1 Basic equations

1.1 Introduction

Convection: using fluid to move heat or mass (species)
Transport energy and control temperature:

e environment: temperature in room.

e bio systems: blood, skin.

¢ technologics: heat exchanger, cars. $ 23 billion market!
o food heating

Big picture: conservation of mass, force-momentum balance, 1st law of thermodynamics,
transport models, conservation of species — governing equations and boundary conditions.
— solution methods.

1.2 Mass and Momentum equation

Continuity - mass conservation
rate of accumulation of mass inside = net rate of mass flow into volume through surface.

Op Opu OJOpv Opw
R e T T e 1.1
ot T or T oy T os (1.1)
general 3-D continuity equation. If p is constant, then
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Ty 1.2
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Momentum transport (3 direcitons). I=II+III, where

I: Time rate of momentum of fluid in volume
II: net force on fluid in volume
III: net rate pf momentum transport into volume.

x - direction:
9(pu)

0
L= ot

Fr
For III, first calc the flow in z-dir

pdxdydzu) = dzdydz (1.3)

d(pu?)

[(pudy dz)u], — [(pudyd2)ul,, 4, = — dzdydz (1.4)

then same for y and z
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111 U ( 5 + 9y + 5 dzrdydz—|{ pu 5 + pv 9y + pw oy dzdydz (1.5)

For II, simply denote

II: = pXdzdydz + pS; derdydz (1.6)
X is the body force per unit mass, S, is the = direction surface force. In total,
ou  Op d(pu)  O(pv)  I(pw) ou ou ou
—tu— =— — — — — X +pS, (1.7
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use continuity equation to cancel:

ou Ju
D 0 9] 0

We get z-dir momentum equation. Also works for y

v
pD7t = pY + pSy = pF, (1.10)
using another annotation,
(u,v,w) — (v1,v2,v3) (z,y,2) = (z1,72,73) (1.11)
SO D
U
— pF, 1.12
Py =P (1.12)
1.3 Swurface stresses
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Figure 1: stress of control volume

take p,, dr dz for example, first place £ means direction, second place z means surface
norm. p doesnot mean pressure, just a notation of force here.

Zpr dz dy dz = [(pww)w-i- dz — (pww)m] dy dz + [(pwz)z—i- dz — (pwz)z] dz dy +--+pX dz dy dz

(1.13)
z-direction: I 5 5 5
U Pz Pz Py
— = X 1.14
"Di ox 0z + Jy e (1.14)
generally, with Einstein’s summation:
Du; s v, O
Uy pU R N pX; (1.15)
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The decompose is (no subscript p is pressure)

Prx = =P+ Taz Pxy = Tay Prz = Tz (116)
Tz 18 the viscous stress. And z-dir:

Du o 8p 37’;1330 aTxy + 87—:62:

T T TR TR S (L17)
_x_0 ge, O (0w Ov Ow
= pX 9 + uVau +38 <8m+8y+82> (1.18)
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38x(8x+8y+8z>+ 8x8x+8y <8y+8x) 0z 32+8x (1.19)

Simplification, firstly, with continuity eq,

Dp Ou v  ow)

and secondly if viscosity is constant, then derivatives with p vanish.
Sometimes viscosity is related with temperature, so we can use the following technique

instead: 5 5 or
op _ o
dr OT <8w) (1.21)

and (aa% can be calculated from heat transfer.
We now have momentum equation, after simplication:

Du dp
= pX - = 4 puA 1.22
Py = PX — 5, THAu (1.22)

this is Navier-Stokes eq. same for y and z

1.4 Developed flow in pipe

R
7

Figure 2: internal flow regime: developing and developed flow

Internal flow regimes: developing flow and fully developed flow. The developed flow is
unchanging in x.
The cylinder is 2a in diameter. Continuity equation is

@+6v,.+&+ 1 Oy
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=0 (1.23)

symmetry tells no v,,vg,s0 2 =0 = u=u(r)



z-dir momentum equation is

2 2 2
0y 10u 18u+@ (1.24)

du  Ou du | vg du dp guw, o, 10U
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changing into

~Op 10 ou

no slip cond: w = 0 at r = a. another cond % =0 at r = 0. Integrate momentum equation,

S (D]
define

1 1 e a? dp
Uagvgs Wmean, Um = E (/A pU dAc> = p7ra2 /O pu(?ﬂ'r) dr = @ <_dx> (127)

c

substituting pressure term, then

4 = 2Umcan [1 - (Tﬂ (1.28)

a

For the shear stress, in Newtonian fluid,

ov, Ou ou rdp
_ guy _ou_rdp 1.2
Tor = ( Ox + 87") For = 24z (1.29)

Take a dz length of the cylinder, the net force at two ends should be balanced by the
friction of wall. That is

dp adp
2 2

pra‘ — (p+ e dx) 7a” + (Tor) pau 270de =0 = (Tor)you = 2o (1.30)
So this is consistent. Friction coefficient C is a ratio of friction of wall and the dynamic

pressure.

_ Twall _ 8pum _ 16 Re — Pl D
F= pu2 /2 apu?, Re o

m

(1.31)

so in the Re — Cy log-log plot, the slope is —1. For turbulance as Re goes up (transition
about Re = 2000), the slope is about —0.2.

Cfy is fanning friction factor. If using Darcy friction factor f then Cy = f/4

About the power,

W = Ap(ma?)u,, (1.32)

1.5 Energy equation

In a control volume, derive from 1st law for control volume. We have input/output: conduc-
tion, convection and radiation. Work of the system W. So the law is the rate of E., should
be equal to net inflow of convection, conduction radiation and surface/body forces.

By definition, we have kinetic energy per unit mass

1 1

ke = §(u2 + 0% +w?) = Uk (1.33)
Lo o 2

E.,=p 6+§(U + v +w?) | Vo (1.34)
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Figure 3: Energy equation C.V.

e is internal energy per unit mass. Then

9 —&-1 ddd——i[ ‘(+k)]ddd—%ddd (1.35)
¢ [P | et 5unun xdydz = axj,ov]e e)] dzdydz agcjavyz :
+ pderdydz(Xu+Yv+ Zw) + a%(pijvi) dzdydz (1.36)
J
+ pdxdydzR (1.37)

The first term on rhs is convection, second is conduction, last is radiation (may also include
chemical reactions and etc.). p;; term represents for body force and shear stress.
Pij = —Poij + Tij

Cancel all dzdydz,

9 9 % )
5t [p(e + ke)] + oz, [ovj(e + ke)] = " ox, + pXjv; + %j((—p@'j +7ij)vi) + pR - (1.38)

using continuity equation % + %(pvj) = 0 to simplify, then

(e + ke) (e + ke) aq; 0
—_— ——— = — Xv; + =—((—pdi; + Tij)vi R 1.39
P ot + pv; oz, 613j+p jvj+8zj(( poij + Tij)vi) + p ( )
on the [hs we can use % notation. and
D(ke) D vkvk) Duy,
- = =y 1.40
Dt Dt ( 2 "Dt (1.40)
we get
De Du; aq! 0
E + Uj?tj = —%jj + ,Ovaj + %j((—pézj + Tij)vi) + pR (1.41)
using momentum equation, p%”; = %ﬁf? + pX; to simplify. Multiply it by velocity, we get
Mechanical energy equation
D(ke) D'Uk apij
Dt POk Dt v O0x; v ( )

And use mechanical energy equation to simplify, getting thermal energy balance equation or
thermal transport equation

De 3(1;/ . dv;
=2 4p.—t
i oy

ze_ 1.4
P Dy o +pR (1.43)



It can also be written

De  pdv; 8q  Ov
= 1.44
[ p 33:1} Oz (1L44)
Then make use of continuity
Ov; 1Dp Dp~!
- _-=F_ 1.45
0x; p Dt Y ( )
we get
De D /1 Bq v;
= 7 1.4
o3 rmy (5)] =~ g + R (1.46)
We want to use enthalpy, that is i = e + p/p, we get
Dz Dp 8q v,
— - = L +®+pR d=r1;— 1.47
"Dt "Dt o TP T 9z (1.47)

® is viscous dissipation function. Most of the time dissipation can be neglected in engineering.

D
Also for D—Zt’

For gases, ® is less likely to take effect unless in turbines. % may be affective. For
liquids, it is often incomressible, so % =0,¢c,=¢p,=ce=1,
De Di DT 8q
— =p— =pc(T)— = L +®—pR 1.48
Por = Ppr Py =g, T (1.48)

Integrating to get mean properties, we want to get thermal energy convected in axial
direction. Mean enthalpy i,,,

M, :/ puidA, (1.49)
AC
If p = const, ¢, = const, ¢ = ¢,T', define iy, = ¢,T},. For a cylinder tube, radius a, we have
. 2 . 2 . dip,
in: ma’ pumim out: ma®pumy, | iy + d—dx (1.50)
x

while in the C.V. heat transfer from wall is ¢// (2ra dz). From out=in+tran, we get

7ra2pum% dz = ¢/} (27a) dx (1.51)
further,
_ v 1 d7,,
Tn = - /quAC G = 50PUmCp~ = (1.52)
1.6 Summary
Continuity
dp 0 0 0
— 4+ — — 0 1.53
ot 9Pt 5, (P + 5o (w) = (1.53)

If incompressible, can be simplified.
Momentum z-dir, incompressible flow, p const

Du_ Op  [PPu 0P 0w
Du _ X 1.54
Pot = "o Mo Tar T a2 T (1.54)



Energy ¢/ = fkg_—;c, i =cpT,
DT 0 oT 0 oT 0 oT
— =— | k— — | k— — | k—=— P+ pR 1.55
Py 8z<6x>+3y< 3y>+82( az)+ e (1.55)
=kV?*T +® + pR (const k) (1.56)
Example Fully Dev flow in round tube, lam. flow, energy eqn. Ignored heat gen, viscosity
diffusion.
oT ar ko oT k 0°T k82T 157
P e TP = rar \"ar ) T oe TR aaE (L57)
2 Fully Developed and developing flow
Fully developed: velocity field and thermal field.
2.1 FD flow in round pipe
Energy equation for round pipe,
W OT O kO (0T EPT 0T o
Pl gy TP = Y ar o r2 062 ox? '

the 8 term need not to be considered. But gg can also be neglected in common situation, as
it represents conduction, which is much slower than convection. We only need to consider

it if the velocity is slow or the liquid is highly conductive. And with v, = 0, we end up with
or ko ( 8T)

s = var ar

(2.2)

The FD flow provile is given by subsection 1.4

U= U (1 - (2)2> Uy = g; (—Si) (2.3)

In order to make use of FD condition, the unitless temperature is introduced.

_ Ty(z) = T(x,7) e
¢= Tow(x) — T () o Ty—Tp Or (24)

And FD means ¢ is only a function of r. With ¢, we can compute ¢,/ and h.

w_ 50T _ N
q = —k = k(T, T’”)ar

_ _
i ar | _ (r=a) h =k—(a) (2.5)

" Ty —Thn or

We need to specify BCs to solve the problem. There are usually 2 cases.

case 1: constant heat flux ¢// = const

_ 06 _ 0 [T,-T]_
o=10) = =g || =0 (2.
1 dT,, 1 oT T,—T d

= (Tw - Tm) =0 (27)

Tw—Tp dz Ty —Tpm 0z (T — Tp)? dz
ar, or  d

dx ox a(Tw ~Tm) =0 (28)

FD refers to fully
developed.

8¢ -
note B—f is also only a

function of r.



case 2:

as q ~ (T — Tm), ¢} = const means T,, — T, is const, so Equation 2.8 turns

i dTy, _ 90T _ i a7, _ dT, ;
into g = G- Also T, — T, is const leads to q> = g2, then, consider heat

conservation Equation 1.52

dT, 0T  dT,,

& or T dr (2.9)

substitute u with u,, in Energy equation Equation 2.2,

U, AT, r\2) 10 oT
o d (1 -(3) ) = o (a) (2.10)

With BC, ¢l = —k%—f at r = a and %—f = 0 at 7 = 0, and make use of Equation 1.52

T 2 1
A _ 24w (2.11)
dz PUmacy
the solution is
2ua? dT, 3 1 /r\% 1 /7r\2
T(z,r) = Ty (x) — —2md Com | 2 7(7) _7(7) 9.12
(@) =Tu(@) - ==, [16+16 a) " 1\a (2.12)
11 [ 2u dT,
Tp(2) = To(z) — — [ —2 ) —"a? 2.1
(0) = Tule) - g5 (22) e (213)
the relation of 9,7, and ¢/, in this case, the convection coefficient is
qr 48 k hD 48
h=_——""—=—— Nup = — = — ~4.364 2.14
To-T, 112a & Nup=7 =g ~436 (2.14)
constant wall temperature T,,. According to Equation 2.8,
or T,-—T dT,, oT dT,,
ox T,—-1T, dz ox o(r) dx ( )
using energy equation,
U dT,, 190 oT
hed == (== 2.16
oqu(r) dx ror <T or ) (2.16)
B.C.,, T(a) = T, ‘?Tﬂr:o = 0. Assume the solution is of infinite series, then
1503 ean (5)" 2.17
6(0) = 18033 can (5) (217)

Question 1: The property of ¢?

With the definition of ¢, I found it would be strange if take average on it:

T,—T
¢ = T, T. = Tyw—-T=(Ty—Tn)o (2.18)

take average on both side, as T, and T}, is not function of r,

Ty — Ty = (T — Tm)LA /uquAc (2.19)
Um Ac




Cancel out T3, — T}, we find

U A = /uqS dA. (2.20)

and with the definition of u,,

U = Ai/udAC = /(u —up)dA, =0 (2.21)

For the case of fully developed flow in the pipe, as w is already known,

a r 2 a r 2
/ um<1—())(1—¢>)rdr=0 = / (1—())(1—¢)rdr=0
0 a 0 a
(2.22)
So is the eqn. above a condition that every ¢ should satisfy, or we can even

solve ¢ from it?

substitute, generate equations for coefficients that balance powers of r.
A5
——(Cop—4 — Con— Ao = 2.704364
(2n)? (can—a — can—2) 0

(2.23)
In this situation, Nup = @ = 3.657, ¢!/ = h(Ty — T),) is getting smaller as T,

increases. As h = 3.657%, if we want a higher h, then we need larger k or smaller
D.

1
co=1 co= jxg = —1.828397 ¢, =

Stanton number is a ratio of heat transfer and heat capacity.

St = puhc (2.24)
mCp
mD
Nu = St-Pr-Re Pr= MI:p Re = puﬂ (2.25)

2.2 FD Flow in Rectangular Channel

Rectangular channals, flow in z, dir y, z length b,a. Fully developed steady flow, neglect
viscosity, dissipation, radiation and press work, const properties, neglect axial conduction.

Continuity: % —&—? + g—w =0B.C.v=w=0 (2.26)
T Yy 2

=0

so everywhere v = w = 0.

ou ou ou dp ?u  O%u
M tum: — — — | =—-= — 4+ — 2.27
cmenttm p(u8x+vay+w€)z) Oz <8y2 oz (227)
Pu  0%u  10p
N gu__9 2.28
oy? * 022 uox (2.28)
as % = const, this is poisson equation. We solve this with B.C. © = 0 on boundaries. And

ou _ Ou __ :
we expect oy = 9z — 0 at centerline.



With u(y, z),

oT aT aT 0*T  0°T
—_———
=0
2 2
u(z,y) 0T _ 0°T  O°T (2.30)

=_——+
a Oxr Oy 022

We can solve the equation for T'= T, or ¢ = q,, at boundaries.

To solve, postulate temperature field T' = ¢(y, z) f (), substitute into equation, we get

Ji_ aVig
[ uly,2)e

we can solve the combination for every a,b.

= const (2.31)

b/a Nu, Heat flux BC Nu, Temperature BC

Circle 4.364 3.66
Triangle 3.11 2.49
Rectangle | 1.0 3.61 2.98
Rectangle | 2.0 4.12 3.39
Rectangle | 4.0 5.33 4.44
Rectangle | 8.0 6.49 5.60
Rectangle | oo 8.235 7.54

Table 1: Nussel number in different shape

Two affecting factors are the minimal distance from centerline to edges and internal corner
angles. We can also use Stanton number.
Colburn j factor, which is defined as

j = Stpr?/3 (2.32)

Since Nu is const for fully developed flow, StPr o Re~!. Friction factor c¢f = franning =
16Re™ !, so St « c¢f, meaning when we raise St, the friction effect also increased. This is
heat/momentum transport analogy.

2.3 Thermal Entry Flow Between Parallel Plates

Now we want to know what is the condition of fully developed flow.

10
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Figure 4: Flow between parallel plates

_ 4Ap  4(20)(1)

Dy = = =4b 2.33
n= P = (2.33)
The energy equation is
or 0 oT
— = k 2.34

For developing flow we can have
(1) velocity field and T developing

(2) velocity field fully developed, and T is developing. Can occur when unheated entry or
large Pr

we assume the second situation. The velocity profile is

% _ % [1 _ (?1))2] (2.35)

take pc, = const, o = k/pcp, aref = krey/pcp, dimensionless number

y* 2x* T ey v 2 22 4
_Yy — — 47 == — 2.36
=% v 3umb?/a b v un(4b)3 3 b Pe (2.36)
where Pe is Peclet number, Pe = RePr. Partially dimensions form:
2 u 0T 0 oT
2u 0l _ 0 ( o T @37
Sum 0r 0y \ ey 0y
T-T, 00 0 a 00
6= v 1—y?)— = — — 2.38
T, — Ty, = y )6JJ Jy (aref 8y) ( )
BC: 0(0,y) =6; =1, 0(x,£1) = 0,, = 0.
Postulate: 0(x,y) = X (2)Y (y), then
!/ X/ a/ Y/ o Y//
1— QX/Y:a(y) a(y)XY" a4 _ 32
( Y ) Qref + Qref - X Qe f (1 - y2)Y * Aref (1 - y2)Y B
(2.39)
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First consider « is constant, we get

X' +8X=0 = X=0Ce* (2.40)

Y+ (1-yH)B*Y =0 (2.41)

We can have different §s. This is called Sturm-Liouville problem.

Sturm-Liouville Problem

. (r@)j—j) T la(y) + Ap(y)]6 = 0 (2.42)

BC: a1¢(a) — aqu’(a) = O, blgb(b) — bng/(b) = 0.

Usually there will be eigenvalues A, = {A1, Az, ...}, and also eigenfunctions ¢,,. Any
two eigenfactors are orhogonal.

b
Orthogonality: — / DY) P ()P (y)dy =0 n#m (2.43)

Method of Frobenius: we postulate

Y=Y anyte (2.44)
n=0
so we get
Z an(n+ec)(n+ec—1)y"te2 432 Z any" e — B Z any" T =0 (2.45)

then we get

n=0 = apc(fc-1)=0 = ¢=0,1 (2.46)
n=1 = ac(c+1)=0 = choosea; =0 (2.47)

repeat the process to get other coefficients.

A = _Bz(an—Q - an—4)
" (n+to)(nt+ec—1)

(2.48)

2 2 2 2,3 2
Y =¢ [1—%y2+f—2<%+1>y4+~}+@ [y—ﬂlé’ +§—O(§+1)y5+~} (2.49)

But the situation is symmetric with y = 0, so only have ¢; term, or say co = 0. And the
remaining is the eigenfunction.
B.C. require Y (1) = 0, so § are the roots of
2 2 2
1—%4—%(%4—1)4—---:0 = [p=1.67 B1=5.67 ... (2.50)

Now )
0= Zcme_ﬂmzYm(y) (2.51)

12
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using B.C.,
00,9))=1 = Y cn¥uly) =1 (2.52)

multiply both sides by (1 — y?)Y,, and integrate,

1 1 1
[a-mdy=3 [ ctuvit-?dy=c, [ 2a-ihay (@25
-1 —J -1
so we get
1
1—-y2)Y,d
cn = ;1( v )¥ndy (2.54)
_1(1 - y2)Ynz dy
Once we get the function,
h - 4b 4bqy, 4 (89)
Nu = = =— | = (2.55)
k k(Ty — Tm) Om \OY ) ,—1
4 m —ﬁfnfyl 1
_ Ay eme T¥ (1) (2.56)

T 3 eme Py, (1)/52,

At large z, only the first term dominates, and Nussel number — 833 /3 = 7.56. The process
is

Nu(z = 0.0067) = 13.1 Nu(z = 0.0667) =820 Nu(z =0.2) =752 Nu(x=1)=7.52

(2.57)
2.4 Developing Flow in Round Tube
constant heat flux
o a0 oT o or B or _ qw
Yo = T ar (a) TON=T=0 3| =0 %|_ =% &%

we solve for T'— Trp, as T — Trp — 0 as z* — oo. Fully developed solution for this case

can be written as
Trp  Ax* /1y 3 1/r\> 1 /r\
- S A (i I 2.59
GuwTw/k RePr [16 4<7“w) Jr16 Tw ( )

we postulate solution of the form

GuwTw

k

T=Trp + V(i[,'*, ’I") (260)

substitute and use the fact that

8TFD o [0 5' 8TFD
““or T Tor <r or > (2:61)
leads to )
T oV a0 191%
2Um [ 1 - — =—— [r— 2.62
“ ( (rw>>8x* r Or (r&") (2:62)
we define dimensionless
LT B aj 1 U (2ry) v
rt = - - (R(ZPT) Re = ” Pr= " (2.63)



then get

ov 1 0 oV
9V 1 o [ oV
=07 )396 r+ ort+ (T 87“"‘) (2.64)
BCs
3l = 6l = § _§ +32 1 14
ot ., =0 ot _, -y Vl]z=0 = 1 (r7)* + 4(7‘ ) (2.65)

We still use separation of variables. Same methdology as flat plate case except eigenfunctions
are different. Result is

-1
11 1 2
Nu, = e Y 2.
u lNuoo 2;/1,”73”6 ] (2.66)

i =25.68 73 =8386 A, ="763x10"° A, =2.053x10"3 (2.67)

Then compute x with Nu,

Nug(0) = 00 Nug(0.002) = 12.00 Nug,(0.010) = 7.49 (2.68)
Nuy(0.040) =519  Nug(0.100) = 4.51 Nug(co) = 4.36 (2.69)

Now constant wall temperature T, case

oT 10 (0T o*r
" ou a{r@r (rar)]+aax2 (2:70)
Non-dimensionalize,
+_ " +_ Y +_ 2(x/2ry) T, T
T T YT ¥ T TRePr b= T, —T; 271)
we get
+ 2 1 1

2 9zt A(rt)2 " rTart | (RePr)? d(zt)
+

as 0, ut,zT,rT are expected to have order 1, if Pe = RePr is very large, then the last term
can be neglected. But if Pe is very small, it will become important.

We assume this is hydrodynamically fully developed, so u* = 2(1 —7*2). Then postulate
speparation of variables.

XI
Oz, rt) = RrHX (") = < = —\? (2.73)
the solution has the form
Oat,rt) = enRu(r)e " (2.74)
n=0

¢, and R, (rT) are determined using Sturm-Liouville process. Then we can have T, (z"),
qw and h, Nu

Nu(0) =00 Nu(0.001) =12.80 Nu(0.01) =6.00 (2.75)
Nu(0.10) =3.71 Nu(oo) = 3.66 (2.76)
FD conditions reached at z+ ~ 0.10.
2(x/D
I(%xe/Pr) =0.1 = (z¢/D)pp =0.05RePr ~ 5 for air at Re = 100 (2.77)
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2.5 Summary

FD flow and heat transfer.

round pipe:

U r? Tw 16
w=(0k) e (27%)

Tw -T _ _ quw _
(;5 = m =S ¢(T) = hFD = m = const (279)
hFTDD = Nupp = const (2.80)

oT k10 (0T
e R el 2.81
ulr) Ox  pcp T Or (T or ) (281)
or

is const if gy, is const, and Nupp = 4.36, geometry affects.
Thermally developing flows. velocity field FD. T'(x,r), u(r), v =0

Oz

or k18(8T>

u(r)% = TE

Isothermal wall T'(x = 0,7r) = T),, T(x,74) = Tow, %—f(x,r =0)=0

/\’V“’h—z
(oo = const 9"
v
o
Vs FD
cont Tw
[Yw
| " N [] 1 REF:
¥ 103 pe o o7

Figure 5: Nussel number along developing.

3 Boundary Layer

Solution strategies

e Analytical solutions or solving PDEs using math tools.
o PDE to ODE, using similarity, solve PDE with math tools or numerically.

e PDE, use finite difference or finite element equations, solve numerically.
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3.1 Leveque Models

Near inlet heat transfer Two parallel plates. Hydrodynamically to fully developed:

U h y?
u=uly) v=0 = um:6<H_H2> (3.1

Thermally developing, Leveque I model.

oT 0T
= a—= 3.2
Yor — “ Oy? (3:2)
At the boundary, want to linearize u.
ou 10%u| Tw
= Uy - =Y 3.3
u= u +8y +28y2 Y+ Y (3.3)
=0
50 u = By, B = T/, and
oT o*T
= a— 3.4
Pyg-=a e (34)

BCiatz=0,T=T;;aty=0,T =Ty; at y = H/2, ?3% = 0. But we replace the last one
with T'=T; as y — oo.
Define a similarity variable, usually let
n=cy"xz~P, and go

1/3 through the process,
_ 5 / E — i@ 9 _ i@ 3.5 choose suitable param
"=\ 9az Y dr  dnox dy  dndy (3:5) value to let
z-dependent terms
then we get (both in equation and
a7 dT BC) drop off.
dﬂ2 :_3772(21777 T=Tyn=0 T=T;,n—00 (36)
can show the solution is
T—T, Te ds 1
- fgo & / e ds (3.7)
T =Ty fo e %" ds 0.893 J,
1/3
= ia;‘r — L i ~ /3 (3.8)
Tw—T; 0y|,—qg 0.893 \ 9oz

We expect h ~ k/d;, s0 §; ~ 21/3.

1/3 1/3 1/3 1/3 13
x

k k ko 90 0.893

14 (0%
(3.9)
or k B\Y?
e dy |, o 0.893(9)1/3 (ax) ( ) (3.10)
- 1/3
= q, = 0.538k <w> (Ty —T) (3.11)
pox
1/3

This implies ¢, ~ 72", so increasing q,, will lead to increase of 7.
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Leveque I model

or _ 0T
L _a8y2

Guw ~ xil/g(Tw - E)’ h ~ ',1771/37 Nu, = hTm ~ 5172/3

(3.12)

There are other models.

or 0T
= a— 1
Ox a8y2 (3.13)
quw ~ x_l/Q(Tw - CZ—IL)? h = Tu?iT.; ~ $_1/2, Nu, = % ~ x1/2
For round tubes,
or «wd (0T
=== 14
ulr) dr ror (r or ) (3.14)
FD flow u = 2u,,(1 — (r/a)?). Also use Leveque I approximation,
ou
_ Ou _ 1
u= o 7hza(r a) (3.15)

set transformation s = a — r, assume s < a so a — S X a

Aps OT  O*T

T% =« 352 (316)
With similar approach, the result is
h
Nu, = % = 1.077(2aPe/z)'/® = 1.36(z7) /3  Pe= RepPr az* = R:[/j)r (3.17)

this models the left part of Figure 5, and when the slope changes in the graph, it comes to
fully developed state.
Leveque II, Thermal and quasi-hydro development. Parallel plates.

oT 9T 9°T

take u = u(x,y), and vg—z; is small enough to negect. Take u = 7, (z)y/p = f(x)y. Integrate

continuity equation,
ou dry, [y
=— | —dy=——— [ =d 3.19
v 5 Y e / L (3.19)

ar aT
assume v, < U, we find

orT 0T Tw(z) 0T  10°T
p— # — ——

= == - = 3.20
Yor — ¢ oy? ap Ox  y Oy? (3.20)
let ds = ap/7(z)dz, s = [ ap/Tw(x) dz. Then equation becomes
oT  10*T
= - 21
0s y Oy? (3.21)

17
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define 1 = y/(9s)'/3, and the solution is

T-T, 1 T s (T — Ty)ka='3u=13 [  dz
_ AN quls) = 3.22
T, — T, 0.893/0 ¢ Gu(s) 9-1/30.893 /E @ 82

Leveque III T(z,y),u(z,y),v(z,y). Again,

8T 8T 0*T
— =k— 3.23
apply the von mises transform (z,y) — (m,@b), Y is stream function, u = ¥y, v = —,.

()G )]
(3)--6)(5.6)
(R ()
:» <ax>w—% &) e

this equation includes v term explicitly. Assume in the boundary layer region, u =

Tw(2)y/ 1, o " o
Tw(X)Y Tw \T)Y
oY _ = = 3.28
By . (0 2 (3.28)
so the actual transfrom is
_ 2p 1/2 QTw 1/2
= /T(x)w 1/) (3.29)
oT
1/2
e G g = o | 5] (3:30)
T — 1/2
let z = ¢%5 V= 1/ L (W> dz (3.31)
4.Jo pcp 0
or _18°T
W Pyl (3.32)

this is equivalent to Leveque II equation if V' replaces s and z replaces y. The solution is

oT (T — Ty)kV—1/3
= —k— = o 3.33
0z |,_, 9-1/3(0.893) ( )
rearrange it in physical terms
ar  ar [ 2u \'* (3.3)
0z Oy \Tw(x) '

v _ (9T _ . (oT Tw(z)  (Tw — T) k(o) Y37, () /2
m <8y>y=0 o <8z>z=° \/;_ $/9(0.893) [fo’c T (T) dﬂl/g 339
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Entry Flow solutions (Approx formulations)

Leveque I
6um Tw - Tz

——
=u

for slug flow ¢ ~ (T,, — T)/2'/?

Leveque II

x - -1/3
Tw(x) 1" Tw _ Tl k / dz 1

T. — aT _ 3.37
Y @y = dw= 75303 [9ap)t/? 0 Tw(T) (337

Leveque IIT

T () dry () 112 _
(T) T, P ETI = aTyy (3.38)

qlr refers to Equation 3.35

For 7, (x), the results of boundary layer flow theory can bu used. For BL laminar

flow,
3/2

_ Uoo —1/2
Tw = 0.332p <m> x (3.39)

For leveque 111,

T, — T))k 1/3 1\ 1/2 (0.332 4)1/3
- ( ) (5) (u_> (0.332)(3/4) (3.40)
x1/? ! v ¥/9(0.893)
Nuy = — D% 339 (“""x) i (”)1/3 = 0.339Rel/2prt/3 (3.41)
(T —T)k v a - v '
Assessment of Axial Fluid Conduction
oT orT 0*T 0T
- — | =k—+k— 3.42
pep (u Oz T Ay ) Ox? * 0y? (342)
axi.al conduct.ion _ kO2T a1 Pe-1 (3.43)
axial convection  pc,ud, T U.L. RePr
axial conduction is negligable for RePr > 1
3.2 Variable Wall Temperature
oT o*T
= a—= 44
Um gy =@ oy? (3.44)
Two steps:
T(x<0)=T; TO0<xz<& =Tw T(x>¢&) =Twn (3.45)
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In the first range, up to x = &, the solution is already known as

T-T = (T, -T) [1 —erf (W)] (3.46)
Beyond x = &, the effect of step change (Ty1 — Thwo) at = £ is
(Tu1 — Tuo) [1 — erf <2(a(x - g)/um)“ ﬂ (3.47)
State the full solution as
g<& + T—T = (Ty—T) {1erf<m)] (3.48)
Z‘Zf N T_Ti:(TwO_Ti)["']+(Tw1_TwO) [l—erf <2(a($—?§)/u )0.5>:| (349)
Three steps:
Tx<0)=T, TO<z<&)="Tuw T <x<&)=Tun T(x > &) = Tu2
(3.50)

Can state similar solutions. Use f(x,y) to denote the 1 — erf terms, then we can summarize:
for a change in a wall temperature AT, at © = &,

A(solution) = A(T —T;) = ATy, - f(x — &, y) (3.51)

Generalize for N step change, for x > £y, solution is

(gn) —Tw (§n,1)

(E y T Zf gnv (gn) gn 1 Z‘f fn’ f —§ 1

(3.52)
We want to know when the distance between steps &, — &,_1 are very small = d§, and we
end up with an integral solution.

/ f(z 5 —d¢ (3.53)

This is called a stieltjes integral. Consider
dg
1= d 3.54
[o@ s (3.54)

we are interested in when g(z) has a jump Agat some point z = ¢,

I_/Ow %9 4o = (/5 ¢ /5“ /;) M@%m (3.55)

The middle term need to be considered. As in the small region, we expect ¥ = ¥(§) stays

constant.

E4e E4e

viae=ue) [ dg=u©)ag (3.56)

G —€

E—e
we end up with

I= / ¥() 32 dz +9(©)Ag (3.57)

If there are n jumps, we can treat it similarily. So for multiple jumps in wall temperature,

T ~Ti= [ Je-6n) e Y e pATE) (5
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Example 3.1: Const Temp and Linearly incr Temp

For slug flow past a plate for T, = const,

T — T = (T — Too) erf | — 2 (3.59)
2/ ax /um
or Unm
w = —k— = (Ty —Tno)y /| —— 3.60
=Ky, | =TT (3.60)
Nug = — 2% _ 0.564Re/2Prl/2 (3.61)
%(Toy — Too) @

slug flow with T, — T, = Bx, no jumps

dT Y dT

T(x,y) — T = /0 d—gerf (NM) d¢ & =B (3.62)

Evaluate integral and g,

2kB 1/2 quw® 2 1/2 1/2 p,.1
w = ——2 Nu, = = T = 1.128Rem/ Prl/?
4 Vo i, (Tw =Tk /mofun,

(3.63)

Method extends to Leveque I, II, IIT models.

Example 3.2: Wall temp jump in Leveque I

u = Py, leads to

1 (Y B3 \3
T-T,=Ty-T;) |1 — —— - d =(-— 3.64
( ) [ 0.893 /o ¢ s] v (9@1:) Y (3:64)
Actually, the term after (Ti, — T;) here is defined as f(z,y).
3.3 Variable Heat Flux Case
slug flow, const g,
oT 0°T oT
Upo — = O0—— TO0,9)=T; T(x,0)=To =T; Gw=—-k— = const (3.65)
Oz Oy>? Jy y=0
the solution
Toy) - T = 20w | [ 20 YU} Y (Y [t (3.66)
Y Tk Uoo T P dra 2 2V azx '
_ Gu _ T U™ 1/2 p,.1/2
Nu, = == = 0. P .
U= T = |/ = 0.886Re}/2Pr (3.67)

For y =0,
2
T(2,0) — T = Ty(z) — T = 2 | 22 (3.68)
k Uoo T
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so we know a step change of ¢, at © = 0 can lead to

2 a
Tw(z) — Ty = quo BV B=—,/— (3.69)

kV usem

So for multiple jumps. at &;, g, jump to qu1; at &2, g jump to Gueo.

Tw(x) =T = qui BV — & + (qu2 — qu1)BvVx — & (3.70)
generalized case,
Tw($) -T;=B Z(Qw,n - Qw,n—l) VT — €n (371)

For continuously change case, &, — &,—1 — d¢,

Tw(z) — T, = B/O ‘%”\/x —&de <+ Z BAGuwn\T — §n> (3.72)

Example 3.3: Linear heat flux case
mﬂ*C’*const = T fT*g LC’/I va—¢£dg (3.73)
de v Yk V user £=0 v '

Example 3.4: Extend with Leveque I

r
| L

u = Py case, for const g,

oT o*T oT
By% - aain qu = _kaiy =0 - C T(Ovy) - Tz T(.’L‘,OO) - Too - Tz
(3.74)
solution is
/3 1/3 1/3 1/3
o v (& r_ _ 035 (o r
Tw(x) ﬂ—0.355k (,8) 1/3—qu(x) F(z) = ’ (,6) 73
(3.75)
SO
‘ dgu
Tu@)~Ti= [ Fo-9F (3.76)
£=0 dg

which can decompose into cont. integration and jump terms.

Example 3.5: Extend to round tube developing flow

r
.

Developing flow in round tube, constant g,, solution subsection 2.4 Equation 2.66.

wDh | 1 1 1 e
T’UJ - Tm = — —_ - _— Tm®T .
k lNuoo 2 zm: Am’y;“ne (3.77)

o E_@
Tw 27w Um,

D =2r, (3.78)




as Ty —T; = Ty — Ty + T — T, Ty — T = 2qu/(pCprwtm) = 2qw D™ [k,
wh[ 1 1 1
Ty—Ti=—— — =y e " 2t =g, F(at .
W | Nao 2 ; Am%%le + 2z quF (z™) (3.79)
so for variable ¢, case,
Ty —T, = / dig’F(aﬁ —gde (AL (3.80)
0

3.4 Full Boundary Layer Problem
Steady 2D problem. First analyze the order of magnitude,

W~ o n (3:81)

u~ Us

In boundary layer we suggest boundary layer § < z. So ‘3—;‘ > g—g. The continuity equation,

ov ou ou Usd
Oy or - Ox dy x (3.82)

which says v is small compared to Uy,. z-dir momentum:

du  Ou  10P  p (82u 821)) u 0 <8u 81})

“or "oy T por " p\0 T o) T3par \ar "oy

(3.83)
9u 9%u . .
z < 52 and the last term is vanished due to

Note the left 2 terms has same magnitude, 57

continuity. The remaining,

ou ou 10P 0%u
i = - .84
Yo +08y p Ox +Vang (3.84)

U2 v 5 v _
Sy RV A (3.85)

So § < x holds in large Raynolds flow. For the y-dir equation

2 2
ov ov 10P V[@v 5’1}} (3.86)

Yor TVay T ooy Vo2 Tap

2 2
The magnitude of left 2 terms are Uj”% and Uj”i—i, which is relatively small compare to the

magnitude of u%, and also works for viscous terms. Then the only thing left is

10P
0=—-— = P=P, Wy (3.87)
p Oy

But note P, can be a function of .
Outer inviscid flow, governing equation:

ou v 1dP dUs
=0 — i =U,—= .88
Jr * Jy p dx dx (3.88)

This can be solved to get Us () and P (z) for a given body.
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In the B.L,

ou v Ou Ou _ 10P 0u
B.C.
u(zr =0) =Uxs uly=0)=0 v(y=0)=0 u(y = 00) = Uso (3.90)

The method is to introduce a similarity variable.

General approach for similarity solutions

postulate streamfunction ¢ = a(x)f(n), where n = b(x)y. Substitute into equations
and BCs, get
f(nvaa b7 a/7b/) =0 (391)

So what forms ob a, b, make the « dependence in f go away? This should work both
in equation and BCs.

In this case, define

= /vaUss f(n) = vRe; /2 -9 3.92
0 f(n) fm) m NozI (3.92)

where a(x) = Vva2Uy, b(z) = 1/1/vz/Us.

With the definition of 1,

=Y Ut = f':UL (3.93)

v ey (3.94)

The equation and BC becomes

frr+2f"=0 f0)=0  f(0)=0  f(o0)=1 (3.95)

Which can solve with shooting method. This is known as Blassius flow. Properties are

_uU \/7 £(0) (3.96)

Crla) = Tw(x)  2f"(0)  0.664
f Ugo/Q VU /v v Re,
Characteristic BL definitions, dg.99 and g 999 means y value where f/ = 0.99 or 0.999 respec-

tively. For displacement thickness, means displacement of leading edge flow that corresponds
to mass transport loss.

Tw_lu’a

(3.97)

pU61 = / P(Uso —u)dy (3.98)
0
VT 01 1.73
01 =4/ — Moo — (Mo - = 3.99
1 Uoo (77 f(77 )) = T \/1%—63C ( )
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For momentum thickness, means displacement of leading edge flow that corresponds to mo-
mentum transport loss

pUZ 5y = / pu(Uso — u) dy (3.100)
0
v 0o 0.664
0p =0664, /| — = — = 3.101
2 Us T v Re, ( )
3.5
Heat transfer for B.L. flow over a flat plae. Energy equation for 2D flow
or  or oP Op o’T  0*T
— tv—| — — D+ k .102
Per [uﬁx oy [ ax“’ay} + [a 222 T a2 (3.102)
N~
0T U AT 8T Usod AT
T~ 1
“ax x 8y z 6 (3.103)
8P pUZ, 0P  Uxd
el b 104
Yor ~ Vs x Uay x 0 (3.104)
o?’T AT 0*T AT
0z a2 oy? 6} (3-105)
ou\? v ou wl® 2 [ou 0Ov]?
S=2u(— 24 —+—| —-p|=+ = 1
w(5) v (G) oG &l 550 ) (3100
Keeping largest term,
ou\?
== 1
<8y> (3.107)
So Dominant terms are
or ~ oT T ~ opP ou\
— — k— — — 1
PCp <u8x+v8y> 92 uax+u<8y> (3.108)
The last 2 terms are often negligible, and our problem becomes
ou v 8u ou 82u or  oT 0T
—+—=0 — — 3.109
8x+8y Ua +vay 82 P +v y ozay2 ( )
BC,aty=0,u=v=0T=Ty;at y=00 u=Us,T = Tso.
Use similarity transformation,
Usx T Ty
¥ =vv/Re,f(n) Re, = —— n:¢ p=——" (3.110)

v 2 I/(E/Uoo Tw - Too
note here n differs by factor of 1/2. Equations and B.C.s transform to

fIP+ff"=0  ¢"+Prfg’=0  f(0)=f(0)=0,60) =1 f/(OO)=¢(O<E)= )
3.111
Solve numerically for specified Pr = v/a,

ol _ k<d¢3”) (T — Tw) = —kd/(0) 5 \/Rer(waoo) (3.112)
y=0

= —fk—
qw 6y d77 ay

hx q'x 1
N — — w” __ — _— A1
Us = (T — To0) 2¢ (0)\/ Rey (3.113)

where ¢'(0) is function of Pr.
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e Large Pr leads to é&; < 9, Nu, = 0.332Pr1/3Re;/2. Recall Lighthill Leveque III,
Nu, = 0.339Pr/3Rey/?.

e Small P, leads to §; > §, Nu, = 0.564Pr1/2Re;/2, agrees with slug flow model.

3.6 Other Types of Boundary Layer Flows

Wedge flows wedge angle 5. Outer flow over wedge is dictated by potential flow solution

T
Us = ca™ m=g f/ﬂ/’f( (3.114)
¢ determined from potential flow solution. If g = m, it is just a stagnation flow.
momentum eq.
ou ou 1dP 0%u
e == P 3.115
uaerU@y p dx +V(‘)yQ ( )
in potential flow, Bernoulli’s equation dictates
1 1dP dUs U2
Py — =pU% =const = ———2=U,—2 =c*ma®" ! = oo™ (3.116)
2 p dzx dx x
so the momentum equation becomes
ou ou  mUL () 0%u
bt = = Moo - 3.117
Yor v Oy T + V@yQ ( )
B.C.,at y=0,u=v=0; at y = 00, u = Uy. Note different m for different angles.
Introduce similarity transform
_ i Ux(@) — ST
n=y “or Y = VvzUs(z)¢(n) (3.118)
this converts u-momentum equation and B.C. to
1
" Sm A" +m(1-C") =0 ((0)=(0)=0 ((o0) =1 (3.119)

Could be solved numerically. The surface drag coefficient can be related to results of the
similarity solution

Tw () " —1/2
Cy= =2C"(0O)R 3.120
¢"(0) varies with wedge angle.
m Jé] ¢"(0)
Alligned Plate 0 0 0.332
Inclined Plate 0.111 0.627 0.510
Stagnation 1 s 1.233

Separation -0.09 -0.625 0

Table 2: Wedge flow

Energy equation

U+ Vv — =0 (3.121)
x



define

’[7:
xT v

then we find p
0" + %(m +1)¢0’ =0

Yy [Ux(z)x

9:

T —T,
Too_Tw

000)=0  6(c0) =1

Integrating twice from 0 to n and using B.C.s yieds

g e [~ B m 4+ 1) [ CGw) du] d

9(77) oo Pr gl
fo exp [_T<m +1) fo C(w) dw} dn
and
_ qg; o % . Uoo(l‘) ol g m—1
h—iTw_Tm—kayyzo—kH(O) Y = k0'(0) Vx2
he _ Nu, = 9’(0)\/ Uss _ g1(0) Re0's
k v
For Pr = 1.0,
g m 6'(0)  ¢"(0) Re, h
0 0 0.332 0.332 ~ ~1/\x
0.627 0.111 0.378 0.510 ~ !l ~ 70445
1.57 0.333 0.440 0.759 ~g!133 ~ 70333

™

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

Buoyancy induced boundary layer flow and heat transfer, transport close to a vertical or

nearly vertical surface.
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Figure 6: Buoyancy Convection

e neglecting streamwise viscous transport and viscous dissipation

e constant y,cp, k

¢ include gravity body force
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o Assume Boundary Layer (2D) orders of magnitude apply

Governing equations:

ou Ov

2727 12

or * dy 0 (3.127)
ou ou 10P 0%u

U— +Vv— =a—F (3.129)
x

in the u-momentum equation, g—}; is decomposed

oP dP,,
e R (3.130)

the first term is hydrostatic, the second is applied motion-inducing gradiant if any. Here it
is 0. Then the equation becomes

0 0 — 0?
WL po—p O

v _ o 131
Ox Oy g P V8y2 (3.131)

Poo — p may be due to temperature differences or concentration differences.
For buoyancy driven flows, it is common to invoke the two Boussineseq approximations:

o density is tanken to be constant, except for the density variation in the buoyancy force
term

o differences in density in the buoyancy force term are linearly proportional to tempera-
ture differences.

For liquids, imcompressible so p = p(T'). For common natural convection flows in gases,
pressure differences are small. Ideal gas: p = P/RT. Taylor series expansion for small p
changes:

_ (o Op _
oo — p = (8t>P(T°° T) + (8P>T(P°° P)+ HO.T (3.132)
(—g” )T is pretty small. so
== T —T)=—B(To —T 3.133
L= (5p) (e -T)= 8- T) (3133)

this is second Boussinesq approximation. u-momentum equation becomes

ou ou 0%u
Ao BT —T) + v 22 134
“ax+”ay 98( )+V8y2 (3.134)
For B.L. flow, we expect
u~ U, v~ Ud/L x~L y~90 (3.135)

what is characteristic velocity U.? We expect accelerating force ~ g(poo—p). The accelerating
force acting through distance x should increase the K.E. of the flow, then

1
3Pu ~ g2(poc = p) (3.136)
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take U, so that

1
5pr = 92(poo — p) = 92pB(Ty — Too) = Ue=/92B(Tw — Tno)

so for u-momentum equation,

DU USU. U
ox “x Oy x 0 Oy? 02

for momentum and buoyancy terms to be compressible,

U7c2 _ g‘rﬂ(Tw - Toc)

- - Ngﬁ(Tw _Too)

also, for momentum and viscous terms to be comparable,

U U 51

~ U— :> J—
2
T ) T Uz /v

Uz [g23B(Tw — To)
v v2

This is known as Grashof number,

where

gxgﬂ(Tw - Too)

Gr, = 2
S0 0/x ~ Gry
For energy equation,
u8£ U Tw — Too v8£ Ub Ty, —To a82T aTw_TOO
ox ¢ Oy T 0t Oy? 52
for convection to be comparable to conduction,
UeTw~T) | Tu—To _ 0 1
z 0y T qri/tppiy2

(3.137)

(3.138)

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)

(3.144)

thus boundary layer flow results only if Gr, is large. Laminar B.L. analysis expected to be

valid for 5
10* < Gr,, < 10° —< 1071

(3.145)

For Gr, > 10%, transitions to turbulent flow is expected. Note Re = /Gr,, it is consistant

with flat plate FC BL transition Re = 3.5 x 10°.
So governing equations and B.C.s for natural convection BL flows are

@_’_@—0

or Oy
2
u@—kv@:gﬁ(Tw—TM)—o—ya Y

dr 'y y?

or T O°T

u%Jrva—yfaayQ
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Aty=0,u=v=0T="T,; At y=00, u =0T = Ty. This can be solved using a
similarity transformation:

1/4 3
Yy Gry - gﬁ(Tw - Too)x
n=- ( 1 ) Gry = "—— s (3.149)
G\ T Ty
Y= f(n) <4V< 1 ) O=T 1. (3.150)
then o6 2
Vo~ 172 1
_ Yy _ Y 151
u= o= TG ) (3.151)
v is similarily determined using v = —g—i’. substituting converts momentum equation, energy
equation and B.C.s to
" 43ff" =2 +0p=0 ¢ +3Prf¢’ =0 (3.152)
Atn=0,f=f=0,¢=1Atn=00, f['=0,6=0
oT 1(Gr,\"*
(A "t = —k¢'(0)= d Tw — Too 3.153
do=Fg| =00l (F) m-r (3.153)
Qo k ¢'(0) 1/4
h— A et 154
T To - 2er (3.154)
hx ¢'(0) ., 4
Nu, = — = ——= Gr}/* 3.155
b=ty (3.155)
¢'(0) is determined for a specific Pr value.
3.7 Integral Relations for BL Transport
ITIN®ITY
p Voo O Y caatl
A A i . 3
— = ) L T

Assume steady flow and constant density.
Inflow must equal outflow,

v Ju o % du
p@_—p% = p/o 8—ydy——p/0 %dy (3.156)

d [° dé
vaSZ—p@/O udy+pu|8£ (3.157)
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rearrange to get

— PUoco

d )
= dy = pUs,—
pdﬂc/ou U e

¥%- DIRECTION MoMENTuUr TRANSPoRT

C(’hroub = U -
Totw 2fe
" ¢ - FE /'—/Jf’ )Jm)w‘-’»—‘»rﬂ
eI e TrowspasTyaty f0uT oT C.V
5 3 | pes /;.7 depT "IJ Pajer
J ! /—7 = /)f ]741,
/) —)r u :ﬁé \) (_:w
X X tAX
I o
TwlAx = |p u” dy + | pPUx— — pVso | AzUy
0 dx
z+Ax
expanding each term,
0 d [° d [°
M_u Ax = —p— / u? dyAz 4+ p— / ulUs dyAx
Y |,—o dz J, dz J,
combining integrals yields
8u
P / wudy = p—
dx 6y y=0
can show that order of differentiation and integral does not matter here.
d /9
P ; (U —u)udy = [(Uss — u)uls dx / 835 —u)u] dy
ENERGY TRANSPORT ER4ATION =
s QW
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r+Azx

- mnetcpToo

Ot
quAzT = lpcp/ uT dy
0

x

or d [ d [
—k— = — tU dyAx — p— Too dyc, A
9 |0 pcpdx/o yer pdx/o “ yerst
o T
pe / (T —T)dy = k— = —qu
Pd Oy {,—o

3.8 Integral solution of the blasius flow problem

° 9 Ou
p/o %[(Uoo_u)u] dy—u@

y=0

postulate

the equation changes into

ou oudd o, 3y  3y>dd
Um@x_Umﬁddx_Um 262 26*dx
(992 3yt  19°
2 _ g2 |9y oy ly”
=Vl a5t T
ou? 5 [ 997 yt 3¢5 dé
e U __253+655_257L1:1:
dul . [3 3y2] 38U
ayl, =7 |20 2%, 2

substitute into equation, integrate polynomial and simplify to get
dé 140 v
dr 13 Us

Integrate,

é T 2
140 v 1) 140v
sdo=-—22 [ q o
/0 BU ), 7 2"

[ v
= 4.64 —_—
1) 64x U

Co — (Tw) ~0.646
T U2 /2~ \/Re,

This result is very close to Blasius similarity result.
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(3.164)

(3.165)

(3.166)

(3.167)

(3.168)

(3.169)

(3.170)
(3.171)

(3.172)

(3.173)

(3.174)

(3.175)

(3.176)



Integral method for Thermal BL

d /‘” T
PCp— wW(To —T)dy = k— = —quw
sz 0 ( ) ay =0
define T
el U - _
0= - T=0Tyx —Ty)+To
we find s
d ¢ 00
— 1—-0)dy =k—
Pep - /0 u(l—6)dy oy
postulate
g 3y 1y
26, 267

and same polynomial for u/Us,

d [ 3y 193 3y 148
< Y _ YV 28 Y
pcpdx/o U°°[25 253H 2§t+25§]dy
a [3 392 3a
_&{2_2¥Lﬂ_2@

we specifically consider Pr > 1,({ = §;/d < 1, integration leads to

d 3., 3 .4\] 3«
de&ﬁ<mﬁ _mmg>}_2®

neglect O(¢*) compared to O(¢?) terms,

d 3 3«
Uso— [6=C| = = —
dx { QOC ] 2(6
1 3.d0 1 9,0d¢
from momentum BL solution,
4o _ 10 v
dz 13 Uy
we find A& 13
3 4 275
A = e
previous modeling indicate ¢ is constant with §;,d — 0 at x = 0, then % =0, so
13 1
¢*= (= 1/3
14Pr 1.026Prl/

By definition,

kL0 00 3k 3k 13 /U
=W gL =0 = Z2(1.026)Pri/3 [ =] ==
= o TRy oo 20 2 (LO26)Priy [ os5\ D

Nu, = 0.323Rel/2Prt/3

while the coefficient is 0.332 for similarity solution.
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(3.179)

(3.180)
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(3.182)

(3.183)

(3.184)
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(3.187)
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Example 3.6: Uniform heat flux BC

Define
T—Ts
¢ = AT AT(2) =Ty - T = To—-T=-AT¢ (3.190)
for Equation 3.165,
8—T = AT% Quw = fka—T = fka—qj AT (3.191)
8y 8y 8y y=0 ay y=0

from integral momentum solution,

10} i

here we postulate a simple linear temperature profile ¢ = 1 — y/d;, substituting into

€q
3

A AT dy = B (3.193)
dz Jo PCp

/Oét upAT dy = /Oét Us AT <1 - ;) (2? - % (§)3> (3.194)

neglect higher order as d;/d < 1, finally

o 167

/o upAT dy = UOOAT(SZ(S—'; (3.195)
The integral equation becomes

d 571 qw
fracldU,, — {ATt} == (3.196)

“dz o PCp

2
iUOOAT%t = ‘?“7“7 (3.197)
i

using g, = —kg—g|y:0 and temperature profile, we find ¢, = kAT/d;. So plug in and
get

4axd
5 = 3.198
t Uoo ( )
from flow analysis,
280 [vx
§=1/"— ] — 1
TR A (3.199)
SO 16
2
5p = 41/3 (E}?) Pr=/3gRe1/? (3.200)
he e _E Ny 0378y Re, Prif3 (3.201)
AT 6, o “ ’
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3.9 Summary
Steady BL flow, can model using
1. Finite difference solution of NS and energy equations, and
h=f(p,v,cp, k,2,Usx, ) (3.202)

must analyze lots of runs to resolve parameter trends, could improve if non-dimensionalize
equations.

2. Similarity solution, predicts forms of parametric variations,

Nuy = %x . —%(ﬁ’(o)\/Rew (3.203)

¢'(0) is get by solving ODE’s for fixed Pr. Similarity framework illuminates parametric
trends.

3. Integral solution with postulated u,T profiles .......

4 Notes on Numerical solution of PDEs

general form of 2nd order ODE;,

9?%¢ 9?¢ 9?%¢ 09 09
A—L — — . L) = 4.1
axﬁgmywayQ+D(x,y,¢,az,ay) 0 (4.1)

if ¢ appears to first power throughout. then it is linear. Classification:

B? —4AC <0 = elliptic (4.2)
B? —4AC =0 = parabolic (4.3)
B? —4AC >0 = hyperbolic (4.4)

hyperbolic have wave behavior, solution is constant along characteristics. Finite velocity of
disturbance (information) propagation. Classic expample: compressible flow. Another
example, first order convection equation

9 200 _y o T _

= L =
ot oz oz “ozor
A=0,B=¢C =1, B2 —4AC = ¢ > 0 is hyperbolic.

0 (4.5)

parabolic Infinite propagation speed, information flows in one direction, can march solution
forward if know solution at initial value. Example: 1D transient conduction solution

or _ o1

ot _O‘aaﬁ

FTCS explicit method used in Proj2 does this for transient natural convection BL flow

(4.6)

elliptic Information flows in all directions at once, infinite speed, no preferred direction.
Example: 2D steady laplace equation,

0*T  0°T

another example. FD flow and convection considered in Projl.
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Important numerical method properties
o Convergence, if iterative
e mesh independence
o stability.
Stability of the FTCS method, consider as an expample

oT 9T
vl 4.8
o~ Yo (4.8)
descritize as o T T
— =" 4 O(At 4.9
ot A OB (4.9)
T Ty — 2T — Tt
5 = — e O(Az? 4.10
Oz? Az? +0(Az%) ( )
substituting into the PDEand rearranging
At
T:;L = Tm + F(Tm+1 - 2Tm + Tm—l) F= b (411)

F is called grid Fourier number.

Suppose a steady-state solution has been reached which T,, = T, for all m, we then
introduce a small instantaneous disturbance € at location m, T,, = Ts + €, what happens as
we march the scheme forward?

T =Ts+e+ F(Ts —2(Ts +e)+Ts) = Tn —Ts=c¢(l-2f) (4.12)

the [hs is the deviation from steady state solution, for stability we want a disturbance to
die-out,
T —T.
m gl o= (1-2F)<1 (4.13)
€

so —1 <1—2F <1, from left side we have F' < 1, indicating

2
Ar< BT (4.14)
[0

If we further want to assure that disturbance damp without overshoot, require

T —T. 1
“m—f>0 = F<- (4.15)

€ 2
can show by analyzing subsequant timesteps that F' < 1/2, At < Ax?/2« is necessary for
stability.

Somewhat more complicated for convective transport equations due to extreme terms,
but concept is the same and liead to

Aty 1

At 1
2 <~ 5 PB=3s<~3 (4.16)

="
N Ay2 — 2

So for the FTCS explicit method, necessary conditions for stability in terms of grid Fourier
numbers,

alAt 1 Ay?
=—<= At < —— 4.1
1= Ay <3 = < %0 (4.17)
vAt 1 Ay?
Fro=——< = At < —— 4.1
2= A <3 = <=, (4.18)
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4.1 Another Solution of Interest-Transporation

Injection or suction at surface, can be due to evaporation, sublimation, condensation. PDE
the same just new BC.

Y
= —— =+ veUxf(n) (4.19)
Vve/Us
ou  Ou 0%u L, o
- = = — =0 4.20
“ax+”8y V6y2 2ff +/ (4.20)
o Use /
v= 27 _ — + 4.21
o = 5T ) ) (a.21)
aty=0,n=0,
Uoo 2’Uw UOOJI
v=——"roc—oc=—f(0)=2v, = 0)=— 4.22
If v, is constant, no similarity solution. For aligned plate, similarity requires vy, ~ z~/2.
For wedge flows with injection, same similarity formulation described earlier,
m+1 Uso ()
vin=0)=wv,, =vy) = — 0 4.23
(1=0) = v =w = ~"520) = (4.23)
similarity requires
Y i .
x x
for similarity, m = 1, 8 = 7, vy, is constant. If b= 0, m = 0, vy, ~ 275,
Now consider heat transfer, flat plate and aligned (m = 0)
oT oT o*r
pCp (Uax + Uay) = Oéaiy2 = (b/l + PT‘f(b/ =0 (425)
for a solid plate, v,, = 0,
Nu,Re;Y/?=0332 (Pr=1) 0292 (Pr=0.7) (4.26)

for v, # 0, injection or suction Ty, = Ty, Pr = 1.0

LeRey? 05 025 0 025 -0.75
NuyRe;'/*  0.0356 0.165 0.332 0.523 0.945

Table 3: Injection and suction affects HT

from the table we can see suction enhance HT while injection weakens.

4.2 Axisymmetric Plume Above a Point Source

Concentrated source, laminar flow.
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Example 4.1:

¢ Above a candle flame
e Above an electrical component
e On a horizontal surface

e Above a heated sphere

We consider laminar BL flow. Assuming

1. Boussinesq approximations

2. Properties other than p are constant

3. Neglect viscous dissipation, pressure work

Equations (cyl. coordinates) and BCs (y is radius)
0 0
(yu) | O(yv)

“5x t oy =" (4.27)
u% T vg—;‘ = gB(T — Tno) + ga% (ng) (4.28)
y=0 v:%:%:o (4.30)
Yy — 00 u—0, T—-Tyx (4.31)

we can explore a similarity formulation as follows, we define a stream function such that

_loy 1%
u= oy v = e (4.32)

we then postulate definitions
T—-Ty
n="b(z)y Y =ve(z)f(n) ¢ = W

d(x) =Ty —Too, To = T(y = 0). Express y, u, v, T in terms of n, f(), f'(¢), ¢, and substitute
to get

(4.33)

m 9By o G G 1 [2¢0 ) )
B+ - |0 2 (2] 1
cw / 1 i 1 /
— - — = 4.34
(yb)? / ybf +(yb)2f 0“3
x subscript means %.
¢” Cx ’ 1 dxC , 1 1 ’
Pr+ybf¢ yb \ d f¢+yb Pr ¢ =0 (4.35)

similarity requires that coefficients of terms must be constants or functions of 7 alone. since
yb = n, similarity requires

dc
—_ = B1 Cy = B2 T == Bg 7 = B4 (436)
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Bi 2,34 are constants or functions of n. For d(z) assumed to be a power law variation
d = Nzx™, the above relations require that

clz) ~x b(z) ~ D/ (4.37)
These properties are satisfied if we pick

Grglc/4

clx) =vx b(x) . 2

(4.38)
It follows that

/ /
n= gGr}/4 Y =vzf(n) u = KGrqlﬁ/Qf— v= —KG’r?l/4 <f - f) (4.39)
T r 7o r 7 n 2

and the equations and BCs become

" f/ ' 1 + n f,2 —
-0 (L) -5 =0 (1.40)
(06') + Pr(f6/ = ') = 0 (1.41)
FO=70)=0  s0=1 &0=0 (1.42)

How do we determine n? Note this is no input of thermal energy downstream of the source,
so convected thermal energy above the ambient level Q(z) at any x location must be constant
and equal to the rate of heat input at the source

Q= /OO pep(T — T )u2my dy (4.43)
0

substituting to write this in terms of similarity variables.
2mpepv(To — Too):r/ f'odn = 2mpc,y Nz ! / fodn=0 (4.44)
0 0

note that n must equal to —1 to make = dependence go away on the lhs. So

_N __Q _ [T
To—Too = - N = Srpey I —/0 flodn (4.45)
For n = —1, the equations and BCs become

"+ (f-1) (J;) +np=0 (4.46)

(n¢)' + Pr(f¢) =0 (4.47)

_ Y I S _
n=20 (77) =0 ¢ =0 p 5—0 o=1 (4.48)
N — 00 J;/—>0 ¢»—0 (4.49)

It can be shown that the BCs can be equivlantly stated as
F0)=f(0)=¢0)=0  ¢0)=1 f'(o0) = bounded (4.50)
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Integrating the enegy equation once with respect to n and using the BCs to evaluate the
integration constant yields
ng' + Prfe =0 (4.51)

Integrating this from 1 = 0 to n yields
(n) = ¢(0)e= " Ja' S/n (4.52)

as momentum equation is numerically integrated to get f(n), this can be used to compute
@(n). Solutions of equations and BC’s yields velocity and temperature fields for axisymmetric
plumes (see plots).

Centerline temperature difference

Q

- 2mpepvlz

_[_gBQ ([

Note this is a constant. Accelerating effects of buoyancy are balanced by deaccelerating
effects of entrainment. Defining 15 as the y location where the dimensionless velocity f/n
drops to 1% of its peak value, it follows that the velocity boundary layer thickness is given

by
9\ 1/4
(z) = ns (%) vV (4.55)

To — Too (4.53)

centerline u velocity

similarily for the thermal BL thickness

2 1/4
5.(2) = 15, (%) N (4.56)

f0)  floo) 1
Mollerdorf and Gebhardt (1974) reported Pr=0.7 1351 791  2.074 air  note
Pr=70 0.6683 3.08 0.2497 water

also ;o
—v
— —CqruA( L L 4.57
v= Ot (-3 (4.57)
entrainment velocity
/
vs = — L1/ (f _ f) (4.58)
x 2/ e

what happens at x = 07 We don’t expect this solution to be very accruate as we assume
x> 0.

5 Turbulent Flow

5.1 Transition to turbulent flow

disturbances in laminar flow amplify, leading to a chaotic flow field. Usually modeled as
fluctuations superimposed on mean fields. Transition in FD internal flow in a round tube.,
Rep = 2300. Not really this abrupt, transition ovvurs over a range Rep near 2300.
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Figure 7: different picture for boundary layer flows

For forced flow dictated by momentum transport.
For natural convection flows, process is similar. Key difference is momentum and thermal
energy transport affect transition.

For isothermal surface

Tw - Too
Ray = GryPr = 96(7)13 ~ 10° (5.1)
vo
For uniform heat flux surface
4
Ra* = Gripr = 997 Bu p 5 gt (5.2)
r kv?

Linear stablility analysis for natural convection BL flow, predicts that disturbance Fourier
frequencies in specific frequency range are amplified leading to transition to turbulent flow.

5.2 FD Turbulent flow

characteristics: eddies, random erratic bursts, chaos. Fluctuations in u,v,T with time. For
laminar flow, mocular level diffusive transport only. (Conduction, viscosity transport of
momentum.) In turbulent flows, molecular level + turbulent macroscopic transport.

1 ta 1 ta 1 ta
ﬂ:—/ udt:—/ ﬂdt+—/ o' dt (5.3)
ta 0 t(l 0 ta 0

= U,uw = 0. Likewise for other velocity components. Decompose:
u=U+d ov=V+d w=W+u (5.4)
Continuity equation

ou ou oV o oW ouw'

P e i A T I =0 5.9
8x+8z+8y+3y+3z+8z (5:5)
note . .
1 [ 0oU 10 [ ou
—dt = —— dt = — .
ta/o Ox d t, 0x J, v ox (56)
1 [t ou 19 [
— —dt= —— fdt = :
te Jo Ox tq 83:/0 b 0 (5:7)
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Continuity equation becomes
ULV oW _

0 5.8
Ox + oy + 0z (58)
subtract and get
ou' o ouw
ar oy " or " (5:9)

BL cons of momentunm,

ou ou ou ou 10P 0%u

S e e = e e 1
ot “ax+”ay+waz p8x+l/8y2 (5.10)
add 5 5 5
u v w
get

du, D) | Ow  Dww _ 10P | 3
ot ox Oy 0z  pozx Oy?

(5.12)

note %@L = %—[tj + %’ steady flow leads to %—(t] = 0. Also time averaging, % = 0. For other

terms, e.g.

0 0 P O(uu) 0 —
8x(uu)_8x(UU+2Uu +u'd) = o —&E(UU—i—uu) (5.13)
viscosity term,
u 02 0%2u  0*U
oy? 8y2( ) = oy? 0y? ( )
Mean pressure
oP 0P
- T 1
oxr  Or (5-15)
finally we have
0 — 0 — 0 —_ 10P 0*U
= = = = 4 1
8z(UU+uu)+ay(UV—i—uv)—i—@Z(Uw—i—uw) p8x+yay2 (5.16)
rearranging,
ou ou ou 0 — 0 o —— 0 —
= = = -2 il (. 2 (- 1
pU8z+pV8y+pW6z 69:(P+puu)+8y<ué'y pu'v +8Z( pu'w’) (5.17)
we assume O(u') = O(v') = O(w') (isotropic), for BL flow,
0] o 0
so neglecting terms consistent with this and w = 0,
ou ou 0 o —— oP
U—+4+pV—=—|p——pu'v | — — 5.19
P 8x+p oy ay(“ay uv) Ox ( )

We can define an eddy diffusivity and turbulent (kinematic) viscosity associated with
turbulence

— ou ou
Ttury = —pu'v’ = Heurb o = PEM 0 (5.20)
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u'v’
= ENF = _W
By
big when v’ and v’ are correlated both big at the same time.

Ttotal = Twisc T Tturb = P(V + 6]\/])7

dy
momentum equation becomes

ou ou 0 ou 10P
U5+ oy =y ()

o
5.3 Turbulent boundary layer heat transfer

or or_ o o7
P o Tz Ty TV

assume 2D w = 0, use decomposition

oT oT [0 N J—
il = Z(WT (DT 2T
pCp {Uaz—I—Vay}-i-pcp [8x(u )—I—ay(v )+ —(w )]

And for B.L. flow, 3% > 2 2

Neglecting small terms,

or or]y o [ oT —
pcp{U&T_FVBy]_ {k y—pcva}

for constant properties this can be written

a—v’T’}

oT T T
022 Oy? 022

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

similar to what we did for momentum transport, we define an eddy diffusivity for heat ep

as
T
€H oT
By
and the equation becomes
oT oT 0 oT
U—4+V—=— —
or oy @ [(OH_EH)&J
note _
oT " oT orT

qxwlecular = _k87y Qiurd = _k’laiy = _pcpeHaiy
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This analysis formulates turbulent transport modeling in terms of e); and ey which are
related to cross correlations v'u/ and v/I7. We also define the turbulent Prandtl number Pry,

Prp= ™M (5.32)
€H

It is often argued that Pr; ~ 1.0. Now the equation

or  oT @ [(a err 8T] (539

U—+V—=— — )=
ox oy 0Oy Prt) oy
Some models of turbulent transport are based on analogies with kinetic theory.
Consider a laminar gas flow with velocity progifle U(y) near surface, ! is mean free path
of molecules between collisions. From basic kinetic theory. the velocity distribution is

dNuvw
N

3/2
= flu,v,w) = (2 Zl T) ottt w2k T qyy dy duy (5.34)
TRB

2 = u? + v? 4+ w?, mean molecular speed

c=14/ 8k T (5.35)
m™m

In the flow, shear is rate of momentum transport over m2?. A molecule crossing horizontal
plane at y has travelled an average distance [ since its last colision. 3’ is average y location
of last collision, ¢y’ = y — vl/¢. Using taylor series

dlp.]\ vl
[Pely=y = [pe] — <dy ) = (5.36)
flux of x direction momentum
[ee]
Iipa] = // [Pz]y=y vpn f(u,v,w) dudvdw (5.37)
f is the probability of u, v, w combination. substituting leads to
1 dU
jip.] = — = pnnlc— 5.38
i = —gpanleG (5.38)
since 7 = —jp,] = ,u% = pv%
1 _ 1_
W= pr = gmelcc = v= §Cl (5.39)

[ is the distance since last interaction, ¢ is characteristic spped. For gases, [ can be predicted
from kinetic theory, simple analysis:

kgT

substitute and get

1/ INY? mkgT
p= (L) ymhsT (5.41)
3 D2

1 depends only on T') not on P.
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SImilar analysis for transport of internal energy in a temperature gradient yields

. 1 (pnléye 0T
_ 1 or 5.42
Gk (5.42)
Since fourier’s Law indicates jg = ¢ = _k%’ then
1 leévﬁ ,uév k 1_
k= - — = = —¢l 5.43
3 ( Na mN4 pev 3" (5:43)

k only depends only on T for ideal gas.
Turbulent flow mixing length hypothesis, based on analogy with kinetic theory. Ball of

fluid <=> molecule.
Toury = PV ~ pV vTQ\/ u'? (5.44)

O(Va) ~ 0) = Uly) - Uy ~1) = 5. (5.45)

! is mixing length, distance along which ball of fluid maintains its identity.
Tturb = P\/ﬁl% = Nturb% (5.46)
= ptgury = pV 2L (5.47)

If turbulence is isotropic,

Vo VR ~ z%g (5.48)

— ou |oU
wrh ~ |pod | ~ 12— | =— 5.49
s ~ |5 ~ 25| (5.49)
mixing length model,
ou ou ou
ENM = l2 aiy Tturb — pEMaiy T = p(l/ + EM)aiy (550)

5.4 Turbulent FD flow in round tube
U QU 9P 19

U— V—=- - 5.51
P 6x+p or 8x+r8T(TT) ( )
here 7 = v + €p7. FD means %—Z = 0,v = 0, equation becomes
10 dpP
;E(TT) i e const (5.52)
Integrate once, using 7 = 0 at » = 0 by symmetry,
rdP T r rw dP
combined to eliminate %,
T r
— = — 5.54
Tw Tw ( )
combine this result with e;; wo get
dU
plvten)dU _ v (5.55)

Tw dr Tw

con solve for U(r) if epr(r) is known.

45



5.5 Turbulent FD heat transfer in a tube

oT oT 10,6,
pUCp% + ,OVCPE = —;EO"Q ) (556)
here ¢" = —pcy(a + enr)ZE can solve this numerically with known U(r),ep(r). Consider
simplified case, ¢!/ is const, so h is const, Y, — T}, is const. % = %. Assume % = %,
and equation becomes
dT, 10
Ucp—" = —=—(rq" 5.57
PYCp dx r or (rg") ( )
integrate w.r.t. r,
dT,, "
e~ U(r)rdr =—rq (5.58)
further simplify by taking U(r) = U,, in integral,
dT,, U,,r>
P 5 = —rq” (5.59)
v PpUpm AT, q_r
== ol (5.60)
note for both
q T r
” =—=— (5.61)
50 dr du
peploten)g _ pvtem)y (5.62)
qw Tw
rearrange to find
v, (ai 6H> dT = dU (5.63)
Qw VT em
for Pr = Prp =1, the bracket is 1, so
Tw Tw
qTCp dT = dU = qTCp(T»m - Tw) = Um (564)
note )
Tn—-T, 1 pUS
— =4 Tw = ¢ (5.65)
substitute to get
Cf h
- = =St for Pr =1 5.66
> = WU or Pr (5.66)
This is called heat transfer Raynolds analogy
For Pr # 1, experimental data imply
2
%f =StPr"  na (5.67)

Since ¢; = f(Re), analogy implies StPr?/3 = f(Re), ususally define colburn j factor j =
StPr2/3,
And for laminar fully developed flow in a round tube (isothermal wall), Nup = % —3.66,

h
St = =3.66Pr 'Re”t  j=3.66Pr /3Re ! (5.68)
pUnmcy
and laminar result f = %.
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5.6 Near wall in turbulent flows

U@

A b ducbu et
? nezs well red@{om

%’I SRR

=1 0C

Vo e e e e

Figure 8: Near wall flow regime

In Fully turbulent regime, we expect €p; > v. Also, we have the z dir momentum equation

U  _OU 9P 19

U—+V—= - 5.69
ox + dy ox * ror (r7) ( )
Close to wall we expect terms on lhs to be small since velocities are low there.
dP 10
0= —— 1 -2 5.70
dx + r or (r7) ( )
If we have flow in a pipe, % is constant and # 0, and as before
rT_r 1-1_-Y (5.71)
Tw Tw Tw
for y K ry, T Ty
If we have a free boundary layer flow with % = 0, equation becomes
0
—((r7)=0 = 77 =const =1r,Ty, (5.72)
or
Tw Tw 1
S ) = " 5.73
e rw—yT 1—y/er (5.73)
and again if y < 7, leads to 7 = 7,. For constant shear region, 7 =7, = eM%—Z.
or if we use mixing length theory
” U \?
Tw _p2 () (5.74)
P dy

and using | = ky proposed by Prandtl. He argued that eddy size varied proportional to
distance from the wall implying [ ~ y, so

U 2
I= K2 y? () (5.75)
P Yy
data indicates k = 0.41, called Von Karmen const.

Next introduce non-dimensional variables

U w
ut = gt = YV TwlP (5.76)

Tw/P v
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substituting into equation and we find

dut 1
Integrating this equation,
1
ut = —Iny" +¢o (5.78)
K

the best fit to expreimental velocity profile data in the fully turbulent portion of the near
wall region is achieved with ¢y = 5.0.

ut =244Inyt +5.0 (5.79)

note that as y™ — 0, u™ — —oo, which is not physically realistic.
Very close to the wall we expect to find a viscous sublayer in which v > €, for constant

T region,
ou
T, (5.80)
P Ju

Integrating from wall yields
Tw

U T Yy
/ dUu = = dy = U=—y (5.81)
0 rJo 1%

substituting yields u™ = y* for viscous sublayer.

ece 7 ME1518250Bn0tes042120.pdf — Page &

Res, = 15,000 (Wieghardt IDENT 1400)

Res, = 1500 [Johnson (1989)]
20

ut =2.441ny* + 5.0

Figure 9: Similarity turbulent result

Comparison of these equations with data. Indicates data agrees with viscous sublayer
relation to about ¥ = 5 and then transitions to fully turbulent region. ut vs yT relation

established experimentally is the universal velocity profile near a wall for % = 0 or low-

moderate % values.
Note: need best fit near wall (small to moderate y™) to predict heat transfer well at wall.
Other curve-fit relations for the universal veloctiy profile have been proposed. e.g., power
law fit
ut =875y (5.82)
which fits fairly well to y™ = 1500. More convenient for calculations (not segmented). A
variation is
ut = A(yT)" (5.83)

wjere n is a function of Re or y*. e.g., 3 layer model
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Viscous sublayer 0 <y™ <5, ut =gy™*
Buffer region 5 <yt <30, u™ = —-3.05+5Iny*
Fully turbulent region y™ > 30 u™ = 5.5+ 2.5lny™

Note if we have a relation u+ = u*(y™) for the universal profile, we can derive a relation for

€M
i —ut) =y (5.84)
Tw/p v
wdut o, dut
o _ [redu” 7 du” (5.85)
dy p dy  prdyt

In general 7 = p(v + eM)%—Z. And for the constant shear layer near the wall, 7 = 7, so

oU Tw dut
Tw :p(l/—‘rEM)aiy :p(U+€M)p7dy7+ (586)
solve,
EN 1
dy*
which predicts ey = epr(y™).
1. In viscous sublayers
ut =y, (5.88)
Or for a 3 regime model,
1. Viscous sublayer 0 < y* < 5: uT =yT, ey =0
Another expample: van Driest model, mixing length is | = xy(1 — e v/ 4)
ot kytv _ytjat
y/A=yT/A l= (1—e™¥ ) (5.89)
Tw/p
where AT ~ 26.0 is good for fitting data. With this we have
Ju
=17 5.90
3y 9 (5.90)
using definitions to replace y with y* and U with u™ yields
+
fm_ KAy (1 — e|_y+/A+|)dL (5.91)

v dy*

note: can get relation <~ (y) if we know ut(yt).
Note also the relations for u*(y™) can be modified to include effects of suction, blowing
(at the wall) or finite %—I: if necessary.
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5.7 Two equations approach

k — e two-equation model of turbulent transport. Concept: turbulent kinetic energy and
dissipation of turbulent kinetic energy vary throughout flow field.

1 - 1
K = §(u'u’ + '+ w'w') k= §(u’u’ + v+ ww') (5.92)
consider mixing length model

EM:l2

oU ou

this is length scale times velocity scale, which suggests eyy = alk\/ﬁ I is eddy size in
turbulence.
Dimensional analysis suggests that dissipation e

o 9
e=Cp (\/ZE) O ~ pv <gZ> ~ pm?/s? (5.94)

A bit of reasoning can be applied to relate [, and [, to l,,,;, which leads to

—3/2
3/4k /

v =Y VE  e=C? (5.95)

lml

To use in transport modeling, we need to predict k£ and e throughout the flow. With de-
composition and time-averaging of equations, we can derive equations for transport of k£ and
€.

Example 5.1:

Deriving k equation for boundary layer flow, start with

ou ou @ v O%u

multiply by v and use continuity to get
o I 2, ou\>  OP
— 2) + — 2)=v—s 2)—v|=—) —u— .
8x(uu /2) + 6y(vu /2) l/ay2 (u®/2) —v By L (5.97)

then substitute u = U +v/, v=V +v, p=P+7p/, %—I; = 0, time average, combine
with mean velocity equation
ou ou U 0, —
U—+V—=v— — —/%" 5.98
oz + Oy Oy? 8y/ (5.98)
multiplied by U. Neglect z derivative terms compared to y derivative terms (BL
approx). Write result in terms of

e
k= %(u’u’ +ov +w'n')  e=v (gzj gz;> (5.99)
resulting equation
ok ok 0 = ok ov
b v | K — o P! bl Tod = 1
pU&n +pVay a9 pU v' P+ M@y] pu'v a9y pE (5.100)
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with modeling implemented
ok OK 9 ok AN
U= v = — = =) - 5.101
ox " ay T oy {(Vﬂk)@y}rw(@y) ‘ (5-101)

can similarly derive an equation for local dissipation e

Oe OJe 0 Oe € oU\ 2 €2

typical definitions,
Sce = enr/€e Scr = en/ex (5.103)

k and € equations are solved simultaneously with mean continuity, u-momentum and
energy equations for model constants. we also need boundary conditions (k, e match
at sublayer boundary). Example,

ev=CukJe  C, =009 (5.104)

O, =144 Cy=192 Scy=10 Sc.=13 (5.105)

note these equations apply outside the sublayer.
Inside sublayer, use law of the wall or mixing length model. Law of the wall still
important for predicting heat transfer at the wall.

6 Mass transfer

Note that for each convective transport of thermal energy( we will consider BL case specifi-

cally)
oT oT 0 or 0
— — == (k—)=—=¢" 1
o (s v ) = 75 (o) = oy ©
define i as enthalpy/unitmass i = ¢,T’, we can rewrite equation as
oi 0i 0 (k 0i
— — == —= 6.2
p“ax +p”ay oy (cp 8y) (62)

so i is a transportable property per unit mass of fluid. Flux of this property (relation to
center of mass of moving fluid) is

y ki 109i 9T

9 =Ji= "7~

a0y oy oy (6:3)

another transportable quantity is the mass of species 1 per unit of total fluid mass ¢;. Species
concentration on flux j.; obeys the diffusive transport relation known as Fick’s law.

, dc
mey = jeo = —pDi2 781/1 (6.4)
we invoke the analogy
k 0i 0
=22 e = pDp L (6.5)



the mass transport for species 1 is

dcq Odcq . 0 Jcy
(5o 5) = o (o) o

or for constant density Do

Ocq decq 8201
— — =D 6.7
u6x+v8y 127 9y2 (6.7)
6.1 Forced convection with mass flow over a flat plate
ou v ou  Ou 0%u
Z 42— - — =v— 6.8
(9x+8y “ax+”ay V@y2 (6:8)
oT oT 0T Ocy Ocy 0%,
U% +’U67y —Olain u%—’—vaiy —D1287y2 (69)
binary mixture co =1 — ¢;. BC
y=0 : u=0 v=vg T=Ty c1=cyp (6.10)
y=00 : u=Uyx T=Tsw ¢1=Cico (6.11)
similarity solution
y [Uxo T-Tx €1 — C10
== =—_—-© 770 12
=9V e o T —Tb Cloo — €10 (6.12)
0 0
fm) =v/VUxrz  u= LT (6.13)
or y
equations and BC become
1
f/// + 5ffl/ _ 0 (614)
6"+ 0 — 0 (6.15)
2a '
&+ 5 1d = (6.16)
2D '
/ 2’[)()
n=0 : f'=0 6=0 ¢$=0 f=-— (6.17)
Uso
Note that here we define a mass transfer coefficient pup such that
my = pp(crs — ¢1,00) (6.18)
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Example 6.1: wet and dry bulb thermometer

/{ZZ;J wpﬂL(/r SUFF“CC/ A

(Fv‘e\/v\ vese (UO.\ C

fp(b —= {O}/ ¢lel, Ts A surfzce of wick

> B

wo’{' bu.(b

at steadystate, negligible conduction into thermometer. surface energy balance on
wet bulb
heat transfer from air = evaporation rateh,, (6.19)

Bc(Tdb,oo — TS)A = ED (6173 — Cl,oo)Ahev (620)

rearrange this to solve for ¢; oo

he

Cloo =Cls — = Tab.co — T 6.21
1, 1, hDhev( b, ) (6.21)

x1,s M
C1q= : 6.22
b 1My + (1 —zq1,5) Mo ( )

T
T = pisat( :) (6.23)

Patm

If we measure T, and Ty, compute 21 s, C1,s,C1,00 then

Cl,oo/Ml

C1,00 1—c1,00
M- + Mo

(6.24)

T1,00 =

RH is #1,00/%1,s

\. J

For flow over a cylinder or sphere, heat transfer - mass transfer analogy leads to similar
relations for the mean heat transfer and mass transfer coeflicients

heD
= 0.615Re% 6 Pr1/3 40 < Rep < 4000 (6.25)
f
heD
= 0.172Re%518Pr/2 4000 < Rep < 40000 (6.26)
f
heD he oD
= ARe}H Pri/? = e pUsDpcy ARel, Prt/3 (6.27)
ke pcpUse 10 Ky
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SO

h
St: c —AR ’rLflP —2/3
perU ey, Pr
by analogy, we expect
h
St = —7— = ARely 'S/
pPUso

taking the ratio of St/St,, yields

hc B (P’I") —-2/3
CpED B Se

T —2/3
CphD Sc

for water -vapor and air mixtures Le ~ 1

define Lewis number

So measure Ty, Ty, compute z 5, ¢1,5, use above relation.
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