1 Review

1.1 Fundamental equations
Advection diffusion, concentration C
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Mass conservation (continuity)

Dp 8ui
— =0 1.2
if p is nearly constant, we get incompressible continuity equation.
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Navier-Stokes(momentum) equations
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this is for fixed reference frame (inertial) and incompressible, p and v are constant. The

terms on the rhs are pressure, viscous stress and weight. g = (0,0, —g) or only g3 = —g.
On the Vertical direction, i.e., i = 3, g; = —g, we write the equation like following.
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the rhs represent hydrostatic relevance. if the 3 terms on lhs are individually < g, that
is,
Ous Ous

— < and u;
a 57 e

then we can get hydrostatic approximation
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< the other term on rhs is also ok, but that term is responding to g, and g is fixed(easy to
compare). if ug = 0, then hydrostatic approximation is exactly valid.

1.2 Density variations in the environment

the density varies p = p(x1,z2,x3,t). this is in response to temperature (for water or air),
salinity (for water), pressure (for air). We will focus on the first two, so p = p(S,T). For
fresh water, p = 1000 kg/m3. For sea water, p ~ 1030 kg/m?>.

We can decompose varying density to background constant density and fluctuations.
p,p’ < po and po = 1000kg/m>. p(z3) represent stable vertical density stratification.

p(1, 2,23, 1) = po + plz) + p'(x1, 02, 23,1) = po + p (1.8)

Boussinesq Approximation, if p = pg + p and p < pg so we can neglect some terms. e.g., in
continuity equation with variable density would be
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using p = pg + p, then we left just g, getting
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And as p < pg, the denominator becomes pg.
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momentum equations for density not constant:
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also use p = pg + p and assume p < pg, dividing all term by pg, we get
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it shows that what density variation may cause effect is the last term. note g; is balanced
by hydrostatic approximation, and the last gravity term may affect [hs as well as vertical
movement. we call the last term reduced gravity ¢’ = gp/po or buoyancy forcing.

Further explanation on balance

For further explanation, separate pressure into hydrostatic and dynamic components
p=pH +pp, then
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we say the balance may be
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the remaining is
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and we can not say which term is bigger or smaller in the equation above.

Question 1:

What if DT’? is of nearly the same magnitude with g ? Should it be put into
(16)7
ans: pp will respond.

1.3 Vertical density-based motions

Assuming density linearly increses with depth. We will get %5 < 0 is stable while %5 > 0is
unstable.



Take a small parcel of fluid, and write its equation, that is
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while w = % where z is position of parcel. Ap = —%Az. so we get
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the term in the bracket is constant, we assign it —N?2, called Brunt-Viisild Frequency. For
% < 0, we will get N2 > 0, and we get sin and cos solutions. The oscillatory period is 27 /N.

d2
Fj +N%2:=0 = z=Acos(Nt)+ Bsin(Nt) (1.20)

For % > (0, we get exponentials.
z = AeNt 4 Be N (1.21)

so this is unstable. The abs of % measures the strenth of stratification and N. bigger N
leads faster oscillation.

1.4 Long Box problem, Coastal Estuary

Now we think about horizontal stratification. River flows into ocean. In river, the salinity
is zero. In ocean, the salinity is 35 ppt. Tides, winds affects. and we get salinity gradient.
Set S = S(z) and p = p(x), depth H(x). Dynamics for u; is
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And v = 0, and because large-scle horizontal flow, w — 0, also horizontal scale is very large
SO g—; — 0. For invisicd solution also no v term. so
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SO % is crucial in controlling flow. we want to derive %. Assuming uz = 0, flat bottom

z = 0, with hydrostatic approximation Equation 1.7,

p(2, 2) = Patm + p(x)g(H — 2) (1.24)
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the first term is barotropic like tides, river flow, etc., meaning the density and pressure
together varies in the vertical direction. The second term is baroclinic, density driven flow
or say exchange flow. The density and pressure varies in different direction. Also because it
is a function of z. As going deeper, the baroclinic force is bigger.

we choose at the stable
point z =0so0 Az =z



Figure 1: Costal Estuary

1.5 Rotating effects

the momentum eq
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is hold in the fixed reference frame. Consider a reference frame rotating at €. We define
r to be the pos vector from (x1,z2,z3) = (0,0,0), u,a is velocity and accleration vectors.
Use subscript F' as fixed frame and R as rotating frame. so %LTF| F = ap is the time rate

of change, observed in a fixed frame, of the velocity observed in fixed frame. Also works for
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For any vector p, there is

dp dp
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So using 7, we get
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as H(Rx7)p=Q xug, @ xQxr=-0,

Question 2:

QAx (2xr)=2(Q r)— Q% ans: TBD
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so we have 2 new terms.

d 1
d—? = —p—Vp+ vWViu 4+ (g + Q%r) — 2(Q x u) (1.34)
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Q?r is centrifugal accleration which is oftern neglected because it is small compared to g.
The last term is coriolis force.

Example 1.1: 2D Coriolis Force

For example, £1 — x2 plane, rotation vector along x3. we will get
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where f=2|Q|. At t =0, u = (uop,0), the object will go around a circle.
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comparing the advection term and coriolis term,
ou; U? U
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We get Rossby number.

Question 3:

We assume u; and wuy have same magnitude U when deriving Ro. What if, like in
horizontal flow, u; < us? Is Ro still make sense?

ans: when rotating make sense, we are considering 2D problem, and u; and uy will
have same magnitude.

Question 4:

| r

Is there a unitless number measuring the strength of stratification? ans: Ri

1.6 vorticity equation

local rotational (angular) velocity of a fluid element. w can complete description of flow field.
w =V X u. Taking curl to NS equ, constant p case.
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Consider each term,
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For advection term,

1
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Vx(wxu)=u-Vw—-w-Vu (1.43)
We finally get
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So there is a new term w - Vu. e.g.
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note % measures the stretch of fluid, so if fluid is stretched long, the vorticity will increase.

Example 1.2: Vorticity from Straining

Take w; as example.
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the first three terms are advection-diffusion of w;, the last term is stretching and
straining of w.

Owr B duq Ouq Ouq
T +W167x1 +w287x2 +w3— (1.47)

Figure 2: vorticity from straining

1.7 Variable density

— .. =—"Vp+--- (1.48)
p



taking curl, the new term is
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now the equation is
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the last new term is a source term. If Vp aligns wigh Vp then it is zero. If not, there will
be baroclinic vorticity production. Just like the Long Box problem.

Without the new term, initial w = 0 will leads to w = 0 all times. But with this
term, even initial w = 0, there will be vorticity generation.
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Figure 3: Baroclinic Long Box

1.8 Fluid Column Model

set up grid from z = 0 tp z = H, 21, 29,...,2n. Concentration C(z,t), velocity u(z,t),
temperature T'(z,t), Salinity S(z,t), pressure p(z,t). We focus on concentration first. The
equation is

oc 0 oC
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lhs use Implicit/Explicit time advancement. Using implicit method,
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(also show explicit here:)
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so the full equation can be written
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this can be expressed in matrix form. In matlab just use.
C"t = tridiag(a, b, ¢, C™) (1.60)

For B.C., most common we will use Neumann BC to specify gradient of a quantity at z =0
or H. If % =0at z =0, H, or specified C’. At i =1, z = Az, assume D constant,
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2 Turbulent Flows

2.1 What is turbulent flow

Turbulent flow is characterized by 3 features:
1. 3d flow structures
2. unsteady
3. contain a wide range of “scales”, spatial and temporal variability

A laminar flow is stable with time, but turbulent flow varies around initial speed a lot. Define
mean/average velocity profile @(z), then we can use deviation u’(z,t) (called turbulent/fluc-
tuation velocity) to analyze.



2.2 Averaging in turbulent flow

Consider evolving mean flow.

e The easiest way to visulize is to use time average

T/2
(u) (2, 1) = %/ u(z, 1) dt (2.1)

—T/2

But T can be differently chosen. In order to be effective, it requires T to be longer
than turbulent variations, but is shorter than mean flow variations.

Think of hydrograph in river, its mean flow time scale may be days, but turbulent time
scale may only be seconds. Then think of flow under waves, the mean flow time scale
is only seconds, so we cannot taking time averages.

e The second method is ensemble average. That is creating a set of NV realizations, ith
is u(z,t), then

| X
w(z,t) = N Zui(z,t) (2.2)

e The third method is raynolds average. It is simply a separation of velocity into mean
u and turbulent v’ components.

Consider the scale of u’,v’, w’ first.

Turbulent eddy: streamline shows overturning motion. Eddies are useful in describing
turbulent length scales. The size of turbulent eddy is denoted as A; where ¢ refers to turbu-
lence. It also have velocity scale u;. The time scale, is 7 = Ay /uy

How to estimate ug, A¢, 747 Use root-mean-square of u'(t) to calc u;. Integral time scale
T¢. Mean of turbulent velocities equals 0. That is

T=v'=w =0 (2.3)
the overline means Raynolds average. However,
(u)?, (v')%, (w')* # 0 (2.4)

Let Turbulent Kinetic Energy, or TKE, which is the key factor, to be

2.3 Turbulent Scale and Properties

Turbulent Scales

Turbulent length scales goes from largest: constrained by solid boundaries; smallest:
constrained by viscosity.

Large scales Set by boundaries and motions are set by external forcing. Get energy
from outside.

Intermediate Get energy from Large scale, transfer to smaller scale.

Small scales Set by viscosity. Energy dissipated by viscosity.

Hygrograph is the
flux-time plot Q(t)



If we say turbulent is steady, we mean the energy flows through this system is stable,
assign € to it as the Turbulent Dissipation Rate. As energy is conserved, the rate of energy
transfer in all process will also be e. This is known as Energy Cascade.

Smallest scales respond only to € and v, they don’t care about the larger scale process.
1/4

So the energy conservation simply leads to the Kolmogorov Length Scale A\, = (V3 / e)
This scale is the smallest

Kolmogorov Spectrum for turbulent. For specturm we use wavenumber k = A~! where
A is the length scale. Energy density E(k) is the energy per wavenumber.

¢ = /OOO E(k)dk (2.6)
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Figure 4: Turbulence energy specturm (Steady)

The large scale has most energy and is dominant in affecting density mixing and other
effects.

For the largest turbulent scale, we use ug, A¢, 7+ to refer to velocity, length and time scale.
e.g., the velocity scale can be rms of v/, \/q>2, length scale can be H, u;7:, time scale can be
q°/e.

The correlation, or Integral time scale, can be calculated from lagged auto-correlation.

R(At) = w/(t) - W/ (t + AL) / ()2 (2.7)

In real turbulent flow, R(At) usually starts from 1 at At = 0 then drops as At increases.
Integrate it to get the Integral time scale:

S / " R(ana(an) (2.8)
0

The time scale here represent how long the flow is similar to itself, or say how long the
turbulence will change.

2.4 Turbulent DIffusion Equation

Start with advection-diffusion equation
oC oC oC oC

I I o _ pyo2
BN +u6x+v8y+w8z Dv=C (2.9)
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With turbulent flow, C' = C+CLiu=1a+u,v=70+v,w=1+w'. We mainly want to
know C(z,y, z,t). Using coninuity equation,

aC 9 ) ) R
Bt T gp(0) + 5, (00) + 5 (wC) = DVC (2.10)

Now apply average in each term, we get

oC 0 — 0 — 0 — 275
S+ 5 (W0) + = (v0) + 5-(wC) = DVC (211)

Substituting,

8(64_0/) 0 — N 1 0 — N 1 9 — NC /
T+%((u+u)(0+c))+a—y((wrv)(C+C))+£((w+w)(0+0))

=DV*(C+C") (2.12)

with some properties,

Jvg=Ff+9 [+/=F+F=F Tgd#0 Jg=Jg (2.13)
(u+u/)(6+0/):%+@+@+W:a€+m (2.14)
=0 =0

The correlation term u/C” is a new term. Putting back,

o0 | G090 00 00 _ phore O weny _ O e - O e
8t+uax+vay+waz—DVC’ 8:]C(uC’) ay(vC’) 8Z(wC’) (2.15)

Those new terms on the rhs represents the turbulent mixing. Take w/C’ term for example,

A -
f\ %:w»ff ACC22E)
2, T E A
i %
At ( |
' G
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d . | S S
— E I_ t/
(NS,

CI

Figure 5: Turbulence diffusion example. The Yellow circle represents the turbulence. A
parcel was carried by turbulence from z; to zo, causing the concentration at zo to drop at
certain time.

We approximately calculate the term as

w'C’ =~ 7’U_)t>\tg (216)
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and define k; = wy\; is Turbulent Diffusion Coeflicient

oC _ P 0 oC _ 9= 0 oC
if uy =~ vy & wy, which is called isotropic turbulence, then it is same for = and y dir.
oC _9C _9C _oC

_ a9 a0\ o[ o0\ o ( oC
% 7 3w —pvio+ L () + L () - L () (21
ot " "or Yoy TV o: Vc+8x<kt8x)+8y(kt8y)+az(ktaz>( 8

if k; is not a function of z,v, z, the rhs becomes (D + k;)V?C. Usually D < k;.

Turbulent Properties Comparison

1. Homogeneous turbulence, means (u'), (v'), (w’) is not a function of z,y, z.

2. Isotropic turbulence: (u/)? ~ (v')2 & (w’)?2. If there is boundary, external force,
or stratification, this assumption may not holds.

3. Steady turbulence: (u/)2, (v')?, (w’)? is not a function of ¢.

It is same for NS equation.

ou; Ou; 1 0p 92
E + UJ% = p@]}l + I/v Ujg (219)

changes into

Ju; ou; 1 0p 9 0

— +t U — =—- +vVeu; — — (ulu; 2.20
ot ! O, p Ox; ! 8xj( i) ( )
the last new term is called turbulent stresses. It act like viscous stresses, but based on
turbulent motions. w’u’ is vertical transport of horizontal momentum. We can define v, =

ut Ay, which is turbulent viscosity.

6u_1 _(9’U,i 1 8ﬁ o 0 dui
ym Lt =—= Tt g+ — (1t 2.21
ot +uj (%cj Lo 6‘1:1- A +g + axj <Vt6xj> ( )

Where estimating v, is the core for turbulence modeling.

2.5 Turbulent Models

Consider a case, flat bottom, general depth H, slight slope top surface g—;l = const. Steady
flow ¥ = w = 0, @ is not a function of z, but a function of z.

1 0p 0w 0 o —
O:___ - Tond\ Iy _ 1o, 222
p08x+l/822 8z<uw) 3y(uv> 8x(uu) (222)
=0
molecular viscous stress < turbulent, so neglect.
19p _ 0 ——
—— = 2.2
poO0xr 0z (u'wr) (2.23)

Depth average from 0 — H,
1 " 10p 1 (Mo ——
— ———dz=— —(v'w’)d 2.24
H/O po Oz : H/O az(“w) : (224)
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the lhs,

Ldop _ On
S0) 5 )
9N L oy T
99 = T [w/w'(H) — u/w'(0)] (2.26)

pogH 2 = pou'n (z = 0) (2.27)

Thed

The turbulence actually is transporting horizontal momentum vertically to the bed, so pou'w’

can be written as w’(pou’). Near the boundary, the turbulent motions are limited. g—:

increase.
Previously we know

— ou — oC
—u'w' = Vg —w'C’ = ktg (2.28)
But actually the coeflicient should be defined as
v el
Vy = 50 kt = Frel (229)
0z 0z

So how to define v, k;? Actually there are v,,vy,v,. But if we make isotropic turbulence
assumption, then v, = v, = v, = v,. Same for k;. And we assume vy = fBk;, § is an order 1
number. .

Modeling for v;. vy = ki = ugy. Mixing (scalar or momentum) is dominated by the
largest turbulent scales. So A; is largest scales, u; is energy-containig scales.

Some models:

0-equation model scalingestionates: mean flow or external forcing. A; is set by physical
boundaries. u; is bulk forcing, channal flow.

0
T, = pu'w'(z =0) = nga—Z (2.30)

and 7, = pu?, u, is friction velocity. So w/'w’(z = 0)
Ut = Ux.

u? leads to approximation

Ty = pui = pCpi® = u,=/Cpl~uy (2.31)
Cp is Empirical drag coefficient, depends on the height at which @ is evaluated. It
depends on roughness of surface. C'p ~ 0.0025 for muddy, u. ~ 0.05u

Estimating \;, as turbulence can not go into boundary, then A\; < 2z. For Vonkarman'’s
constant, k = 0.41.

M=kz (z2<H/2) M=k(H-2) (2> H/2) (2.32)
or more smoothly,
_ z z maxr __ } avg __ 1
A= kH— (1- ﬁ) NPT = JkH X" = <kH (2.33)
In summary.

But what we are missing, is loss of structure/variability of turbulent energetics and
influence of stratification.

13
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1-equation model similar, \; = f(kH), but for u; = \/¢2. ¢ is solved from

0¢?

2
04 (2.35)

at +uja—%:..

2-equation model still u; = 1/¢2, but \; is calc from second turbulence variable. e.g.,
e(z,y,2,t), A = (¢*)*?/e. Also known as k — ¢ models. For Mellor-Yamada models.
use g%\, as with same unit,

/ u(x)u/(x +6)ds = ¢*L (2.36)
0
A note on the code: models
Ou  10p 0 ou
f(t) implicit
ul Tt — 1op\"™! o, ou\"
St -(a) (me), (239
o, ou\"" 1 Op
n+l s = _ _ - F n
u; <8z (2 5, ))Z At o0 01 + u; (2.39)

where ul — up(z)

Turbulence models

0-eqn Physical scaling: \; & H, us & us
l-eqn \i = H, u; =¢q

2_eqn ur = (¢, 5(xay7zat)7 q21(x7yvz7t)

2.6 Turbulent Energy Equation

We want an equation for ¢?(z,y, z,t). Boundary layer approximation, horizontal scales of

problem < vertical, which means vertical gradients > horizontal gradients. Assume a% =0,

then 3% — 0. With continuity, we know %—f = 0, further apply to w = 0 boundary, we get
w = 0.

Focus on 2 component /. For full velocity,

ou 1o}

0 0 1 op
E—}-%(uu)—i—a—y(uv)—{—&(uw) =

~ s +vV3u (2.40)

andu=u+v,v=0+v, w=w+w,p=p+p, get RANS

ou 9, 9 __ 9 O 0 g
R < L w) = ——2L < - 2.41
8t+6x(uu)+8y(uv)+8z(uw) 0o 8x+y ox Hy(uv) Bz(uw) ( )

let Equation 2.40 minus Equation 2.41, we get

li
aa—i + 63(261/ +u'u') + aﬁ(ﬂv' +u'v+u'v') + aﬁ(ﬂw’—i—u’w—i—u’w')
x Yy 2
L opf 0, 0 = 0 o 0 o
= ——7%- = — = 2.42
poaxJ”’V“+6m(““)+ay(“”)+az(“w) (2.42)
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we want a equation for u/2, and

ou 0 (1,

so multiply each term with u’, then take Raynold average, obviously u’ %(u’ u') term van-
ished.

Q 17/2 /2*/ /g o)t
T <2u >+2u ax(uu)+u 8m(uu)

0
, 0
+u ay(

term 9

/

1 -
= —u’—al +ru/'V3u/, (2.44)

po Oz term 11
For term 9,
0 10 —— 0 1
P (! — = a2 — 1002 2.4

this term looks like w/C’, where C’ = u'?/2, so we can use similar model

- oC 0 (——5= 0 0 —

1Y — ~ - _ /()12 E—— (412
WO =k > o (w (u /2)) — (kq (u /2)> (2.46)

where k, is turbulent diffusion coefficient for turbulent energy. Term 3,6,9 are turbulent
diffusion of TKE. Other v'v’/, u'v' term can be similarily treated too. For term 11, simply
let vu/V2u' = e. For term 5,

0 ov ou'  ——0v 0 —
’ 175 — aglay! 7 — ol I 2
uay(uv) uu8y+uvay uuay—k vay(u /2) (2.47)
—— —_———

term 5a Advection of TKE by mean flow

u’%(u’ﬁ) - W% m%(ﬁm) (2.48)
——
term 8a
For term 4,
; _
u’%(ﬂv/) = *u'% + WZ—Z (2.49)
For term 7,
0 ow ——ou
u’&(ﬂw’) = uu’ aU:; +u’w’a—z (2.50)
For term 2,

0 o _——0u ou' 0 — —Ou
2/77/:27/7 2//7:717 . /22 2//7 2.51
uax(uu) wu 6x+ u'u o = Tu 8x+u8x(u/)+ u'u o (2.51)

—— ———
term 2a term 2c
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Add term 8a, 5a and 2c,

—— 0w  ——0v ____Ou ou
Tod — wu Y o e
uuaz+uuay+2 9= Yo (2.52)
also works for 4a, 7a, 2a,
ouw' o' ow
Finally,
9 w2 _0 12 *2 2 *E 2
57 (P12 + T3 (/2) + 5 (P 2) + - (22)
[ —
unsteadiness advection
1 op’ 0 [——— 0 [——5— 0 [(——————
— T _ 1(n,12 _ 10,12 o 10,12
“ po Ox te Ox (u (u /2)) Jy (U (u /2)) 0z (w (u /2))
Turbulent Diffusion
—Ou 78
To -
+u'u o +u 8 +u 82 (2.54)

P=shear production

The last one, shear production is a source term. Example,

ou —— 0 ou\’
To — 3, _ 7 _ - > .
u'w Vg = uwaz Vt(@z) >0 (2.55)
As
0, 5,0 0 _0 _
50/ =um_(d°/2) +vaf(q /2) + wa*(q /2)
0 0, 4 0 0 0, 5
= ol (D) + by (@/2) + (kg (2) 4 P (256)
usually k, are set to include the three terms below.
/ / /
g Lo 1o 1oy (2.57)

po Oz po Oy po Oz

2 2 2 2
o 04  0¢* 0 O <k 3q>+8 <k aq)+a (k O4° >+2P 2 (2.58)

ot or dy 9z oz \ ‘oz oy \' 1 oy 0z 0z
0 0q? 0 1
— k=) = = |——pw —w(u? /2 2 2.59
8z<q8z) 6z[ popw w'(u? + 0" +w )] (2.59)
e = —vu'V2u/ — v'V2' — vw' V2w’ (2.60)
P contains 9 terms, interaction of mean slow and turbulence
_ 8171.
P=- upu; . oz, (2.61)

turbulent stress
mean shear

suppose U(z),7 = w = 0, general parallel shear flows. All the mean shear components are 0

except ‘g—g, which means shear production P = —u/w’%, but v'w’ = —Vtg ,so P =1, (gg) .

2.7 Applications of TKE Equation
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aves on a motionless ocean

Example 2.1: Breaking

e # flx,y,t), ¢® # f(x,y,t) = ¢*(2), u=v=w = 0, so P = 0, the equation is

0 0q*

the ¢? is diffusived deep into the ocean and dissipated.

Example 2.2: Internal Turbulent event

Stratified ocean, double profile p; < ps. On the interface there is internal wave, it
can reach a point where they overturn and break, causing patch of turbulence. @(z),
1=w=0,¢ = f(z,y,21),

2
aait + *%ix — Diffution Terms + 2P — 2¢ (2.63)

The advection term will create horizontal transport of ¢2.

Boundary layer Approximation, @(z,t), T

ou 18p

=W =

<5 (5%)

— = 2.64
ot po Ox (2.64)
where assume % is not a function of x.
8> 9 ([ 0 ou\”
— = — | k,— 2 — | -2 2.65
ot 0z ( 19, ) T\ 5z ‘ (2.65)
——
source
The source term is large near boundary. Steady flow:
0 0
0= (kq aq ) +2P—2 = Diffusion =2 — 2P (2.66)

diffusion depends on the balance of € and P. But usually € = P, local equilibrium approximation
P = € is often hold for small shear case.

ou 10 ou

oC 9 oc

5 = 5 (ktaz) (2.68)
¢ 9 (, ¢ om\’

v & why & Ky~ kg, up = /g2, given Ay, € = (¢2)%/%/)\y; given €, Ay = (¢?)*/%/e. For X,
options are

1 kz, kH, k%(1— %)

2. Mellor-Yamada models, equation for ¢2I



3. k — e models, k = ¢%/2,

Ode 0 Oe € €2

— = (kg | =P~ —yo— 2.70

ot 0z ( q&z) R T % (2:70)
4. generalized lengthscale model. % + .-+, can choose different coefficients to reproduce

Mellor-Yamada and k£ — ¢ models.

In turbulent cascade, P input into large scale while € output from large scale into in-
termediate scale. We are modeling large scale because it is dominate vy, ks, ¢ as well as
ug, ;. Then we can ignore smaller scale, when the cascade is complete or fully developed
turbulence.

Comparison of Forcing and Mixing timescale The boundary layer approximation,
(omit prime and bar as Raynold average)
@Jru@ntv%er@— 18p+8 1/@ Jr2 I/@ Jr2 I/@ (2.71)
ot oz Oy 9z poox oz \ 'ox oy oy 0z "oz '
ignore u,, v, w and x,y turbulent diffuision, become
ou 10p 0O ou
o ZEy 7 - 2.72
ot po Ox +8z (Vt 62) (2.72)
——
f(@®)

Assume flow is forced by pressure, compare importance of other 2 terms, u ~ Uy, t ~ T, z ~
H

Unsteadiness Uo/T H? B H?y, _ Thie (2.73)
Turbulent Stress vlUo/H2 v,T T T '
T is forcing timescale. T, = H?/v; is the time it takes for momentum to be mixed over

distance H.

case (1) T > T, unsteadiness much larger than viscous,

ou  10p

—=———=f(t 2.74
5t P ft) (2.74)
oscillatory tidal forcing
10 2

—%a—i = Pycos(wt) w= % T =124 hr (2.75)

0 P,
8—1: = Pycos(wt) = wu(t)= - sin(wt) # f(z) (2.76)

case (2) Tz < T, viscous much larger than unsteady

10p O ou
0= 22, Y == 2.77
po Ox * 0z (Vt 82) 277)

Solid bottom boundary z = 0, w = 0, no stress condition at z = H, ‘g—g =0. If
vy = const, integrate and get

1
u(z,t) = A(t)(2* — 2Hz) A(t) = “ %0, o 0z = §Pz cos(wt) (2.78)
When T > T, H? > 1, T, which shows deep case. On the contrary, shows shallow case.
In the deep case, the flow goes sin(wt) while forcing goes cos(wt), flow lags forcing. This
reflects effects of intertia of flow. In the shallow case, the flow goes cos(wt) while Forcing
goes with cos(wt), means there is no inertia and flow evolves with forcing.
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Costal Embayment Channel-Shoal Morphology Deep part have larger inertia.

Figure 6: Costal Embayment

ou 1 dp 0%u

— = th

ot po Ox 0z
u(0,t) = wup cos(wt), infinite plate % = 0. Periodic steady state solution. Solution of the
from u(z,t) = e“!f(z) and take the real part.

(2.79)

iw

iwel' f = pe ' f1 = [ —=f=0 (2.80)
t
k=+(+1) 2% f(z) = Ae¥* + Be k2 (2.81)
t

To prevent f — oo as z — oo, B =0.

u(z,t) — uoeiwte—(l-&-i)z\/w/Qw _ uoe—zy/w/Ql/tei(wt—Z\/w/zl/t) (282)
Take real part,
u(z,t) = uge *V¥/? cos (wt —/ ;z> (2.83)
Vi

vertical structure set by ¢(z) = z/w/2vy = \/7/22/v4T. Note this is similar with H?/v,T.

2.8 Stratified TKE Equation And Richardson Number
TKE equation
0q* Oq> 0 0q*
ot T 0m; = w, Mo,

If we allow p = p + p/, in Boussinesq approximation, p’ only appears in p’g in w’ equation.

) +2P — 2 (2.84)

ow'’ p' 0 —= g —
o= 2 =  —(w?/2 e = — Z ! 2.85
5 p 5 (W?/2) + s (2.85)
so we can add it to the TKE equaiton
0q? 0q? 0 0q> 29—
— i— = — | kg=— 2P +2B -2 2B = ——=plw’ 2.86
ot i 8xj al'j qaxj + + ¢ popw ( )
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B is Buoyancy “production”.

Since p'w’ = —kp%, Then if in stable stratification case, % < 0, then p'w’ >0, B <0
is a sink of energy. On the other hand, if the profile is unstable at first, the term serves as
a source for TKE, and there will be overturning and potential energy is transforming into
kinetic energy. Usually only B < 0 case persist in the environment.

For a case where there is both velocity profile @(z) and stable stratification p(z), B and
shear production P will compete. On the other hand, turbulence will decrease both the shear
and stratification strength. So in order to maintain a steady state, there should exist outer
forcing. For shear it can be the boundary, for stratification it can be temperature or salinity.

Richardson Numbers Capture the competition between shear and stable stratification.
Gradient Richardson Number

N2 _l%
= 9 (2.87)

ig = 2 2
) )
(52)°  (52)
Ri, large (> 1/4, approx.) leads to decaying turbulence. Ri, small leads to active turbulence.

Munk-Anderson Turbulence model for stratified flows. Estimate vy, k¢, based on unstrat-
ified scaling first,

2 2
l/é7 = k? = ku*Hﬁ . <]. - H) (288)

And correct with Richardson number
Vg = Vtof(qu) ke = k?f(RZq) (2-89)

the function f should start at 1 when Ri, = 0 as be consistent with no-stratification case,
and reach to 0 when Ri, — oco. The choice is

f(Riz) = (1+ 10Ri,)'/? (2.90)
Bulk Richardson Number
dp Ap ou Au ) *%APH
— ~— —~ — = - 2.91
02 H 0z H Ry Au? (2.91)

Flux Richardson Number Compare the magnitude of the buoyancy flux due to turbulence

— ou
gp'w’ and momentum flux P = —u'w’ 57 .
-B
Ry =— 2.92
=% (2.92)
So R; > 0 in stable stratification. Consider a case, steady, homogeneous turbulence.
P+B—e=0 = P=¢—B (2.93)
P is a source and €, —B is sink. So that shows Ry < 1in all cases. B = —Rj- P, observations

in thermocline of ocean indicates R¢ = 0.15; Numerical studies show Ry = 0.15 is maximum.
That shows for much strongly stratified and less strongly stratified case, Ry is much lower.
€= (1— Ry)P means € = (0.85 ~ 1.0)P and B =~ (0 ~ 0.15)P.
Oceangraphic observations are able to get €(2),T(z), then can infer — p(z) — N?(z). As
B = —k,N? k, = —B/N?2. So if we get B and N? we can get k,. For P+ B = ¢, we get
e=(—R;'+1)B. So
Ry e
L S Ry N2

(2.94)
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energy due to mixing
of 5(2)

Params are chosen
from empirical ocean
observation data.

homogenous leads to
no advection and
diffusion term in TKE
equation



2.9 Water Column Model

Qu_ _10p 0 ( 0w 9C_ 0 ( oC
§ry ot 92 \""0z

ot po Ox s 0z
8q 0 k, 0q?
ot 02 \"10z

Vertical Diffusion(viscosity) terms are implicit.

aC n+1 oC n+1
(5., (5.,

)+2P+QB—26

ctoor 1
At T Az

AQ t1+ AQ A ti—1

(2.95)

(2.96)

(2.97)

At At At
[ =L ]c;f; [1+ (G 1)](,?“ [k" }C”“ or (2.98)

While k; ;. 1 and k; ;_ 1 s calc as following

n 1 n n n n
titl = §(kt,i +k'it1) km._f (kt i k)

For momentum form, the [hs is similar.

At na1 At il At i
{_AZQVZH;] uph +[1+ "] (ut i+l +vi )} ult +|:_A221/2i_§:| ul =

While the pressure term is

n_|_10p
P(Ei - |: 00 8$:| (Zlﬁtn)

Top Boundary z = H, i1 = N, ‘3—7; =0, unyy1 = un. For ¢ = N, it leads to

At ntl At "
{1 + A2 Vt,N§:| uit 4 [_A vy N:| UN+11

Us

Bottom Boundary z =0, i =0, 2 55 = 3= comes from log-layer below i = 1.

U1 — Ug U N U
= uoz’ul——
Az KAz K
n+1 n
w1 Ouf o Ou
At Az [Th20z)s P2 0z|y
2

with 2 = C4u?, above eq turns into

+1 At +1 _  ntl C;/Q +1
n n TL n
u" =l = A P g v (0 u ) SV U
which leads to
At At At 4/
[—AZQVZ%} u;’“—i— [1+A t3+A/£1/7é:| ?Jrl:uvlz_ "
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(2.99)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

Assume below i = 1
there is log profile.

u(z) =

U z
In

K

0



For P, B, € terms, explicitly calculate

7

Po

€E~

l Byl

So the mixed explicit-implicit formulation for e

2n4+1 _ 2n

q1‘ ,n—+ _ qi \M
At

Code Blocking

1. Advance uj’ — u;”rl, uses vi:, Pl up, — u;
2. Advance C7 — Ci”H, uses K7.. Cp, — C;
3. Advance ¢, 2l — ¢ 2!
4. Update everything

_ @yt

n+1

n+1 _ n+1rn+1l
I/ti - Ssz LZ
Sm, Sn,Sq are all emprical coefficients.

5. F, = F for all variables.

Steady Turbulent Channel Flow

O:—;%‘F&

2
0_6<kq8q>+2p—2e

0z 0z

= oz 0z

2
e (kﬁ‘”) + 2Pl — 2l

n no_ .n
pr— _ {U/w/au} = [ui—&-l i1
K3

9 —— g dp
Br= 2wy =k, (-2 2L
e p< po 0z

(q2)3/2 o [(q2)3/2

o0/E2|

— [Diff|" ™ + 2P £ 2B™ —
[ 1 ]’L + 3 + k3 Bll

e T n n
, USes Ky, Kz, V[

n+1 _ n+1rn+1
k2T = ShQy T L

10P 8(

:|2
> - [kpNz]?

] By =15~16

L2+l
)

i

Jul, NP Q2,, — Q2

Qrtt = /Q2ntt

n+1 _ n+1rn+1
kg = 8,Q7 L

(2.107)
(2.108)

(2.109)

(2.110)

(2.111)

(2.112)

(2.113)
(2.114)

(2.115)

This is unable to solve analytically. We can only use time advancement to let flow evolve to

steady state. Define a convergence threshold, and define

N

Cy = Z(u?“ —u")? < threshold for convergence

=1

22

(2.116)



2.10 Vegetated Flows

Vegetated flows, in wetlands, marshes ... there is drag force on the flow.
Vegetation drag force, when flow around a cylinder,

1
Fp=0Cp- 5pu2A,D (2.117)
w0 0 10 7] 0 F CpA
U D U D DAp 2
e R ) = == 211
ot po Oz * 0z <Vt 8z> p(AV) N (2.118)
~—

Cleg
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