1

2

y3

δ3t

]
dy

=
α

δt

[
3

2
− 3

2

y2

δ2t

]
y=0

=
3α

2δt
(3.181)

we specifically consider Pr ≥ 1, ζ = δt/δ ≤ 1, integration leads to

d

dx

[
U∞δ

(
3

20
ζ2 − 3

280
ζ4
)]

=
3

2

α

ζδ
(3.182)

neglect O(ζ4) compared to O(ζ2) terms,

U∞
d

dx

[
δ
3

20
ζ2
]
=

3

2

α

ζδ
(3.183)

1

10
U∞ζ

3δ
dδ

dx
+

1

5
U∞δ

2ζ2
dζ

dx
= α (3.184)

from momentum BL solution,
δ
dδ

dx
=

140

13

ν

U∞
(3.185)

we find
ζ3 + 4xζ2

dζ

dx
=

13

14Pr
(3.186)

previous modeling indicate ζ is constant with δt, δ → 0 at x = 0, then dζ
dx = 0, so

ζ3 =
13

14Pr
ζ =

1

1.026Pr1/3
(3.187)

By definition,

h = −
k ∂T∂y |y=0

T0 − T∞
= k

∂θ

∂y

∣∣∣∣
y=0

=
3k

2δt
=

3k

2
(1.026)Pr1/3

√
13

280

√
U∞

νx
(3.188)

Nux = 0.323Re1/2x Pr1/3 (3.189)
while the coefficient is 0.332 for similarity solution.
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Example 3.6: Uniform heat flux BC
Define

ϕ =
T − T∞
∆T

∆T (x) = T0 − T∞ ⇒ T∞ − T = −∆Tϕ (3.190)

for Equation 3.165,

∂T

∂y
= ∆T

∂ϕ

∂y
qw = −k∂T

∂y

∣∣∣∣
y=0

= −k∂ϕ
∂y

∣∣∣∣
y=0

∆T (3.191)

from integral momentum solution,

u

U∞
=

3

2

y

δ
− 1

2

(y
δ

)3
(3.192)

here we postulate a simple linear temperature profile ϕ = 1− y/δt, substituting into
eq

d

dx

∫ δt

0

uϕ∆T dy =
qw
ρcp

(3.193)

∫ δt

0

uϕ∆T dy =

∫ δt

0

U∞∆T

(
1− y

δt

)(
3

2

y

δ
− 1

2

(y
δ

)3)
(3.194)

neglect higher order as δt/δ < 1, finally∫ δt

0

uϕ∆T dy = U∞∆Tδ
1

4

δ2t
δ2

(3.195)

The integral equation becomes

frac14U∞
d

dx

[
∆T

δ2t
δ

]
=

qw
ρcp

(3.196)

1

4
U∞∆T

δ2t
δ

=
qwx

ρcp
(3.197)

using qw = −k ∂T∂y |y=0 and temperature profile, we find qw = k∆T/δt. So plug in and
get

δ3t =
4αxδ

U∞
(3.198)

from flow analysis,

δ =

√
280

13

√
νx

U∞
(3.199)

so

δt = 41/3
(
280

13

)1/6

Pr−1/3xRe−1/2
x (3.200)

h =
qw
∆T

=
k

δt
Nux = 0.378

√
RexPr

1/3 (3.201)
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3.9 Summary
Steady BL flow, can model using

1. Finite difference solution of NS and energy equations, and

h = f(ρ, ν, cp, k, x, U∞, u) (3.202)

must analyze lots of runs to resolve parameter trends, could improve if non-dimensionalize
equations.

2. Similarity solution, predicts forms of parametric variations,

Nux =
hx

k
= −1

2
ϕ′(0)

√
Rex (3.203)

ϕ′(0) is get by solving ODE’s for fixed Pr. Similarity framework illuminates parametric
trends.

3. Integral solution with postulated u, T profiles .......

4 Notes on Numerical solution of PDEs
general form of 2nd order ODE,

A
∂2ϕ

∂x2
+B

∂2ϕ

∂x∂y
+ C

∂2ϕ

∂y2
+D

(
x, y, ϕ,

∂ϕ

∂x
,
∂ϕ

∂y

)
= 0 (4.1)

if ϕ appears to first power throughout. then it is linear. Classification:

B2 − 4AC < 0 ⇒ elliptic (4.2)
B2 − 4AC = 0 ⇒ parabolic (4.3)
B2 − 4AC > 0 ⇒ hyperbolic (4.4)

hyperbolic have wave behavior, solution is constant along characteristics. Finite velocity of
disturbance (information) propagation. Classic expample: compressible flow. Another
example, first order convection equation

∂ϕ

∂t
+ ĉ

∂ϕ

∂x
= 0 ⇒ ∂2ϕ

∂t2
+ ĉ

∂2ϕ

∂x∂t
= 0 (4.5)

A = 0, B = ĉ, C = 1, B2 − 4AC = ĉ2 > 0 is hyperbolic.

parabolic Infinite propagation speed, information flows in one direction, can march solution
forward if know solution at initial value. Example: 1D transient conduction solution

∂T

∂t
= α

∂2T

∂x2
(4.6)

FTCS explicit method used in Proj2 does this for transient natural convection BL flow

elliptic Information flows in all directions at once, infinite speed, no preferred direction.
Example: 2D steady laplace equation,

∂2T

∂x2
+
∂2T

∂y2
= 0 (4.7)

another example. FD flow and convection considered in Proj1.
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Important numerical method properties

• Convergence, if iterative

• mesh independence

• stability.

Stability of the FTCS method, consider as an expample

∂T

∂t
= α

∂2T

∂x2
(4.8)

descritize as
∂T

∂t
=
T ∗
m − Tm
∆t

+O(∆t) (4.9)

∂2T

∂x2
=
Tm+1 − 2Tm − Tm−1

∆x2
+O(∆x2) (4.10)

substituting into the PDEand rearranging

T ∗
m = Tm + F (Tm+1 − 2Tm + Tm−1) F =

α∆t

∆x2
(4.11)

F is called grid Fourier number.
Suppose a steady-state solution has been reached which Tm = Ts for all m, we then

introduce a small instantaneous disturbance ϵ at location m, Tm = Ts + ϵ, what happens as
we march the scheme forward?

T ∗ = Ts + ϵ+ F (Ts − 2(Ts + ϵ) + Ts) ⇒ T ∗
m − Ts = ϵ(1− 2f) (4.12)

the lhs is the deviation from steady state solution, for stability we want a disturbance to
die-out,

T ∗
m − Ts
ϵ

< 1 ⇒ (1− 2F ) < 1 (4.13)

so −1 ≤ 1− 2F ≤ 1, from left side we have F ≤ 1, indicating

∆t ≤ ∆x2

α
(4.14)

If we further want to assure that disturbance damp without overshoot, require

T ∗
m − Ts
ϵ

≥ 0 ⇒ F ≤ 1

2
(4.15)

can show by analyzing subsequant timesteps that F ≤ 1/2, ∆t ≤ ∆x2/2α is necessary for
stability.

Somewhat more complicated for convective transport equations due to extreme terms,
but concept is the same and liead to

F1 =
∆tα

∆y2
≤∼ 1

2
F2 =

∆tν

∆y2
≤∼ 1

2
(4.16)

So for the FTCS explicit method, necessary conditions for stability in terms of grid Fourier
numbers,

F1 =
α∆t

∆y2
<

1

2
⇒ ∆t <

∆y2

2α
(4.17)

F2 =
ν∆t

∆y2
<

1

2
⇒ ∆t <

∆y2

2ν
(4.18)
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4.1 Another Solution of Interest-Transporation
Injection or suction at surface, can be due to evaporation, sublimation, condensation. PDE
the same just new BC.

η =
y√

νx/U∞
ψ =

√
νxU∞f(η) (4.19)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
⇒ 1

2
ff ′′ + f ′′′ = 0 (4.20)

v = −∂ψ
∂x

=
U∞

2
√
U∞x/ν

(−f(η) + ηf ′(η)) (4.21)

at y = 0, η = 0,

v = − U∞

2
√
U∞x/ν

f(0) = vw ⇒ f(0) =
2vw
U∞

√
U∞x

ν
(4.22)

If vw is constant, no similarity solution. For aligned plate, similarity requires vw ∼ x−1/2.
For wedge flows with injection, same similarity formulation described earlier,

v(η = 0) = vw = v0 = −m+ 1

2
ζ(0)

U∞(x)√
U∞(x)/ν

(4.23)

similarity requires

vw ∼
√
U∞(x)

x
∼
√
Cxm

x
∼ x(m−1)/2 (4.24)

for similarity, m = 1, β = π, vw is constant. If b = 0, m = 0, vw ∼ x−0.5.
Now consider heat transfer, flat plate and aligned (m = 0)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= α

∂2T

∂y2
⇒ ϕ′′ + Prfϕ′ = 0 (4.25)

for a solid plate, vw = 0,

NuxRe
−1/2
x = 0.332 (Pr = 1) 0.292 (Pr = 0.7) (4.26)

for vw ̸= 0, injection or suction Tgas = Tw, Pr = 1.0

vw
U∞

Re
1/2
x 0.5 0.25 0 -0.25 -0.75

NuxRe
−1/2
x 0.0356 0.165 0.332 0.523 0.945

Table 3: Injection and suction affects HT

from the table we can see suction enhance HT while injection weakens.

4.2 Axisymmetric Plume Above a Point Source
Concentrated source, laminar flow.
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Example 4.1:
• Above a candle flame

• Above an electrical component

• On a horizontal surface

• Above a heated sphere

We consider laminar BL flow. Assuming

1. Boussinesq approximations

2. Properties other than ρ are constant

3. Neglect viscous dissipation, pressure work

Equations (cyl. coordinates) and BCs (y is radius)

∂(yu)

∂x
+
∂(yv)

∂y
= 0 (4.27)

u
∂u

∂x
+ v

∂u

∂y
= gβ(T − T∞) +

ν

y

∂

∂y

(
y
∂u

∂y

)
(4.28)

u
∂T

∂x
+ v

∂T

∂y
=
α

y

∂

∂y

(
y
∂T

∂y

)
(4.29)

y = 0 v =
∂u

∂y
=
∂T

∂y
= 0 (4.30)

y → ∞ u→ 0, T → T∞ (4.31)

we can explore a similarity formulation as follows, we define a stream function such that

u =
1

y

∂ψ

∂y
v = −1

y

∂ψ

∂x
(4.32)

we then postulate definitions

η = b(x)y ψ = νc(x)f(η) ϕ =
T − T∞
d(x)

(4.33)

d(x) = T0−T∞, T0 = T (y = 0). Express y, u, ν, T in terms of η, f(ϕ), f ′(ϕ), ϕ, and substitute
to get

f ′′′ +
gβ

ν2
(yb)

d

b4c
ϕ+

cx
yb
ff ′′ −

[
cx
yb

+
1

yb

(
2cbx
b

)]
f ′2

− cx
(yb)2

ff ′ − 1

yb
f ′′ +

1

(yb)2
f ′ = 0 (4.34)

x subscript means d
dx .

ϕ′′

Pr
+
cx
yb
fϕ′ − 1

yb

(
dxc

d

)
f ′ϕ+

1

yb

(
1

Pr

)
ϕ′ = 0 (4.35)

similarity requires that coefficients of terms must be constants or functions of η alone. since
yb = η, similarity requires

d

b4c
= B1 cx = B2

cbx
b

= B3
dxc

d
= B4 (4.36)
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B1,2,3,4 are constants or functions of η. For d(x) assumed to be a power law variation
d = Nxn, the above relations require that

c(x) ∼ x b(x) ∼ x(n−1)/4 (4.37)

These properties are satisfied if we pick

c(x) = νx b(x) =
Gr

1/4
x

x
Grx =

gβx3(T0 − T∞)

ν2
(4.38)

It follows that

η =
y

x
Gr1/4x ψ = νxf(η) u =

ν

x
Gr1/2x

f ′

η
v = −ν

x
Gr1/4x

(
f

η
− f ′

2

)
(4.39)

and the equations and BCs become

f ′′′ + (f − 1)

(
f ′

η

)′

− 1 + n

2

f ′2

η
+ ηϕ = 0 (4.40)

(ηϕ′)′ + Pr(fϕ′ − nf ′ϕ) = 0 (4.41)

f(0) = f ′(0) = 0 ϕ(0) = 1 ϕ′(0) = 0 (4.42)
How do we determine n? Note this is no input of thermal energy downstream of the source,
so convected thermal energy above the ambient level Q(x) at any x location must be constant
and equal to the rate of heat input at the source

Q =

∫ ∞

0

ρcp(T − T∞)u2πy dy (4.43)

substituting to write this in terms of similarity variables.

2πρcpν(T0 − T∞)x

∫ ∞

0

f ′ϕ dη = 2πρcpνNx
n+1

∫ ∞

0

f ′ϕ dη = 0 (4.44)

note that n must equal to −1 to make x dependence go away on the lhs. So

T0 − T∞ =
N

x
N =

Q

2πρcpνI
I =

∫ ∞

0

f ′ϕdη (4.45)

For n = −1, the equations and BCs become

f ′′′ + (f − 1)

(
f ′

η

)′

+ ηϕ = 0 (4.46)

(ηϕ′)′ + Pr(fϕ)′ = 0 (4.47)

η = 0

(
f ′

η

)′

= 0 ϕ′ = 0
f

η
− f ′

2
= 0 ϕ = 1 (4.48)

η → ∞ f ′

η
→ 0 ϕ→ 0 (4.49)

It can be shown that the BCs can be equivlantly stated as

f(0) = f ′(0) = ϕ′(0) = 0 ϕ(0) = 1 f ′(∞) = bounded (4.50)
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Integrating the enegy equation once with respect to η and using the BCs to evaluate the
integration constant yields

ηϕ′ + Prfϕ = 0 (4.51)

Integrating this from η = 0 to η yields

ϕ(η) = ϕ(0)e−Pr
∫ η
0
f/η dη (4.52)

as momentum equation is numerically integrated to get f(η), this can be used to compute
ϕ(η). Solutions of equations and BC’s yields velocity and temperature fields for axisymmetric
plumes (see plots).

Centerline temperature difference

T0 − T∞ =
Q

2πρcpνIx
(4.53)

centerline u velocity

u(x, 0) =

√
gβQ

2πρcpνI

(
f ′

η

)
η=0

(4.54)

Note this is a constant. Accelerating effects of buoyancy are balanced by deaccelerating
effects of entrainment. Defining ηδ as the y location where the dimensionless velocity f ′/η
drops to 1% of its peak value, it follows that the velocity boundary layer thickness is given
by

δ(x) = ηδ

(
2πcpµν

2I

gβQ

)1/4 √
x (4.55)

similarily for the thermal BL thickness

δt(x) = ηδt

(
2πcpµν

2I

gβQ

)1/4 √
x (4.56)

Mollerdorf and Gebhardt (1974) reported
f ′′(0) f(∞) I

Pr = 0.7 1.351 7.91 2.074 air
Pr = 7.0 0.6683 3.08 0.2497 water

note

also
v =

−ν
x
Gr1/4x

(
f

η
− f ′

2

)
(4.57)

entrainment velocity
vδ = −ν

x
Gr1/4x

(
f

η
− f ′

2

)
η→∞

(4.58)

what happens at x = 0? We don’t expect this solution to be very accruate as we assume
x≫ δ.

5 Turbulent Flow
5.1 Transition to turbulent flow
disturbances in laminar flow amplify, leading to a chaotic flow field. Usually modeled as
fluctuations superimposed on mean fields. Transition in FD internal flow in a round tube.,
ReD = 2300. Not really this abrupt, transition ovvurs over a range ReD near 2300.
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Figure 7: different picture for boundary layer flows

For forced flow dictated by momentum transport.
For natural convection flows, process is similar. Key difference is momentum and thermal

energy transport affect transition.

For isothermal surface

Rax = GrxPr =
gβ(Tw − T∞)

να
x3 ≈ 109 (5.1)

For uniform heat flux surface

Ra∗ = Gr∗xPr =
gβx4qw
kν2

Pr ≈ 5× 1014 (5.2)

Linear stablility analysis for natural convection BL flow, predicts that disturbance Fourier
frequencies in specific frequency range are amplified leading to transition to turbulent flow.

5.2 FD Turbulent flow
characteristics: eddies, random erratic bursts, chaos. Fluctuations in u, v, T with time. For
laminar flow, mocular level diffusive transport only. (Conduction, viscosity transport of
momentum.) In turbulent flows, molecular level + turbulent macroscopic transport.

u =
1

ta

∫ ta

0

udt =
1

ta

∫ ta

0

udt+
1

ta

∫ ta

0

u′ dt (5.3)

u = U, u′ = 0. Likewise for other velocity components. Decompose:

u = U + u′ v = V + v′ w =W + w′ (5.4)

Continuity equation

∂U

∂x
+
∂u′

∂x
+
∂V

∂y
+
∂v′

∂y
+
∂W

∂z
+
∂w′

∂z
= 0 (5.5)

note
1

ta

∫ ta

0

∂U

∂x
dt =

1

ta

∂

∂x

∫ ta

0

U dt =
∂U

∂x
(5.6)

1

ta

∫ ta

0

∂u′

∂x
dt =

1

ta

∂

∂x

∫ ta

0

u′ dt = 0 (5.7)
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Continuity equation becomes
∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0 (5.8)

subtract and get
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0 (5.9)

BL cons of momentunm,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂x
+ ν

∂2u

∂y2
(5.10)

add
u

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0 (5.11)

get
∂u

∂t
+
∂(uu)

∂x
+
∂uv

∂y
+
∂uw

∂z
= −1

ρ

∂P

∂x
+ ν

∂2u

∂y2
(5.12)

note ∂u
∂t = ∂U

∂t + ∂u′

∂t , steady flow leads to ∂U
∂t = 0. Also time averaging, ∂u

∂t = 0. For other
terms, e.g.

∂

∂x
(uu) =

∂

∂x
(UU + 2Uu′ + u′u′) ⇒ ∂(uu)

∂x
=

∂

∂x
(UU + u′u′) (5.13)

viscosity term,
∂2u

∂y2
=

∂2

∂y2
(U + u′) ⇒ ∂2u

∂y2
=
∂2U

∂y2
(5.14)

Mean pressure
∂P

∂x
=
∂P
∂x

(5.15)

finally we have

∂

∂x
(UU + u′u′) +

∂

∂y
(UV + u′v′) +

∂

∂z
(Uw + u′w′) = −1

ρ

∂P
∂x

+ ν
∂2U

∂y2
(5.16)

rearranging,

ρU
∂U

∂x
+ ρV

∂U

∂y
+ ρW

∂U

∂z
= − ∂

∂x
(P + ρu′u′) +

∂

∂y

(
µ
∂U

∂y
− ρu′v′

)
+

∂

∂z
(−ρu′w′) (5.17)

we assume O(u′) = O(v′) = O(w′) (isotropic), for BL flow,

∂

∂y
≫ ∂

∂x
,
∂

∂z
(5.18)

so neglecting terms consistent with this and w = 0,

ρU
∂U

∂x
+ ρV

∂U

∂y
=

∂

∂y

(
µ
∂U

∂y
− ρu′v′

)
− ∂P
∂x

(5.19)

We can define an eddy diffusivity and turbulent (kinematic) viscosity associated with
turbulence

τturb = −ρu′v′ = µturb
∂U

∂y
= ρϵM

∂U

∂y
(5.20)
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⇒ ϵM = −u
′v′

∂U
∂y

(5.21)

big when u′ and v′ are correlated both big at the same time.

τtotal = τvisc + τturb = ρ(ν + ϵM )
∂U

∂y
(5.22)

momentum equation becomes

U
∂U

∂x
+ V

∂U

∂y
=

∂

∂y

(
(ν + ϵM )

∂U

∂y

)
− 1

ρ

∂P
∂x

(5.23)

5.3 Turbulent boundary layer heat transfer

ρcp

[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

]
=

[
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

]
(5.24)

assume 2D w = 0, use decomposition

ρcp

[
U
∂T

∂x
+ V

∂T

∂y

]
+ ρcp

[
∂

∂x
(u′T ′) +

∂

∂y
(v′T ′) +

∂

∂z
(w′T ′)

]
= k

[
∂2T

∂x2
+
∂2T

∂y2

]
+
∂2T

∂z2
(5.25)

And for B.L. flow, ∂
∂y ≫ ∂

∂x ,
∂
∂z ,

∂2T

∂x2
≪ ∂2T

∂y2
∂2T

∂z2
≪ ∂2T

∂y2
(5.26)

Neglecting small terms,

ρcp

[
U
∂T

∂x
+ V

∂T

∂y

]
=

∂

∂y

[
k
∂T

∂y
− ρcpv′T ′

]
(5.27)

for constant properties this can be written

U
∂T

∂x
+ V

∂T

∂y
=

∂

∂y

[
α
∂T

∂y
− v′T ′

]
(5.28)

similar to what we did for momentum transport, we define an eddy diffusivity for heat ϵH
as

ϵH =
−v′T ′

∂T
∂y

(5.29)

and the equation becomes

U
∂T

∂x
+ V

∂T

∂y
=

∂

∂y

[
(α+ ϵH)

∂T

∂y

]
(5.30)

note
q′′molecular = −k∂T

∂y
q′′turb = −k∂T

∂y
= −ρcpϵH

∂T

∂y
(5.31)
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This analysis formulates turbulent transport modeling in terms of ϵM and ϵH which are
related to cross correlations v′u′ and v′T ′. We also define the turbulent Prandtl number Prt,

Prt =
ϵM
ϵH

(5.32)

It is often argued that Prt ∼ 1.0. Now the equation

U
∂T

∂x
+ V

∂T

∂y
=

∂

∂y

[
(α+

ϵM
Prt

)
∂T

∂y

]
(5.33)

Some models of turbulent transport are based on analogies with kinetic theory.
Consider a laminar gas flow with velocity progifle U(y) near surface, l is mean free path

of molecules between collisions. From basic kinetic theory. the velocity distribution is

dNuvw
N

= f(u, v, w) =

(
m

2πkBT

)3/2

e−m(u2+v2+w2)/2kBT dudv dw (5.34)

c2 = u2 + v2 + w2, mean molecular speed

c =

√
8kBT

πm
(5.35)

In the flow, shear is rate of momentum transport over m2. A molecule crossing horizontal
plane at y has travelled an average distance l since its last colision. y′ is average y location
of last collision, y′ = y − vl/c. Using taylor series

[px]y=y′ = [px]−
(
d[px]

dy

)
vl

c
(5.36)

flux of x direction momentum

j[px] =

∫∫∫ ∞

−∞
[px]y=y′νρNf(u, v, w) dudv dw (5.37)

f is the probability of u, v, w combination. substituting leads to

j[px] = −1

3
ρnnlc

dU

dy
(5.38)

since τ = −j[px] = µ∂U∂y = ρv ∂U∂y

µ = ρν =
1

3
ρNmlcc ⇒ ν =

1

3
cl (5.39)

l is the distance since last interaction, c is characteristic spped. For gases, l can be predicted
from kinetic theory, simple analysis:

l =
kBT√
2πD2P

(5.40)

substitute and get

µ =
1

3

(
1

π

)3/2 √
mkBT

D2
(5.41)

µ depends only on T , not on P .
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SImilar analysis for transport of internal energy in a temperature gradient yields

jQ = −1

3

(
ρN lĉV c

NA

)
∂T

∂y
(5.42)

Since fourier’s Law indicates jQ = q′′ = −k ∂T∂y , then

k =
1

3

(
ρN lĉV c

NA

)
=

µĉv
mNA

⇒ k

ρ̂ĉV
=

1

3
cl (5.43)

k only depends only on T for ideal gas.
Turbulent flow mixing length hypothesis, based on analogy with kinetic theory. Ball of

fluid <=> molecule.
τturb = ρu′v′ ∼ ρ

√
v′2
√
u′2 (5.44)

O(
√
u′2) ∼ O(u′) = U(y)− U(y − 1) =

∂U

∂y
l (5.45)

l is mixing length, distance along which ball of fluid maintains its identity.

τturb = ρ
√
v′2l

∂U

∂y
= µturb

∂U

∂y
(5.46)

⇒ µturb = ρ
√
v′2l (5.47)

If turbulence is isotropic, √
v′2 ∼

√
u′2 ∼ l

∂U

∂y
(5.48)

τturb ∼
∣∣ρv′u′∣∣ ∼ l2

∂U

∂y

∣∣∣∣∂U∂y
∣∣∣∣ (5.49)

mixing length model,

ϵM = l2
∣∣∣∣∂U∂y

∣∣∣∣ τturb = ρϵM
∂U

∂y
τ = ρ(ν + ϵM )

∂U

∂y
(5.50)

5.4 Turbulent FD flow in round tube
ρU

∂U

∂x
+ ρV

∂U

∂r
= −∂P

∂x
+

1

r

∂

∂r
(rτ) (5.51)

here τ = ν + ϵM . FD means ∂U
∂x = 0, v = 0, equation becomes

1

r

∂

∂r
(rτ) =

dP

dx
= const (5.52)

Integrate once, using τ = 0 at r = 0 by symmetry,

τ =
r

2

dP

dx
⇒ τ

τw
=

r

rw
τw =

rw
2

dP

dx
(5.53)

combined to eliminate dP
dx ,

τ

τw
=

r

rw
(5.54)

combine this result with ϵM wo get
ρ(ν + ϵM )

τw

dU

dr
=

r

rw
(5.55)

con solve for U(r) if ϵM (r) is known.
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5.5 Turbulent FD heat transfer in a tube
ρUcp

∂T

∂x
+ ρV cP

∂T

∂r
= −1

r

∂

∂r
(rq′′) (5.56)

here q′′ = −ρcp(α + ϵM )∂T∂r can solve this numerically with known U(r), ϵM (r). Consider
simplified case, q′′w is const, so h is const, Yw − Tm is const. dTw

dx = dTm

dx . Assume ∂T
∂x = dTm

dx ,
and equation becomes

ρUcp
dTm
dx

= −1

r

∂

∂r
(rq′′) (5.57)

integrate w.r.t. r,
ρcp

dTm
dx

∫
U(r)r dr = −rq′′ (5.58)

further simplify by taking U(r) = Um in integral,

ρcp
dTm
dx

Umr
2

2
= −rq′′ (5.59)

q′′ =
ρcpUm

2

dTm
dx

r ⇒
∣∣∣∣ q′′q′′w

∣∣∣∣ = r

rw
(5.60)

note for both ∣∣∣∣ qqw
∣∣∣∣ = τ

τw
=

r

rw
(5.61)

so
ρcp(α+ ϵH)dTdr

qW
=
ρ(ν + ϵM )dUdr

τw
(5.62)

rearrange to find
τw
q′′w
cp

(
α+ ϵH
ν + ϵM

)
dT = dU (5.63)

for Pr = PrT = 1, the bracket is 1, so
τw
q′′w
cp dT = dU ⇒ τw

q′′w
cp(Tm − Tw) = Um (5.64)

note
Tm − Tw

q′′w
=

1

h
τw = cf

ρU2
m

2
(5.65)

substitute to get
cf
2

=
h

ρUmcp
= St for Pr = 1 (5.66)

This is called heat transfer Raynolds analogy
For Pr ̸= 1, experimental data imply

cf
2

= StPrn n ≈ 2

3
(5.67)

Since cf = f(Re), analogy implies StPr2/3 = f(Re), ususally define colburn j factor j =
StPr2/3.

And for laminar fully developed flow in a round tube (isothermal wall), NuD = hD
k −3.66,

St =
h

ρUmcp
= 3.66Pr−1Re−1 j = 3.66Pr−1/3Re−1 (5.68)

and laminar result f = 16
Re .
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5.6 Near wall in turbulent flows

Figure 8: Near wall flow regime

In Fully turbulent regime, we expect ϵM ≫ ν. Also, we have the x dir momentum equation

U
∂U

∂x
+ V

∂U

∂y
= −∂P

∂x
+

1

r

∂

∂r
(rτ) (5.69)

Close to wall we expect terms on lhs to be small since velocities are low there.

0 = −dP

dx
+

1

r

∂

∂r
(rτ) (5.70)

If we have flow in a pipe, dP
dx is constant and ̸= 0, and as before

τ

τw
=

r

rw
− 1 = 1− y

rw
(5.71)

for y ≪ rw, τ ≈ τw.
If we have a free boundary layer flow with dP

dx = 0, equation becomes

∂

∂r
(rτ) = 0 ⇒ rτ = const = rwτw (5.72)

τ =
rw
r
τw =

rw
rw − y

τw =
1

1− y/rw
τw (5.73)

and again if y ≪ rw leads to τ = τw. For constant shear region, τ = τw = ϵM
∂U
∂y .

or if we use mixing length theory

τw
ρ

= l2
(
∂U

∂y

)2

(5.74)

and using l = κy proposed by Prandtl. He argued that eddy size varied proportional to
distance from the wall implying l ∼ y, so

τ

ρ
= κ2y2

(
U

y

)2

(5.75)

data indicates κ = 0.41, called Von Karmen const.
Next introduce non-dimensional variables

u+ =
U√
τw/ρ

y+ =
y
√
τw/ρ

ν
(5.76)
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substituting into equation and we find
du+

dy+
=

1

κy+
τ = τw (5.77)

Integrating this equation,
u+ =

1

κ
ln y+ + c0 (5.78)

the best fit to expreimental velocity profile data in the fully turbulent portion of the near
wall region is achieved with c0 = 5.0.

u+ = 2.44 ln y+ + 5.0 (5.79)

note that as y+ → 0, u+ → −∞, which is not physically realistic.
Very close to the wall we expect to find a viscous sublayer in which ν ≫ ϵM , for constant

τ region,
τ

ρ
= ν

∂U

∂u
(5.80)

Integrating from wall yields∫ U

0

dU =
τw
µ

∫ y

0

dy ⇒ U =
τw
µ
y (5.81)

substituting yields u+ = y+ for viscous sublayer.

Figure 9: Similarity turbulent result

Comparison of these equations with data. Indicates data agrees with viscous sublayer
relation to about y+ = 5 and then transitions to fully turbulent region. u+ vs y+ relation
established experimentally is the universal velocity profile near a wall for dP

dx = 0 or low-
moderate dP

dx values.
Note: need best fit near wall (small to moderate y+) to predict heat transfer well at wall.
Other curve-fit relations for the universal veloctiy profile have been proposed. e.g., power

law fit
u+ = 8.75(y+)1/7 (5.82)

which fits fairly well to y+ = 1500. More convenient for calculations (not segmented). A
variation is

u+ = A(y+)n (5.83)
wjere n is a function of Re or y+. e.g., 3 layer model
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Viscous sublayer 0 ≤ y+ ≤ 5, u+ = y+

Buffer region 5 < y+ ≤ 30, u+ = −3.05 + 5 ln y+

Fully turbulent region y+ > 30 u+ = 5.5 + 2.5 ln y+

Note if we have a relation u+ = u+(y+) for the universal profile, we can derive a relation for
ϵM

u+ =
U√
τw/ρ

= u+(y+) y+ = y

√
τw/ρ

ν
⇒ (5.84)

∂U

∂y
=

√
τw
ρ

du+

dy
=
τw
ρν

du+

dy+
(5.85)

In general τ = ρ(ν + ϵM )∂U∂y . And for the constant shear layer near the wall, τ = τw so

τw = ρ(ν + ϵM )
∂U

∂y
= ρ(ν + ϵM )

τw
ρν

du+

dy+
(5.86)

solve,
ϵM
ν

=
1

du+

dy+

− 1 (5.87)

which predicts ϵM = ϵM (y+).

1. In viscous sublayers
u+ = y+, (5.88)

Or for a 3 regime model,

1. Viscous sublayer 0 ≤ y+ ≤ 5: u+ = y+, ϵM = 0

Another expample: van Driest model, mixing length is l = κy(1− e−y/A)

y/A = y+/A+ l =
κy+ν√
τw/ρ

(1− e−y
+/A+

) (5.89)

where A+ ∼ 26.0 is good for fitting data. With this we have

ϵM = l2
∣∣∣∣∂u∂y

∣∣∣∣ (5.90)

using definitions to replace y with y+ and U with u+ yields

ϵm
ν

= κ2y+2(1− e|−y
+/A+|)du

+

dy+
(5.91)

note: can get relation ϵM
ν (y+) if we know u+(y+).

Note also the relations for u+(y+) can be modified to include effects of suction, blowing
(at the wall) or finite ∂P

∂x if necessary.
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5.7 Two equations approach
k − ϵ two-equation model of turbulent transport. Concept: turbulent kinetic energy and
dissipation of turbulent kinetic energy vary throughout flow field.

k′ =
1

2
(u′u′ + v′v′ + w′w′) k =

1

2
(u′u′ + v′v′ + w′w′) (5.92)

consider mixing length model

ϵM = l2
∣∣∣∣∂U∂y

∣∣∣∣ = lml

(
lml ·

∣∣∣∣∂U∂y
∣∣∣∣) (5.93)

this is length scale times velocity scale, which suggests ϵM = alk
√
k, lk is eddy size in

turbulence.
Dimensional analysis suggests that dissipation ϵ

ϵ = CD
(
√
k)3

lϵ
Φ ∼ ρν

(
∂u

∂y

)2

∼ ρm2/s3 (5.94)

A bit of reasoning can be applied to relate lk and lϵ to lml, which leads to

ϵM = C
1/4
D lml

√
k ϵ = C

3/4
d

k
3/2

lml
(5.95)

To use in transport modeling, we need to predict k and ϵ throughout the flow. With de-
composition and time-averaging of equations, we can derive equations for transport of k and
ϵ.

Example 5.1:
Deriving k equation for boundary layer flow, start with

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
ν

ρ

∂2u

∂y2
(5.96)

multiply by u and use continuity to get

∂

∂x
(uu2/2) +

∂

∂y
(vu2/2) = ν

∂2

∂y2
(u2/2)− ν

(
∂u

∂y

)2

− u
∂P

∂x
(5.97)

then substitute u = U + u′, v = V + v′, p = P + p′, ∂P
∂x = 0, time average, combine

with mean velocity equation

U
∂U

∂x
+ V

∂U

∂y
= ν

∂2U

∂y2
− ∂

∂y
/9u′v′ (5.98)

multiplied by U . Neglect x derivative terms compared to y derivative terms (BL
approx). Write result in terms of

k =
1

2
(u′u′ + v′v′ + w′w′) ϵ = ν

(
∂u′i
∂xj

∂u′i
∂xj

)
(5.99)

resulting equation

ρU
∂k

∂x
+ ρV

∂k

∂y
=

∂

∂y

[
−ρv′k′ − v′P ′ + µ

∂k

∂y

]
− ρu′v′

∂V

∂y
− ρϵ (5.100)
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with modeling implemented

U
∂k

∂x
+ v

∂K

∂y
=

∂

∂y

[
(ν + ϵk)

∂k

∂y

]
+ ϵM

(
∂U

∂y

)3

− ϵ (5.101)

can similarly derive an equation for local dissipation ϵ

U
∂ϵ

∂x
+ V

∂ϵ

∂y
=

∂

∂y

[
(ν + ϵϵ)

∂ϵ

∂y

]
+ c1

ϵ

k

(
ϵM

(
∂U

∂y

)2
)

− c2
ϵ2

k
(5.102)

typical definitions,
Scϵ = ϵM/ϵϵ Sck = ϵM/ϵk (5.103)

k and ϵ equations are solved simultaneously with mean continuity, u-momentum and
energy equations for model constants. we also need boundary conditions (k, ϵ match
at sublayer boundary). Example,

ϵM = Cµk
2
/ϵ Cµ = 0.09 (5.104)

C1 = 1.44 C2 = 1.92 Sck = 1.0 Scϵ = 1.3 (5.105)

note these equations apply outside the sublayer.
Inside sublayer, use law of the wall or mixing length model. Law of the wall still
important for predicting heat transfer at the wall.

6 Mass transfer
Note that for each convective transport of thermal energy( we will consider BL case specifi-
cally)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
k
∂T

∂y

)
= − ∂

∂y
q′′ (6.1)

define i as enthalpy/unitmass i = cpT , we can rewrite equation as

ρu
∂i

∂x
+ ρv

∂i

∂y
=

∂

∂y

(
k

cp

∂i

∂y

)
(6.2)

so i is a transportable property per unit mass of fluid. Flux of this property (relation to
center of mass of moving fluid) is

q′′ = ji = − k

cp

∂i

∂y
⇔ 1

cp

∂i

∂y
=
∂T

∂y
(6.3)

another transportable quantity is the mass of species 1 per unit of total fluid mass c1. Species
concentration on flux je1 obeys the diffusive transport relation known as Fick’s law.

m′′
c1 = jc1 = −ρD12

∂c1
∂y

(6.4)

we invoke the analogy
−q′′ = k

cp

∂i

∂y
⇔ −jc1 = ρD12

∂c1
∂y

(6.5)
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the mass transport for species 1 is

ρ

(
u
∂c1
∂x

+ v
∂c1
∂y

)
=

∂

∂y

(
ρD12

∂c1
∂y

)
(6.6)

or for constant density D12

u
∂c1
∂x

+ v
∂c1
∂y

= D12
∂2c1
∂y2

(6.7)

6.1 Forced convection with mass flow over a flat plate
∂u

∂x
+
∂v

∂y
= 0 u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(6.8)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
u
∂c1
∂x

+ v
∂c1
∂y

= D12
∂2c1
∂y2

(6.9)

binary mixture c2 = 1− c1. BC

y = 0 : u = 0 v = v0 T = T0 c1 = c10 (6.10)

y = ∞ : u = U∞ T = T∞ c1 = c1∞ (6.11)

similarity solution

η =
y

2

√
U∞
νx

θ =
T − T∞
T∞ − T0

=
c1 − c10
c1∞ − c10

(6.12)

f(η) = ψ/
√
U∞νx u =

∂ψ

∂x
v = −∂ψ

∂y
(6.13)

equations and BC become
f ′′′ +

1

2
ff ′′ = 0 (6.14)

θ′′ +
1

2

ν

α
fθ′ = 0 (6.15)

ϕ′′ +
1

2

ν

D
fϕ′ = 0 (6.16)

η = 0 : f ′ = 0 θ = 0 ϕ = 0 f =
2v0
U∞

(6.17)

Note that here we define a mass transfer coefficient µD such that

m′′
1 = µD(c1,s − c1,∞) (6.18)
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Example 6.1: wet and dry bulb thermometer

at steadystate, negligible conduction into thermometer. surface energy balance on
wet bulb

heat transfer from air = evaporation ratehev (6.19)

hc(Tdb,∞ − Ts)A = hD(c1,s − c1,∞)Ahev (6.20)

rearrange this to solve for c1,∞

c1,∞ = c1,s −
hc

hDhev
(Tdb,∞ − Ts) (6.21)

c1,s =
x1,sM1

x1,sM1 + (1− x1,s)M2
(6.22)

x1,s =
psat(Ts)

patm
(6.23)

If we measure Ts and Tdb, compute x1,s, c1,s, c1,∞ then

x1,∞ =
c1,∞/M1

c1,∞
M1

+
1−c1,∞
M2

(6.24)

RH is x1,∞/x1,s

For flow over a cylinder or sphere, heat transfer - mass transfer analogy leads to similar
relations for the mean heat transfer and mass transfer coefficients

hcD

kf
= 0.615Re0.466D Pr1/3 40 < ReD < 4000 (6.25)

hcD

kf
= 0.172Re0.618D Pr1/3 4000 < ReD < 40000 (6.26)

hcD

kf
= ARenDPr

1/3 ⇒ hc
ρcpU∞

ρU∞D

µ

µcp
kf

= ARenDPr
4/3 (6.27)
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so
St =

hc
ρcpU∞

= ARen−1
D Pr−2/3 (6.28)

by analogy, we expect

Stm =
hD
ρU∞

= ARen−1
D Sc−2/3 (6.29)

taking the ratio of St/Stm yields

hc

cphD
=

(
Pr

Sc

)−2/3

(6.30)

define Lewis number

Le =
hc

cphD
=

(
Pr

Sc

)−2/3

(6.31)

for water -vapor and air mixtures Le ≈ 1
So measure Tdb, Twb, compute x1,s, c1,s, use above relation.
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