
1 Review
1.1 Fundamental equations
Advection diffusion, concentration C

DC

Dt
=

∂C

∂t
+ ui

∂C

∂xi
= D

∂2C

∂xi∂xI
(1.1)

Mass conservation (continuity)
Dρ

Dt
+ ρ

∂ui

∂xi
= 0 (1.2)

if ρ is nearly constant, we get incompressible continuity equation.

1

ρ

Dρ

Dt
≪ ∂u1

∂x1
,
∂u2

∂x2
,
∂u3

∂x3
⇒ ∂ui

∂xi
= 0 (1.3)

Navier-Stokes(momentum) equations

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν∇2ui + gi (1.4)

this is for fixed reference frame (inertial) and incompressible, ρ and ν are constant. The
terms on the rhs are pressure, viscous stress and weight. g = (0, 0,−g) or only g3 = −g.

On the Vertical direction, i.e., i = 3, gi = −g, we write the equation like following.

∂u3

∂t
+ uj

∂u3

∂xj
− ν∇2u3 = −1

ρ

∂p

∂x3
− g (1.5)

the rhs represent hydrostatic relevance. if the 3 terms on lhs are individually ≪ g, that
is,

∂u3

∂t
≪ g and uj

∂u3

∂xj
≪ g and ν∇2u3 ≪ g (1.6)

then we can get hydrostatic approximation

∂p

∂x3
= −ρg (1.7)

≪ the other term on rhs is also ok, but that term is responding to g, and g is fixed(easy to
compare). if u3 = 0, then hydrostatic approximation is exactly valid.

1.2 Density variations in the environment
the density varies ρ = ρ(x1, x2, x3, t). this is in response to temperature (for water or air),
salinity (for water), pressure (for air). We will focus on the first two, so ρ = ρ(S, T ). For
fresh water, ρ = 1000 kg/m3. For sea water, ρ ≈ 1030 kg/m3.

We can decompose varying density to background constant density and fluctuations.
ρ̄, ρ′ ≪ ρ0 and ρ0 = 1000kg/m3. ρ̄(x3) represent stable vertical density stratification.

ρ(x1, x2, x3, t) = ρ0 + ρ̄(x3) + ρ′(x1, x2, x3, t) = ρ0 + ρ̃ (1.8)

Boussinesq Approximation, if ρ = ρ0 + ρ̃ and ρ̃ ≪ ρ0 so we can neglect some terms. e.g., in
continuity equation with variable density would be

1

ρ

Dρ

Dt
+

∂ui

∂xi
= 0 (1.9)
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using ρ = ρ0 + ρ̃, then we left just ρ̃, getting

1

ρ0 + ρ̃

Dρ̃

Dt
+

∂ui

∂xi
= 0 (1.10)

And as ρ̃ ≪ ρ0, the denominator becomes ρ0.

1

ρ0

Dρ̃

Dt
+

∂ui

∂xi
= 0 (1.11)

momentum equations for density not constant:

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= − ∂p

∂xi
+ µ∇2ui + ρgi (1.12)

also use ρ = ρ0 + ρ̃ and assume ρ̃ ≪ ρ0, dividing all term by ρ0, we get

ρ0 + ρ̃

ρ0

Dui

Dt
= − 1

ρ0

∂p

∂xi
+

µ

ρ0
∇2ui +

ρ0 + ρ̃

ρ0
gi (1.13)

leading to
Dui

Dt
= − 1

ρ0

∂p

∂xi
+ ν∇2ui + gi +

ρ̃

ρ0
gi (1.14)

it shows that what density variation may cause effect is the last term. note gi is balanced
by hydrostatic approximation, and the last gravity term may affect lhs as well as vertical
movement. we call the last term reduced gravity g′ = gρ̃/ρ0 or buoyancy forcing.

Further explanation on balance
For further explanation, separate pressure into hydrostatic and dynamic components
p = pH + pD, then

Du3

Dt
= − 1

ρ0

∂pH
∂x3

− 1

ρ0

∂pD
∂x3

+ ν∇2u3 − g − ρ̃

ρ0
g (1.15)

we say the balance may be
∂pH
∂x3

= −ρg (1.16)

the remaining is
Du3

Dt
= − 1

ρ0

∂pD
∂x3

+ ν∇2u3 −
ρ̃

ρ0
g (1.17)

and we can not say which term is bigger or smaller in the equation above.

Question 1:
What if Du3

Dt is of nearly the same magnitude with g ? Should it be put into
(16)?
ans: pD will respond.

1.3 Vertical density-based motions
Assuming density linearly increses with depth. We will get ∂ρ

∂z < 0 is stable while ∂ρ
∂z > 0 is

unstable.
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Take a small parcel of fluid, and write its equation, that is

∂

∂t
(ρ0w) = −g∆ρ (1.18)

while w = ∂z
∂t where z is position of parcel. ∆ρ = −∂ρ

∂z∆z. so we get we choose at the stable
point z = 0 so ∆z = z

ρ0
∂2z

∂t2
= g

∂ρ

∂z
z ⇒ d2z

dt2
=

(
g

ρ0

∂ρ

∂z

)
z (1.19)

the term in the bracket is constant, we assign it −N2, called Brunt-Väisälä Frequency. For
∂ρ
∂z < 0, we will get N2 > 0, and we get sin and cos solutions. The oscillatory period is 2π/N .

d2z

dt2
+N2z = 0 ⇒ z = A cos(Nt) +B sin(Nt) (1.20)

For ∂ρ
∂z > 0, we get exponentials.

z = AeNt +Be−Nt (1.21)

so this is unstable. The abs of ∂ρ
∂z measures the strenth of stratification and N . bigger N

leads faster oscillation.

1.4 Long Box problem, Coastal Estuary
Now we think about horizontal stratification. River flows into ocean. In river, the salinity
is zero. In ocean, the salinity is 35 ppt. Tides, winds affects. and we get salinity gradient.
Set S = S(x) and ρ = ρ(x), depth H(x). Dynamics for u1 is

∂u1

∂t
+ uj

∂u1

∂xj
= − 1

ρ0

∂p

∂x1
+ ν

∂2u1

∂xj∂xj
(1.22)

And v = 0, and because large-scle horizontal flow, w → 0, also horizontal scale is very large
so ∂u

∂x → 0. For invisicd solution also no ν term. so

∂u

∂t
= − 1

ρ0

∂p

∂x
(1.23)

so ∂p
∂x is crucial in controlling flow. we want to derive ∂p

∂x . Assuming u3 = 0, flat bottom
z = 0, with hydrostatic approximation Equation 1.7,

p(x, z) = patm + ρ(x)g(H − z) (1.24)

then
∂p

∂x
=

∂

∂x
[patm + ρg(H − z)] = ρg

∂H

∂x
+ g

∂ρ

∂x
(H − z) (1.25)

∂u

∂t
= −g

∂H

∂x
− g

ρ0

∂ρ

∂x
(H − z) (1.26)

the first term is barotropic like tides, river flow, etc., meaning the density and pressure
together varies in the vertical direction. The second term is baroclinic, density driven flow
or say exchange flow. The density and pressure varies in different direction. Also because it
is a function of z. As going deeper, the baroclinic force is bigger.
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Figure 1: Costal Estuary

1.5 Rotating effects
the momentum eq

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ0

∂p

∂xi
+ ν∇2ui + gi (1.27)

is hold in the fixed reference frame. Consider a reference frame rotating at Ω. We define
r to be the pos vector from (x1, x2, x3) = (0, 0, 0), u,a is velocity and accleration vectors.
Use subscript F as fixed frame and R as rotating frame. so ∂uF

∂t |F = aF is the time rate
of change, observed in a fixed frame, of the velocity observed in fixed frame. Also works for
∂uR

∂t |R = aR.
For any vector p, there is (

dp

dt

)
F

=

(
dp

dt

)
R

+Ω× p (1.28)

So using r, we get (
dr

dt

)
F

=

(
dr

dt

)
R

+Ω× r uF = uR +Ω× r (1.29)

again, (
duF

dt

)
F

=

(
d

dt
(uR +Ω× r)

)
F

(1.30)

=

(
d

dt
(uR +Ω× r)

)
R

+Ω× (uR + (Ω× r)) (1.31)

=

(
duR

dt

)
R

+

(
d

dt
(Ω× r)

)
R

+Ω× uR +Ω× (Ω× r) (1.32)

as d
dt (Ω× r)R = Ω× uR, Ω×Ω× r = −Ω2r,

Question 2:
Ω× (Ω× r) = Ω(Ω · r)−Ω2r ans: TBD

(
duF

dt

)
F

=

(
duR

dt

)
R

+ 2(Ω× uR)−Ω2r (1.33)
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so we have 2 new terms.

du

dt
= − 1

ρ0
∇p+ ν∇2u+ (g +Ω2r)− 2(Ω× u) (1.34)

Ω2r is centrifugal accleration which is oftern neglected because it is small compared to g.
The last term is coriolis force.

Example 1.1: 2D Coriolis Force
For example, x1 − x2 plane, rotation vector along x3. we will get

∂u1

∂t
+ · · · = · · ·+ fu2

∂u2

∂t
+ · · · = · · · − fu1 (1.35)

where f = 2 |Ω|. At t = 0 , u = (u0, 0), the object will go around a circle.

∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
= − 1

ρ0

∂p

∂x1
+ ν∇2u1 + fu2 (1.36)

comparing the advection term and coriolis term,

u1
∂u1

∂x1
≈ U2

L
fu2 ≈ fU ⇒ Ro =

U

fL
(1.37)

We get Rossby number.

Question 3:
We assume u1 and u2 have same magnitude U when deriving Ro. What if, like in
horizontal flow, u1 ≪ u2? Is Ro still make sense?
ans: when rotating make sense, we are considering 2D problem, and u1 and u2 will
have same magnitude.

Question 4:
Is there a unitless number measuring the strength of stratification? ans: Ri

1.6 vorticity equation
local rotational (angular) velocity of a fluid element. ω can complete description of flow field.
ω = ∇× u. Taking curl to NS equ, constant ρ case.

∇×
[
∂u

∂t
+ u · ∇u = − 1

ρ0
∇p+ g + ν∇2u

]
(1.38)

Consider each term,

∇× ∂u

∂t
=

∂

∂t
(∇× u) =

∂ω

∂t
(1.39)

∇× (ν∇2u) = ν∇2ω (1.40)
∇×∇p = 0 ∇× g = 0 (1.41)
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For advection term,

∇× (u · ∇u) = ∇× (ω × u) +
1

2
∇× (∇(u · u)) (1.42)

∇× (ω × u) = u · ∇ω − ω · ∇u (1.43)

We finally get
Dω

Dt
=

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇2ω (1.44)

So there is a new term ω · ∇u. e.g.

∂ω1

∂t
= ω1

∂u1

∂x1
+ ω2

∂u1

∂x2
+ ω3

∂u1

∂x3
(1.45)

note ∂u1

∂x1
measures the stretch of fluid, so if fluid is stretched long, the vorticity will increase.

Example 1.2: Vorticity from Straining
Take ω1 as example.

∂ω1

∂t
+ uj

∂ω1

∂xj
= ν∇2ω1 + ωj

∂u1

∂xj
(1.46)

the first three terms are advection-diffusion of ω1, the last term is stretching and
straining of ω.

∂ω1

∂t
· · · = · · ·+ ω1

∂u1

∂x1
+ ω2

∂u1

∂x2
+ ω3

∂u1

∂x3
(1.47)

Figure 2: vorticity from straining

1.7 Variable density
∂u

∂t
· · · = −1

ρ
∇p+ · · · (1.48)
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taking curl, the new term is

∇×
(
−1

ρ
∇p

)
→ ϵijk

∂

∂xj

(
−1

ρ
∇p

)
(1.49)

= ϵijk

(
−1

ρ

)
∂2p

∂xj∂xk
+ ϵijk

(
1

ρ2
∂ρ

∂xj

)
∂p

∂xk
(1.50)

=
1

ρ

[
ϵijk

∂ρ

∂xj

∂p

∂xk

]
(1.51)

=
1

ρ2
∇ρ×∇p (1.52)

now the equation is

∂ω

∂t
+ u · ∇ω = ν∇2ω + ω · ∇u+

1

ρ2
∇ρ×∇p (1.53)

the last new term is a source term. If ∇ρ aligns wigh ∇p then it is zero. If not, there will
be baroclinic vorticity production. Just like the Long Box problem.

Important:
Without the new term, initial ω = 0 will leads to ω = 0 all times. But with this
term, even initial ω = 0, there will be vorticity generation.

Figure 3: Baroclinic Long Box

1.8 Fluid Column Model
set up grid from z = 0 tp z = H, z1, z2, . . . , zN . Concentration C(z, t), velocity u(z, t),
temperature T (z, t), Salinity S(z, t), pressure p(z, t). We focus on concentration first. The
equation is

∂C

∂t
=

∂

∂z

(
D
∂C

∂z

)
(1.54)

lhs use Implicit/Explicit time advancement. Using implicit method,

1

∆t

(
Cn+1

i − Cn
i

)
=

[
∂

∂z

(
D
∂C

∂z

)]n+1

=
1

∆z

((
D
∂C

∂z

)
i+1/2

−
(
D
∂C

∂z

)
i−1/2

)
(1.55)
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(also show explicit here:)
D∆t

∆z2
< β ⇒ ∆t < β

∆z2

D
(1.56)

also(
D
∂C

∂z

)
i+1/2

= Di+1/2
1

∆z
(Cn+1

i+1 − Cn+1
i )

(
D
∂C

∂z

)
i−1/2

= Di−1/2
1

∆z
(Cn+1

i − Cn+1
i−1 )

(1.57)
finally

1

∆t

(
Cn+1

i − Cn
i

)
=

1

∆z2
[
Di+1/2C

n+1
i+1 − (Di+1/2 +Di−1/2)C

n+1
i +Di−1/2C

n+1
i−1

]
(1.58)

so the full equation can be written[
− ∆t

∆z2
Di+1/2

]
Cn+1

i+1 +

[
1 +

∆t

∆z2
(Di+1/2 +Di−1/2)

]
Cn+1

i +

[
− ∆t

∆z2
Di−1/2

]
Cn+1

i−1 = Cn
i

(1.59)
this can be expressed in matrix form. In matlab just use.

Cn+1 = tridiag(a, b, c, Cn) (1.60)

For B.C., most common we will use Neumann BC to specify gradient of a quantity at z = 0
or H. If ∂C

∂z = 0 at z = 0,H, or specified C ′. At i = 1, z = ∆z, assume D constant,

Cn+1
1 = Cn

1 +
∆tD

∆z2
[
Cn+1

2 − 2Cn+1
1 + Cn+1

0

]
(1.61)

we use
∂C

∂z
∼ C1 − C0

∆z
= C ′ ⇒ C0 = C1 −∆zC ′ (1.62)

so the Cn+1
1 changes into

Cn+1
1 = Cn

1 +
∆tD

∆z2
[
Cn+1

2 − 2Cn+1
1 + Cn+1

1 −∆zC ′] (1.63)

= Cn
1 +

∆tD

∆z2
[
Cn+1

2 − Cn+1
1

]
− ∆tD

∆z
C ′ (1.64)

[
−∆tD

∆z2

]
Cn+1

2 +

[
1 +

∆tD

∆z2

]
Cn+1

1 = Cn
1 − ∆tD

∆z
C ′ (1.65)

2 Turbulent Flows
2.1 What is turbulent flow
Turbulent flow is characterized by 3 features:

1. 3d flow structures

2. unsteady

3. contain a wide range of “scales”, spatial and temporal variability

A laminar flow is stable with time, but turbulent flow varies around initial speed a lot. Define
mean/average velocity profile ū(z), then we can use deviation u′(z, t) (called turbulent/fluc-
tuation velocity) to analyze.
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2.2 Averaging in turbulent flow
Consider evolving mean flow.

• The easiest way to visulize is to use time average

(u) (z, t) =
1

T

∫ T/2

−T/2

u(z, t) dt (2.1)

But T can be differently chosen. In order to be effective, it requires T to be longer
than turbulent variations, but is shorter than mean flow variations.
Think of hydrograph Hygrograph is the

flux-time plot Q(t)
in river, its mean flow time scale may be days, but turbulent time

scale may only be seconds. Then think of flow under waves, the mean flow time scale
is only seconds, so we cannot taking time averages.

• The second method is ensemble average. That is creating a set of N realizations, ith
is u(z, t), then

ū(z, t) =
1

N

N∑
i=1

ui(z, t) (2.2)

• The third method is raynolds average. It is simply a separation of velocity into mean
u and turbulent u′ components.

Consider the scale of u′, v′, w′ first.
Turbulent eddy: streamline shows overturning motion. Eddies are useful in describing

turbulent length scales. The size of turbulent eddy is denoted as λt where t refers to turbu-
lence. It also have velocity scale ut. The time scale, is τt = λt/ut

How to estimate ut, λt, τt? Use root-mean-square of u′(t) to calc ut. Integral time scale
τt. Mean of turbulent velocities equals 0. That is

u′ = v′ = w′ = 0 (2.3)

the overline means Raynolds average. However,

(u′)2, (v′)2, (w′)2 ̸= 0 (2.4)

Let Turbulent Kinetic Energy, or TKE, which is the key factor, to be

q2 = (u′)2 + (v′)2 + (w′)2 or k =
1

2

(
(u′)2 + (v′)2 + (w′)2

)
(2.5)

2.3 Turbulent Scale and Properties

Turbulent Scales
Turbulent length scales goes from largest: constrained by solid boundaries; smallest:
constrained by viscosity.

Large scales Set by boundaries and motions are set by external forcing. Get energy
from outside.

Intermediate Get energy from Large scale, transfer to smaller scale.

Small scales Set by viscosity. Energy dissipated by viscosity.
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If we say turbulent is steady, we mean the energy flows through this system is stable,
assign ϵ to it as the Turbulent Dissipation Rate. As energy is conserved, the rate of energy
transfer in all process will also be ϵ. This is known as Energy Cascade.

Smallest scales respond only to ϵ and ν, they don’t care about the larger scale process.
So the energy conservation simply leads to the Kolmogorov Length Scale λν =

(
ν3/ϵ

)1/4.
This scale is the smallest

Kolmogorov Spectrum for turbulent. For specturm we use wavenumber k = λ−1 where
λ is the length scale. Energy density E(k) is the energy per wavenumber.

q2 =

∫ ∞

0

E(k) dk (2.6)

Figure 4: Turbulence energy specturm (Steady)

The large scale has most energy and is dominant in affecting density mixing and other
effects.

For the largest turbulent scale, we use ut, λt, τt to refer to velocity, length and time scale.
e.g., the velocity scale can be rms of u′,

√
q2, length scale can be H, utτt, time scale can be

q2/ϵ.
The correlation, or Integral time scale, can be calculated from lagged auto-correlation.

R(∆t) = u′(t) · u′(t+∆t)

/
(u′)2 (2.7)

In real turbulent flow, R(∆t) usually starts from 1 at ∆t = 0 then drops as ∆t increases.
Integrate it to get the Integral time scale:

τt =

∫ ∞

0

R(∆t) d(∆t) (2.8)

The time scale here represent how long the flow is similar to itself, or say how long the
turbulence will change.

2.4 Turbulent DIffusion Equation
Start with advection-diffusion equation

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= D∇2C (2.9)
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With turbulent flow, C = C + C ′, u = u + u′, v = v + v′, w = w + w′. We mainly want to
know C(x, y, z, t). Using coninuity equation,

∂C

∂t
+

∂

∂x
(uC) +

∂

∂y
(vC) +

∂

∂z
(wC) = D∇2C (2.10)

Now apply average in each term, we get

∂C

∂t
+

∂

∂x
(uC) +

∂

∂y
(vC) +

∂

∂z
(wC) = D∇2C (2.11)

Substituting,

∂(C + C ′)

∂t
+

∂

∂x
((u+ u′)(C + C ′)) +

∂

∂y
((v + v′)(C + C ′)) +

∂

∂z
((w + w′)(C + C ′))

= D∇2(C + C ′) (2.12)

with some properties,

f + g = f + g f + f ′ = f + f ′ = f f ′g′ ̸= 0 fg = fg (2.13)

(u+ u′)(C + C ′) = uC + uC ′︸︷︷︸
=0

+ u′C︸︷︷︸
=0

+u′C ′ = uC + u′C ′ (2.14)

The correlation term u′C ′ is a new term. Putting back,

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= D∇2C − ∂

∂x
(u′C ′)− ∂

∂y
(v′C ′)− ∂

∂z
(w′C ′) (2.15)

Those new terms on the rhs represents the turbulent mixing. Take w′C ′ term for example,

Figure 5: Turbulence diffusion example. The Yellow circle represents the turbulence. A
parcel was carried by turbulence from z1 to z2, causing the concentration at z2 to drop at
certain time.

We approximately calculate the term as

w′C ′ ≈ −wtλt
∂C

∂z
(2.16)
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and define kt = wtλt is Turbulent Diffusion Coefficient

∂C

∂t
+ · · · = D∇2C + · · · − ∂

∂z

(
−wtλt

∂C

∂z

)
= D∇2C + · · ·+ ∂

∂z

(
kt
∂C

∂z

)
(2.17)

if ut ≈ vt ≈ wt, which is called isotropic turbulence, then it is same for x and y dir.

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= D∇2C +

∂

∂x

(
kt
∂C

∂x

)
+

∂

∂y

(
kt
∂C

∂y

)
+

∂

∂z

(
kt
∂C

∂z

)
(2.18)

if kt is not a function of x, y, z, the rhs becomes (D + kt)∇2C. Usually D ≪ kt.

Turbulent Properties Comparison

1. Homogeneous turbulence, means (u′), (v′), (w′) is not a function of x, y, z.

2. Isotropic turbulence: (u′)2 ≈ (v′)2 ≈ (w′)2. If there is boundary, external force,
or stratification, this assumption may not holds.

3. Steady turbulence: (u′)2, (v′)2, (w′)2 is not a function of t.

It is same for NS equation.

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν∇2ui (2.19)

changes into
∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν∇2ui −

∂

∂xj
(u′

iu
′
j) (2.20)

the last new term is called turbulent stresses. It act like viscous stresses, but based on
turbulent motions. w′u′ is vertical transport of horizontal momentum. We can define νt =
utλt, which is turbulent viscosity.

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ0

∂p

∂xi
+ ν∇2ui + gi +

∂

∂xj

(
νt

∂ui

∂xj

)
(2.21)

Where estimating νt is the core for turbulence modeling.

2.5 Turbulent Models
Consider a case, flat bottom, general depth H, slight slope top surface ∂η

∂x = const. Steady
flow v = w = 0, u is not a function of x, but a function of z.

0 = − 1

ρ0

∂p

∂x
+ ν

∂2u

∂z2
− ∂

∂z
(u′w′)− ∂

∂y
(u′v′)− ∂

∂x
(u′u′)︸ ︷︷ ︸

=0

(2.22)

molecular viscous stress ≪ turbulent, so neglect.

− 1

ρ0

∂p

∂x
=

∂

∂z
(u′w′) (2.23)

Depth average from 0 → H,

1

H

∫ H

0

− 1

ρ0

∂p

∂x
dz =

1

H

∫ H

0

∂

∂z
(u′w′) dz (2.24)
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the lhs,
− 1

ρ0

∂p

∂x
= −g

∂η

∂x
(2.25)

so
−g

∂η

∂x
=

1

H

[
u′w′(H)− u′w′(0)

]
(2.26)

assume free surface, so no free slip. Then τ = 0, so u′w′(H) = 0. then

ρ0gH
∂η

∂x︸ ︷︷ ︸
τbed

= ρ0u′w′(z = 0) (2.27)

The turbulence actually is transporting horizontal momentum vertically to the bed, so ρ0u′w′

can be written as w′(ρ0u′). Near the boundary, the turbulent motions are limited. ∂u
∂z

increase.
Previously we know

−u′w′ = νt
∂u

∂z
− w′C ′ = kt

∂C

∂z
(2.28)

But actually the coefficient should be defined as

νt =
−u′w′

∂u
∂z

kt =
−w′C ′

∂C
∂z

(2.29)

So how to define νt, kt? Actually there are νx, νy, νz. But if we make isotropic turbulence
assumption, then νt = νx = νy = νz. Same for kt. And we assume νt = βkt, β is an order 1
number. This assumption

breaks down for
sediment

.
Modeling for νt. νt = kt = utλt. Mixing (scalar or momentum) is dominated by the

largest turbulent scales. So λt is largest scales, ut is energy-containig scales.
Some models:

0-equation model scalinqestionates: mean flow or external forcing. λt is set by physical
boundaries. ut is bulk forcing, channal flow.

τb = ρu′w′(z = 0) = ρgH
∂η

∂x
(2.30)

and τb = ρu2
∗, u∗ is friction velocity. So u′w′(z = 0) = u2

∗ leads to approximation
ut ≈ u∗.

τb = ρu2
x = ρCDu2 ⇒ u∗ =

√
CDu ≈ ut (2.31)

CD is Empirical drag coefficient, depends on the height at which u is evaluated. It
depends on roughness of surface. CD ≈ 0.0025 for muddy, u∗ ≈ 0.05u

Estimating λt, as turbulence can not go into boundary, then λt ≤ 2z. For Vonkarman’s
constant, k = 0.41.

λt = kz (z < H/2) λt = k(H − z) (z > H/2) (2.32)

or more smoothly,

λt = kH
z

H

(
1− z

H

)
λmax
t =

1

4
kH λavg

t =
1

6
kH (2.33)

In summary.
ut = u∗ λt = f(kH) (2.34)

But what we are missing, is loss of structure/variability of turbulent energetics and
influence of stratification.
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1-equation model similar, λt = f(kH), but for ut =
√

q2. q2 is solved from

∂q2

∂t
+ uj

∂q2

∂xj
= · · · (2.35)

2-equation model still ut =
√
q2, but λt is calc from second turbulence variable. e.g.,

ϵ(x, y, z, t), λt = (q2)3/2/ϵ. Also known as k − ϵ models. For Mellor-Yamada models.
use q2λt, as with same unit,∫ ∞

0

u′(x)u′(x+ δ) dδ ⇒ q2L (2.36)

A note on the code: models
∂u

∂t
= − 1

ρ0

∂p

∂x︸ ︷︷ ︸
f(t)

+
∂

∂z

(
νt
∂u

∂z

)
︸ ︷︷ ︸

implicit

(2.37)

un+1
i − un

i

∆t
=

(
−1

ρ

∂p

∂x

)n+1

+

(
∂

∂z
(νt

∂u

∂z
)

)n+1

i

(2.38)

un+1
i −

(
∂

∂z
(νt

∂u

∂z
)

)n+1

i

= ∆t− 1

ρ0

∂p

∂x
+ un

i (2.39)

where un
i → up(z)

Turbulence models
0-eqn Physical scaling: λt ≈ H, ut ≈ u∗

1-eqn λt ≈ H, ut = q

2-eqn ut = q, ε(x, y, z, t), q2l(x, y, z, t)

2.6 Turbulent Energy Equation
We want an equation for q2(x, y, z, t). Boundary layer approximation, horizontal scales of
problem ≪ vertical, which means vertical gradients ≫ horizontal gradients. Assume ∂

∂x = 0,
then ∂

∂y → 0. With continuity, we know ∂w
∂z = 0, further apply to w = 0 boundary, we get

w = 0.
Focus on x component u′. For full velocity,

∂u

∂t
+

∂

∂x
(uu) +

∂

∂y
(uv) +

∂

∂z
(uw) = − 1

ρ0

∂p

∂x
+ ν∇2u (2.40)

and u = u+ u′, v = v + v′, w = w + w′, p = p+ p′, get RANS
∂u

∂t
+

∂

∂x
(uu)+

∂

∂y
(uv)+

∂

∂z
(uw) = − 1

ρ0

∂p

∂x
+ν∇2u− ∂

∂x
(u′u′)− ∂

∂y
(u′v′)− ∂

∂z
(u′w′) (2.41)

let Equation 2.40 minus Equation 2.41, we get

∂u′

∂t
+

∂

∂x
(2uu′ + u′u′) +

∂

∂y
(uv′ + u′v + u′v′) +

∂

∂z
(uw′ + u′w + u′w′)

= − 1

ρ0

∂p′

∂x
+ ν∇2u′ +

∂

∂x
(u′u′) +

∂

∂y
(u′v′) +

∂

∂z
(u′w′) (2.42)
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we want a equation for u′2, and

u′ ∂u
′

∂t
=

∂

∂t

(
1

2
u′2
)

(2.43)

so multiply each term with u′, then take Raynold average, obviously u′ ∂
∂x (u

′u′) term van-
ished.

∂

∂t

(
1

2
u′2
)
+ 2u′ ∂

∂x
(uu′) + u′ ∂

∂x
(u′u′)

+ u′ ∂

∂y
(uv′) + u′ ∂

∂y
(u′v)︸ ︷︷ ︸

term 5

+u′ ∂

∂y
(u′v′)

+ u′ ∂

∂z
(uw′) + u′ ∂

∂z
(u′w) + u′ ∂

∂z
(u′w′)︸ ︷︷ ︸

term 9

= −u′ 1

ρ0

∂p′

∂x
+ νu′∇2u′︸ ︷︷ ︸

term 11

(2.44)

For term 9,

u′ ∂

∂z
(u′w′) =

1

2

∂

∂z
w′u′2 =

∂

∂z

(
w′ 1

2
u′2
)

(2.45)

this term looks like w′C ′, where C ′ = u′2/2, so we can use similar model

w′C ′ = kt
∂C

∂z
⇒ ∂

∂z

(
w′(u′2/2)

)
=

∂

∂z

(
kq

∂

∂z
(u′2/2)

)
(2.46)

where kq is turbulent diffusion coefficient for turbulent energy. Term 3,6,9 are turbulent
diffusion of TKE. Other u′u′, u′v′ term can be similarily treated too. For term 11, simply
let νu′∇2u′ = ϵ. For term 5,

u′ ∂

∂y
(u′v) = u′u′ ∂v

∂y
+ u′v

∂u′

∂y
= u′u′ ∂v

∂y︸ ︷︷ ︸
term 5a

+ v
∂

∂y
(u′2/2)︸ ︷︷ ︸

Advection of TKE by mean flow

(2.47)

For term 8, it is similar.

u′ ∂

∂z
(u′w) = u′u′ ∂w

∂z︸ ︷︷ ︸
term 8a

+w
∂

∂z
(u′2/2) (2.48)

For term 4,

u′ ∂

∂y
(uv′) = uu′ ∂v

′

∂y
+ u′v′

∂u

∂y
(2.49)

For term 7,

u′ ∂

∂z
(uw′) = uu′ ∂w

′

∂y
+ u′w′ ∂u

∂z
(2.50)

For term 2,

2u′ ∂

∂x
(uu′) = 2uu′ ∂u

′

∂x
+ 2u′u′ ∂u

∂x
= uu′ ∂u

′

∂x︸ ︷︷ ︸
term 2a

+u
∂

∂x
(u′2/2) + 2u′u′ ∂u

∂x︸ ︷︷ ︸
term 2c

(2.51)
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Add term 8a, 5a and 2c,

u′u′ ∂w

∂z
+ u′u′ ∂v

∂y
+ 2u′u′ ∂u

∂x
= u′u′ ∂u

∂x
(2.52)

also works for 4a, 7a, 2a,

uu′
(
∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z

)
= 0 (2.53)

Finally,

∂

∂t
(u′2/2)︸ ︷︷ ︸

unsteadiness

+u
∂

∂x
(u′2/2) + v

∂

∂y
(u′2/2) + w

∂

∂z
(u′2/2)︸ ︷︷ ︸

advection

= −u′ 1

ρ0

∂p′

∂x
+ ϵ− ∂

∂x

(
u′(u′2/2)

)
− ∂

∂y

(
v′(u′2/2)

)
− ∂

∂z

(
w′(u′2/2)

)
︸ ︷︷ ︸

Turbulent Diffusion

+ u′u′ ∂u

∂x
+ u′v′

∂u

∂y
+ u′w′ ∂u

∂z︸ ︷︷ ︸
P=shear production

(2.54)

The last one, shear production is a source term. Example,

u′w′ = −νt
∂u

∂z
⇒ −u′w′ ∂u

∂z
= −νt

(
∂u

∂z

)2

≥ 0 (2.55)

As
∂

∂t
(q2/2) = u

∂

∂x
(q2/2) + v

∂

∂y
(q2/2) + w

∂

∂z
(q2/2)

=
∂

∂x
(kq

∂

∂x
(q2/2)) +

∂

∂y
(kq

∂

∂y
(q2/2)) +

∂

∂z
(kq

∂

∂z
(q2/2)) + P − ϵ (2.56)

usually kq are set to include the three terms below.

−u′ 1

ρ0

∂p′

∂x
− v′

1

ρ0

∂p′

∂y
− w′ 1

ρ0

∂p′

∂z
(2.57)

∂q2

∂t
+u

∂q2

∂x
+v

∂q2

∂y
+w

∂q2

∂z
=

∂

∂x

(
kq

∂q2

∂x

)
+

∂

∂y

(
kq

∂q2

∂y

)
+

∂

∂z

(
kq

∂q2

∂z

)
+2P −2ϵ (2.58)

∂

∂z

(
kq

∂q2

∂z

)
=

∂

∂z

[
− 1

ρ0
p′w′ − w′(u′2 + v′2 + w′2)

]
(2.59)

ϵ = −νu′∇2u′ − νv′∇2v′ − νw′∇2w′ (2.60)
P contains 9 terms, interaction of mean slow and turbulence

P = − u′
iu

′
j︸︷︷︸

turbulent stress

· ∂ui

∂xj︸︷︷︸
mean shear

(2.61)

suppose u(z), v = w = 0, general parallel shear flows. All the mean shear components are 0

except ∂u
∂z , which means shear production P = −u′w′ ∂u

∂z , but u′w′ = −νt
∂u
∂z , so P = νt

(
∂u
∂z

)2.

2.7 Applications of TKE Equation
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Example 2.1: Breaking waves on a motionless ocean
ε ̸= f(x, y, t), q2 ̸= f(x, y, t) → q2(z), u = v = w = 0, so P = 0, the equation is

0 =
∂

∂z

(
kq

∂q2

∂z

)
− 2ϵ (2.62)

the q2 is diffusived deep into the ocean and dissipated.

Example 2.2: Internal Turbulent event
Stratified ocean, double profile ρ1 < ρ2. On the interface there is internal wave, it
can reach a point where they overturn and break, causing patch of turbulence. u(z),
v = w = 0, q2 = f(x, y, z, t),

∂q2

∂t
+ u

∂q2

∂x
= Diffution Terms + 2P − 2ϵ (2.63)

The advection term will create horizontal transport of q2.

Boundary layer Approximation, u(z, t), v = w = 0

∂u

∂t
= − 1

ρ0

∂p

∂x
+

∂

∂z

(
νt
∂u

∂z

)
(2.64)

where assume ∂p
∂x is not a function of x.

∂q2

∂t
=

∂

∂z

(
kq

∂q2

∂z

)
+ 2νt

(
∂u

∂z

)2

︸ ︷︷ ︸
source

−2ϵ (2.65)

The source term is large near boundary. Steady flow:

0 =
∂

∂z

(
kq

∂q2

∂z

)
+ 2P − 2ϵ ⇒ Diffusion = 2ϵ− 2P (2.66)

diffusion depends on the balance of ϵ and P . But usually ϵ ≈ P , local equilibrium approximation
P = ϵ is often hold for small shear case.

∂u

∂t
= − 1

ρ0

∂

∂z

(
νt
∂u

∂z

)
(2.67)

∂C

∂t
=

∂

∂z

(
kt
∂C

∂z

)
(2.68)

∂q2

∂t
=

∂

∂z

(
kq

∂q2

∂z

)
+ 2νt

(
∂u

∂z

)2

− 2ϵ (2.69)

νt ≈ utλt ≈ kt ≈ kq, ut =
√

q2, given λt, ϵ = (q2)3/2/λt; given ϵ, λt = (q2)3/2/ϵ. For λt,
options are

1. kz, kH, k z
H (1− z

H )

2. Mellor-Yamada models, equation for q2l
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3. k − ϵ models, k = q2/2,
∂ϵ

∂t
=

∂

∂z

(
kq

∂ϵ

∂z

)
− γ1P

ϵ

k
− γ2

ϵ2

k
(2.70)

4. generalized lengthscale model. ∂λt

∂t + · · · , can choose different coefficients to reproduce
Mellor-Yamada and k − ϵ models.

In turbulent cascade, P input into large scale while ϵ output from large scale into in-
termediate scale. We are modeling large scale because it is dominate νt, kt, q2 as well as
ut, λt. Then we can ignore smaller scale, when the cascade is complete or fully developed
turbulence.

Comparison of Forcing and Mixing timescale The boundary layer approximation,
(omit prime and bar as Raynold average)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+

∂

∂x

(
νt
∂u

∂x

)
+

∂

∂y

(
νt
∂u

∂y

)
+

∂

∂z

(
νt
∂u

∂z

)
(2.71)

ignore ux, v, w and x, y turbulent diffuision, become
∂u

∂t
= − 1

ρ0

∂p

∂x︸ ︷︷ ︸
f(t)

+
∂

∂z

(
νt
∂u

∂z

)
(2.72)

When baroclinic
f(t) → f(z, t).

Assume flow is forced by pressure, compare importance of other 2 terms, u ∼ U0, t ∼ T, z ∼
H

Unsteadiness
Turbulent Stress ≈ U0/T

νtU0/H2
=

H2

νtT
=

H2νt
T

=
Tmix

T
(2.73)

T is forcing timescale. Tmix = H2/νt is the time it takes for momentum to be mixed over
distance H.
case (1) Tmix ≫ T , unsteadiness much larger than viscous short for turbulent

viscous
,

⇒ ∂u

∂t
= − 1

ρ0

∂p

∂x
= f(t) (2.74)

oscillatory tidal forcing

− 1

ρ0

∂p

∂x
= Px cos(ωt) ω =

2π

T
T = 12.4 hr (2.75)

∂u

∂t
= Px cos(ωt) ⇒ u(t) =

Px

ω
sin(ωt) ̸= f(z) (2.76)

case (2) Tmix ≪ T , viscous much larger than unsteady

0 = − 1

ρ0

∂p

∂x
+

∂

∂z

(
νt
∂u

∂z

)
(2.77)

Solid bottom boundary z = 0, u = 0, no stress condition at z = H, ∂u
∂z = 0. If

νt = const, integrate and get

u(z, t) = A(t)(z2 − 2Hz) A(t) = − 1

2νt

1

ρ0

∂p

∂x
=

1

2
Px cos(ωt) (2.78)

When Tmix ≫ T , H2 ≫ νtT , which shows deep case. On the contrary, shows shallow case.
In the deep case, the flow goes sin(ωt) while forcing goes cos(ωt), flow lags forcing. This
reflects effects of intertia of flow. In the shallow case, the flow goes cos(ωt) while Forcing
goes with cos(ωt), means there is no inertia and flow evolves with forcing.
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Costal Embayment Channel-Shoal Morphology Deep part have larger inertia.

Figure 6: Costal Embayment

∂u

∂t
= − 1

ρ0

∂p

∂x
+ νt

∂2u

∂z2
(2.79)

u(0, t) = u0 cos(ωt), infinite plate ∂p
∂x = 0. Periodic steady state solution. Solution of the

from u(z, t) = eiωtf(z) and take the real part.

iωeiωtf = νte
iωtf ′′ ⇒ f ′′ − iω

νt
f = 0 (2.80)

k = ±(i + 1)

√
ω

2νt
f(z) = Aekz +Be−kz (2.81)

To prevent f → ∞ as z → ∞, B = 0.

u(z, t) = u0e
iωte−(1+i)z

√
ω/2νt = u0e

−z
√

ω/2νtei(ωt−z
√

ω/2νt) (2.82)

Take real part,
u(z, t) = u0e

−z
√

ω/2νt cos

(
ωt−

√
ω

2νt
z

)
(2.83)

vertical structure set by ϕ(z) = z
√
ω/2νt =

√
π
√
z2/νtT . Note this is similar with H2/νtT .

2.8 Stratified TKE Equation And Richardson Number
TKE equation

∂q2

∂t
+ uj

∂q2

∂xj
=

∂

∂xj

(
kq

∂q2

∂xj

)
+ 2P − 2ϵ (2.84)

If we allow ρ = ρ+ ρ′, in Boussinesq approximation, ρ′ only appears in ρ′g in w′ equation.

∂w′

∂t
+ · · · = · · · − ρ′

ρ0
g ⇒ ∂

∂t
(w′2/2) + · · · = · · · − g

ρ0
ρ′w′ (2.85)

so we can add it to the TKE equaiton

∂q2

∂t
+ uj

∂q2

∂xj
=

∂

∂xj

(
kq

∂q2

∂xj

)
+ 2P + 2B − 2ϵ 2B = −2g

ρ0
ρ′w′ (2.86)
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B is Buoyancy “production”.
Since ρ′w′ = −kρ

∂ρ
∂z , Then if in stable stratification case, ∂ρ

∂z < 0, then ρ′w′ > 0, B < 0
is a sink of energy conversion to potential

energy due to mixing
of ρ(z)

. On the other hand, if the profile is unstable at first, the term serves as
a source for TKE, and there will be overturning and potential energy is transforming into
kinetic energy. Usually only B < 0 case persist in the environment.

For a case where there is both velocity profile u(z) and stable stratification ρ(z), B and
shear production P will compete. On the other hand, turbulence will decrease both the shear
and stratification strength. So in order to maintain a steady state, there should exist outer
forcing. For shear it can be the boundary, for stratification it can be temperature or salinity.

Richardson Numbers Capture the competition between shear and stable stratification.
Gradient Richardson Number

Rig =
N2(
∂u
∂z

)2 =
− g

ρ0

∂ρ
∂z(

∂u
∂z

)2 (2.87)

Rig large (> 1/4, approx.) leads to decaying turbulence. Rig small leads to active turbulence.
Munk-Anderson Turbulence model for stratified flows. Estimate νt, kt, based on unstrat-

ified scaling first,
νot = kot = ku∗H

2

H
·
(
1− 2

H

)
(2.88)

And correct with Richardson number

νt = νot f(Rig) kt = kot f(Rig) (2.89)

the function f should start at 1 when Rig = 0 as be consistent with no-stratification case,
and reach to 0 when Rig → ∞. The choice is Params are chosen

from empirical ocean
observation data.

f(Rig) = (1 + 10Rig)
1/2 (2.90)

Bulk Richardson Number

∂ρ

∂z
∼ ∆ρ

H

∂u

∂z
∼ ∆u

H
Rib =

− g
ρ0
∆ρH

∆u2
(2.91)

Flux Richardson Number Compare the magnitude of the buoyancy flux due to turbulence
gρ′w′ and momentum flux P = −u′w′ ∂u

∂z .

Rf =
−B

P
(2.92)

So Rf > 0 in stable stratification. Consider a case, steady, homogeneous homogenous leads to
no advection and
diffusion term in TKE
equation

turbulence.

P +B − ϵ = 0 ⇒ P = ϵ−B (2.93)

P is a source and ϵ,−B is sink. So that shows Rf ≤ 1 in all cases. B = −Rf ·P , observations
in thermocline of ocean indicates Rf = 0.15; Numerical studies show Rf = 0.15 is maximum.
That shows for much strongly stratified and less strongly stratified case, Rf is much lower.

ϵ = (1−Rf )P means ϵ ≈ (0.85 ∼ 1.0)P and B ≈ (0 ∼ 0.15)P .
Oceangraphic observations are able to get ϵ(z),T (z), then can infer → ρ(z) → N2(z). As

B = −kρN
2, kρ = −B/N2. So if we get B and N2 we can get kρ. For P + B = ϵ, we get

ϵ = (−R−1
f + 1)B. So

kρ =
Rf

1 +Rf

ϵ

N2
(2.94)
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2.9 Water Column Model
∂u

∂t
= − 1

ρ0

∂p

∂x
+

∂

∂z

(
νt
∂u

∂z

)
∂C

∂t
=

∂

∂z

(
kt
∂C

∂z

)
(2.95)

∂q2

∂t
=

∂

∂z

(
kq

∂q2

∂z

)
+ 2P + 2B − 2ϵ (2.96)

Vertical Diffusion(viscosity) terms are implicit.

Cn+1
i − Cn

i

∆t
=

1

∆z

[(
kt
∂C

∂z

)n+1

i+ 1
2

−
(
kt
∂C

∂z

)n+1

i− 1
2

]
(2.97)

[
− ∆t

∆z2
knt,i+ 1

2

]
Cn+1

i+1 +

[
1 +

∆t

∆z2

(
knt,i+ 1

2
+ knt,i− 1

2

)]
Cn+1

i +

[
∆t

∆z2
knt,i− 1

2

]
Cn+1

i−1 = Cn
i (2.98)

While kt,i+ 1
2

and kt,i− 1
2

is calc as following

knt,i+ 1
2
=

1

2
(knt,i + knt,i+1) knt,i− 1

2
=

1

2
(knt,i + knt,i−1) (2.99)

For momentum form, the lhs is similar.[
− ∆t

∆z2
νnt,i+ 1

2

]
un+1
i+1 +

[
1 +

∆t

∆z2

(
νnt,i+ 1

2
+ νnt,i− 1

2

)]
un+1
i +

[
− ∆t

∆z2
νnt,i− 1

2

]
un+1
i−1 = un

i −Pn
xi
∆t

(2.100)
While the pressure term is

Pn
xi

=

[
− 1

ρ0

∂p

∂x

]
(z1, tn) (2.101)

Top Boundary z = H, i = N , ∂u
∂z = 0, uN+1 = uN . For i = N , it leads to[

1 +
∆t

∆z2
νnt,N− 1

2

]
un+1
N +

[
− ∆t

∆z2
νnt,N− 1

2

]
un+1
N−1 (2.102)

Bottom Boundary z = 0, i = 0, ∂u
∂z = u∗

kz comes from log-layer below i = 1. Assume below i = 1
there is log profile.

u(z) =
u∗

k
ln

z

z0

u1 − u0

∆z
=

u∗

κ∆z
⇒ u0 = u1 −

u∗

κ
(2.103)

un+1
1 − un

1

∆t
= −Pn

x1 +
1

∆z

[
νt, 32

∂u

∂z

∣∣∣∣
3
2

− νt, 12
∂u

∂z

∣∣∣∣
1
2

]
(2.104)

with u2
∗ = Cdu

2
1, above eq turns into

un+1
1 = un

1 −∆t · Pn
x1 +

∆t

∆z2

[
νnt, 32

(un+1
2 − un+1

1 )− νnt, 12

C
1/2
d

κ
un+1
1

]
(2.105)

which leads to[
− ∆t

∆z2
νnt, 32

]
un+1
2 +

[
1 +

∆t

∆z2
νnt, 32

+
∆t

∆z2

√
Cd

κ
νnt, 12

]
un+1
1 = un

1 − Pn
x1 (2.106)
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For P,B, ϵ terms, explicitly calculate

Pn
i = −

[
u′w′ ∂u

∂z

]n
i

= νnti

[
un
i+1 − un

i−1

2∆z

]2
(2.107)

Bn
i = − g

ρ0
w′ρ′ = kρ

(
− g

ρ0

∂ρ

∂z

)
=
[
kρN

2
]n
i

(2.108)

ϵ ≈ (q2)3/2

l
ϵni =

[
(q2)3/2

B1l

]n
i

B1 = 15 ∼ 16 (2.109)

So the mixed explicit-implicit formulation for ϵ

q2,n+1
i − q2,ni

∆t
= [Diff]n+1

i + 2Pn
i + 2Bn

i −

[
2
√
q2

B1l

]n
i

· q2,n+1
i (2.110)

Code Blocking

1. Advance un
i → un+1

i , uses νnti , P
n
xi

. upi → ui

2. Advance Cn
i → Cn+1

i , uses κn
zi . Cpi

→ Ci

3. Advance q2,ni , q2lni → q2,n+1
i , q2ln+1

i , uses κn
qi , κ

n
zi , ν

n
ti , u

n
i , N

2,n
i . Q2pi → Q2i

4. Update everything

Ln+1
i =

Q2Ln+1
i

Q2n+1
i

Qn+1
i =

√
Q2n+1

i (2.111)

νn+1
ti = SmQn+1

i Ln+1
i kn+1

zi = ShQ
n+1
i Ln+1

i kn+1
qi = SqQ

n+1
i Ln+1

i (2.112)

Sm, Sn, Sq are all emprical coefficients.

5. Fp = F for all variables.

Steady Turbulent Channel Flow

0 = −1

ρ

∂P

∂x
+

∂

∂z

(
νt
∂u

∂z

)
(2.113)

0 =
∂

∂z

(
kq

∂q2

∂z

)
+ 2P − 2ϵ (2.114)

0 =
∂

∂z

(
kq

∂q2l

∂z

)
+ 2Pl − 2ϵl (2.115)

This is unable to solve analytically. We can only use time advancement to let flow evolve to
steady state. Define a convergence threshold, and define

Cu =

N∑
i=1

(un+1
i − un

i )
2 < threshold for convergence (2.116)
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2.10 Vegetated Flows
Vegetated flows, in wetlands, marshes ... there is drag force on the flow.

Vegetation drag force, when flow around a cylinder,

FD = CD · 1
2
ρu2Ap (2.117)

so
∂u

∂t
= − 1

ρ0

∂p

∂x
+

∂

∂z

(
νt
∂u

∂z

)
− FD

ρ(∆V )
= · · · − CDAp

2∆V︸ ︷︷ ︸
Cveg

u2 (2.118)
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