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Office hour
e Jonas: W12-1PM, TH10-11AM FSM Cafe
e Huws: TUTH5-6PM 141 LeConte
o Kyler: M5-6PM 103 Birge

Introduction ODE:

F(LE, y/a y/,7 e ,y(n)) =0
e.g.
y' +y=0 Yy + 22 =0 mz” + 2bz’ + kx = F cos(wt)
PDE: e.g.
Ou  ,0u?
ou )
ot? te Oz?

The order of ODE is the highest order of derivative in the equation.
Linear ODE takes the form

ao(2)y + ar(x)y’ + - + an(x)y™ = b(z)

can also be written into the operator form

n

d
Ly = a0($)+a1a+---+an@ y=2>

so the linear property holds:

Llayy + bya] = aLly1] + bL[y2]

e.g.,
y =cosz = y=sinz+c
more e.g.,
d?z 1,
@:g = x:igt +cit +co

3
y' =y y(0)=0 y(ln2):1 = y=-sinhx

We can also use vector field to solve the ODE. Just draw y’ —  or other plots.

Separability if the ODE has the form

then we can just separate them

o /dyg(y)—/df()

As practice,

dy
1492

y =1 +y*)42® +22) =

(10)

(11)

= (423 +22)dz = arctany =z + 22 + ¢ (12)



so y = tan(x* + 22 + ¢). If having the form ¢y’ = p(z)y then it is easy to calc. For

Y+ plr)y = Q(x) (13)

Let I = [ p(z)dz, A = e, then for Q(z) =0 we get y = Ae~!. Then

d d dr
o @ N AN ¢ 14
A=ye! = = (A) o (ye') =y'e’ +ye i Q(z) (14)
we get

(%(yel) =Qe! = vyl = /Qel dx (15)

For example,

1

v t+oy= cos(z?) (16)

Another e.g., Ra— Rn— Po. Nj is the Ra atoms at t = 0, N7 is the Ra atoms at ¢, Ny is
the Rn atoms ar ¢. Half life(?) for Ra and Rn is A\; and As.

N = -\ Nj = ANy — X2 Ny (17)
So
Ny = Noe ™! Ny = M1 No (e=™t —e™R2t) (7) (18)
Ao — A1
Bernoulli’s equation
Y + P(z)y = Qz)y" (19)

change variable z = y'=" multiply by (1 — n)y~—" then
A=)y +P(1-n)y' ™" =Q(L-n)y™"y" = +(1-n)P(x)z=(1-n)Q(x) (20)

ends up we get linear equation.

Exact differentials
P(z,y)dz + Q(z,y)dy =0 (21)
If Equation 21 has the property % = %—g, then it is considered an exact differential of

function F(z,y), where P = %—f and Q = %—5. Also Pdz + Qdy = dF, and if dF = 0 then

F(z,y) = const.
An ODE is considered homogeneous of order n if

Z ai(z)y(z) =0 an #0 (22)
i=0

If we assume y(z) = €"®, then y(") = re™  we get

if the n roots are distinct, then
n
y(x) =) A" (24)
i=1

A little exercise,
V' 45y +4y=0 = y=Ae "+ Ae (25)



Repeated roots

let (517 — a) y = u, then

So
Y —ay=Ae” = y=(Az+ B)e™™

If charactistic equation has a root of multiplicity k&, then a possible solution

y(x) =" (Ap_12" 4 - 4 Az + A)

2

Review Linear operator:

Llauy + bug] = aLlluq] + bL[us]

n

ZQ%U =0 = u= Xn:Aie”I

i=1 i=1
Charactistic eqn Y, ;7"
Complex roots

) el _ g—iz el + e~z
Ssmr = —————— COSY = ———

Complex conjugate roots.
y = Ae(a+i,6)3: +Be(o¢—i,8)3c
— g% (Aei,Bm + Be—iﬁm)

= e*(¢q sin Bz + ¢o cos fx)

General principle, isolate parts which are imaginary and those which are real.

Example: Spring-mass system
my = —ky — ly k,0>0
define w? = k/m and 2b = [/m,
G+ 2by +wiy =0
assume y = Ce"™, we get

_ 2 _ 2
_ Qbi\/;lb W _ L o

r

overdamped: b? > w?

. critically damp: b = w?. underdamped /oscillatory: b? < w?

(27)

(28)

(29)

(32)

—~ o~
W W w
T s W
- Z =

(36)

(37)

(38)



In homogeneous equations
n

S @)y = f(a)

=0

f(z) is called forcing function. We can set y = y, + v, solve

and guess y,. The guess are listed:

1.
f(x) = asin(wz) + S cos(wx) yp(x) = Asin(wz) + B cos(wx)
2.
fo)=ae®  gyla) = A
3.

f@)=ama™+ -+ a1z +ag yp(x) = Apa® + - 4+ Az + Ao
k =m + n, n is the order of ODE.

Method of Undetermined Coefficients
(D - a’)(D - b)y = ecwpn(x) Yp = xcechn
e.g.,
(D —1)(D —2)y = e” + 4sin(2x)

guess

2 types of dynamical systems Differential equations and iterative maps.
Xlzfl(XlaaXnat) Xn:fn(X177Xnat)
e.g. m¥+bx+ kxr=0,letX; =x,Xo =2, so
. . b k
mXs +bXo +kX1 =0 = Xo=—Xo— —X4
m m

For X = sin(z), we can draw a plot. Actually we can solve

dx .
 —sne = - In(cscx + cotx) =t + ¢

But the solution is less interpretable than & — x graph.

Linear stablility analysis Atz =0, sinz ~z — %T + e
t=x = xz=c¢

generally,

P=1@)  J@)=0  fao+an~ Ll A

x¢ is called fixed point. )
Az = f(xg+ Azx) — f(xg) = cAx

so the stability depends on ¢

(40)

(44)

(45)

(46)



Existence and unitueness in 1D e.g. & = z!/3 starting at o = 0, it will stay at
x(t) = 0. But integrate,
dx 1/3

3 a3 _
T = 2:5 =t+ec c=0 (53)

2| The problem lies in the slope of z!/3

we get © = (%t)3 at x = 0 is infinity. So there is the
theorem.

Picard-Lindelof Theorem: consider the IVP & = f(x),x(0) = xq, suppose f,f’ are
continuous on some open interval I C R and suppose that zg € I, then, the IVP has a
solution z(t) on some interval (—7,7) and that solution is unique.

Note, the solution might not exist forever. e.g., @ = 1 + 22, 2(0) = 0, which leads to

xr = tant.

autonomous if ¢ = f(x), then the system is called autonomous. If & = f(x,t), then it
is nonautonomous. But actually we can change nonautonomous into autonomous one by

adding a new state var.
T2 i)

1 ®1 ) —1 ({1
P (dom)_pp <$2> (55)

let z = P!z, 22]?, then we get 2 = Dz. It will be separated, and can solve independantly.

matrix differential eqn

let A= PDP~!, then

3
For fixed point f(z0) = fo, then
f@) = f(@o) + ['(x0)(x — o) + Oz — m0)? (56)
Type of fixed points, & = f(x)
Stable f/(z0) <0
Unstable f/(z) > 0
Semistable f'(zo) = 0

Fixed points in R"
z = f(x) x e R"” (57)

An equlibrium solution, or fixed point, is a point & € R", s.t.,
' =f(x)=0 (58)

Note, if f = f(x,t), then instaneous fixed points are not stationary Solutions. e.g.,

i=—x+t (59)
Linearization in R™,
@ = f(x) = f(2)+J(@)(x - )+ O]z — 2|)° (60)
where the jacobian J(&);; = gj:; (z)



Phase plane analysis R? for example, & + 2 = 0, turns into ©; = xy, 4y = —x1, in the

x1 — xo plane the trajectory is circle. Actually we can get
I1i1+1‘2562 =x-x=0

also can get

d
—(x%+x§)/2:0 = z%Jrz%:c

det
T\ _ (Ju Ji2) (71
T Jo1 Jaz ) \x2

linearization,

(61)

(62)

(63)

let J = PDP~! D = diag(\1,\2), y = P~ x50 y = Dy, and 9; = \jy;. It is easy to get

yi = y:(0)e**. When A < 0 it is stable, A > 0 is unstable.

In 2D, combine them, we get it is stable if Re();) < 0, but there may be a fast direction
and slow direction. If Ay = Az, then trajectory will all be straight line and no fast or slow

direction. If A; = A3, then it is also stable but spiral.

)ofs’f

div

Figure 1: Fast dir and slow dir

)\\’/}\'» )\I’— Xii

Figure 2: Straight line and Spiral

5/-"’\/

dir



For unstable case Re();) > 0, the trajectories are same but reverse direction. If A\; >
0, A2 < 0, so there will be hyperbolic or saddle situation. Finally, if Re(\;) = 0, Im()\;) # 0,
this will be completely circle.

Figure 3: Unstable case

)., where J is non-diagonizable.

Another situation is like (3 /1\

deﬂenémfe
o de

Figure 4: degnerate node
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Index theory Linear stablility is inherently local (falls apart if we go too far from fixed
point). But it tells us nothing about systems which only have higher order terms.

Example 4.1: Limit of linear stablility

i=-2+y  g=yt-y (64)



e = (07 20) se0=(3 %) (65)

It doesn’t tells us useful information.

Index theory, curve C' is simple and closed. Simple means trajectories do not intersect.
Closed means it separates R? into an inside and outside. Since C' is closed, if we start with
an angle ¢., as we move all the way around C, we need to end back up at ¢.. So ¢ must
change by an integer multiple of 27.

So the index is

_ 1 _0¢ 9¢
Ic_ﬂ/c d¢ d<z$—af1 df1+af2 dfo (66)
it P2 _hdfe—fodfy
¢ = tan P = d¢ T (67)
_ 1 [hdfr-fdh
“Tuw] T prR (6%

Parameterize C to solve this.

Example 4.2: Circle index

C = {(x,y) : 2% + y? = 1} is the unit circle, let z = cosf, y = sin 6, then

_oh _9f
dfpd="27d0  fo= 570 (69)

What is the index similar to Winding number, residues, Gauss’s Law.

Properties of the index

1. Suppose C is homotopic which can be continuously deformed into another curve C’
without passing through a fixed point, then, Ic = I

2. If C encloses no fixed points, then I = 0.
3. I¢ does not change if we reverse the vector field in time, i.e., t — —t

4. If C is a trajectory for the system, then Io = +1

Index of a fixed point
o Stable nodes have index +1
¢ Unstable nodes have index +1

¢ Saddle nodes have index —1

Theorem 4.1:

The index of the fixed point at the origin of & = Ax is sgn(det A)




Theorem 4.2:

If a closed curve C surrounds isolated fixed points @7, %3, ..., %,, then
Io =Y I, (70)
k=1

, where I, is the index of X. Isolatex fixed point #* means 3U C R? containing no

other fixed points besides z*

L

Corollary: any closed orbit in the phase plane must enclose fixed points whose indices sum

to 1. Proof: Let C be the closed orbit, from propertie 4, Ic = +1.
Example 4.3: Lotta-Volterra system

Show the LV system
t=x(3-2-2) P=y2-z-y) (71)

has no closed orbits, where z,y > 0

Four fixed points. We can check every possible location for a closed orbit.

1. No fixed points = I =0X

2. Surrounds (1,1) = Ic=-1X

3. Surrounds some node on the axes = Io=1

But actually as y = 0 leas to y = 0, x = 0 leads to © = 0, the trajectory cannot leave
the first quadrant. Trajectories must lie on either axes, but this cannot be because

trajectories can not cross.

ot

rEAT)

Figure 5: Find type of nodes from the tr and det of Jacobian



Different type of nodes:

Stable Re()\;) <0

Unstable Re();) >0

Saddle A2 <0

center Re(\;) =0,A\1 = —X\3 #0
degenerate J is non-diagonizable
Star \; = A9 all real number
Spiral Re();) # 0,Im(\;) #0

This is for 2D. For the general case, J is n X n matrix, there are n generalized eigenvalues
or eigen vectors \;.

Stable Re()\;) <0
Unstable Re();) >0
Saddle Some Re()\;) > 0, some Re(A;) < 0.

We can devide the space into stable manifold W?*, unstable manifold W*, and center manifold
we.

stable
Manifold

—— V\/U( X)

Figure 6: Manifold

Theorem 5.1: Hartman-Grobman Theorem

The local behaviour of a hyperbolic(saddle) node is topologically equivlent to the
linearized system.

d d
d—:: = Az + f(x) is topologically equivalent with £ = Az (72)

h € CY(R™),h: & — z is invertible, A must be diagonalizable, Re();) # 0

10

stable and unstable
node are treated as
special cases of saddle
node



Example 5.1: Pendulum

i=—sin(z) = @1 =xy Zo=—sinxz

periodic repeat for other place, then only two points.

Te = (070) Th = (7T7O)

s = (4 )

find the eigenvalue and eigenvector,

Then consider jacobian,

)\1=i )\2:—1 v =

N |
N\
[Epp—
~_
4

[ V]

I

N |
/N
Lo~
N~

so locally

/ /
¢, cos(t+c
2 = crogeMt £ cqvpe?t ( 1 cos( 2) )

¢y + sin(t + )

For another point,

\__/ /\Y'L L o~—~———

g

red lines show connected trajectory, blue line is a critical one.

First find fixed points is the (nm,0). If we only consider z; € [0,27), and using

Figure 7: Pendulum phase trajectory. Organge lines show local behavior as calculated,

(73)

(74)

If we want to linearize the problem, first using taylor series,
. . L s 15
Y1 = Yo y2=y1—§y1+ay1+"'

11

(81)



we want 21 = 29, 29 = z1. Assume

3 2 2 2
y1 =21 — (c1302] + 1212722 + 1122125 + C10323) (82)

3 2 2 2
Yo = 29 — (62302’1 + 2212122 + 2122125 + 020322) (83)

Manifolds

First define Invariant Set, let S C R™ be a set

a) Continous time, S is invariant under vector field & = f(x). If for any g € S, we
have z(xg, & = 0,t) € SVt. If it is restricted to ¢ > 0, then S is positive invariant.
t <0, S s negative invariant.

An invariant set S C R™ is said to be C™ (r > 1) invariant manifold if S has the
structure of a C" differentiable manifold. Shortly, locally a manifold has a euclid
structure.

6
Near identity change of variables.
&=Tr+4222  §="Ty+3zy (84)
want to linearize ) _
X=7X+0(3) Y =7V +0O(3) (85)
assume
X =z+az® fasry+azy’ +03) = f(z,y) YV =y+bia? +hoay+bzy* +0(3) = f(x,y)
(86)

So inverse are © = F(X,Y),y = G(X,Y)
=X+ A X+ AXY +A3Y2+03)  y=Y+BX?+BXY +B3Y2+0(3) (87)
S0

@ = (z+a12’ +agrytazy®)+ A2’ + Asry+ Azy?+0(3) = w+(a1+A1) 2 +(ag+Ag)zy+(as+43)y*+0(3)
(88)
so Ay = —ay, Ay = —ag, A3 = —ag3. The case for y is similar. So the inverse transform is

r=X -1 X? -~ XY —a3Y?+03) y=Y b X?—0XY —b3Y2+0(3) (89)

Differentiate w.r.t. time,

X =&+ 2a123 + az(xy + 2y) + 2a3yy + O(3) (90)
= (Tx + 422%) + 2a12(Tx + 4222) + ao(x(Ty + 3zy) + y(Tz + 4222)) + 2a3y(Ty + 3zy) + O(3)
91)

=T7(X —a1 X? — as XY — azY?) +42X? + 20, X(7X) + ao(X(7Y) + Y(7X)) + 2a3Y (7Y) + O(3)

=7X+ X2<—7(1,1 +42 + 14(11) + XY(—7a2 + 14a2) + YZ(—7(13 + 14&3) 93)
so a3 = —6, a9 = az = 0. Similarily,
Y = 7Y + X2(=7by + 14b1) + XY (=Tby + 3 + 14by) + Y?(=Tbs + 14b3) (94)

12



so by = b3 =0,by = —%. The transform is
2 3.2 2 3 3
r=X+6X"4+0(3) y:Y—i—?Y X =x2—62°+0(z°) Y:y—?xy—I-O(S) (95)

Stable, unstable, center subspaces. Let &y € R™ be a fixed point of & = f(x), linearize
to have 9 = Ay, the solution is y = ey, where y(0) = y.. We can denote E¥, EV, E°,
such that,

s U c
E” =spaney,...,e, FE° =spane,i1,...,€,10 FEY =spane,iqi1,--.,€n (96)

more locally
E°P®Q E*® E°=R" dim S +dimU +dimC = n (97)

Re(As) <0, Re(Ay) > 0, Re(Ac) =0

Complexificaiton

a + bi 0 a —=b _
( 0 a—bi)ZQ(b a>Q ' (98)

ES,EY,EC define what we call invariant manifolds. Invariant means structures do not
change with time. After linearize,

i As O O U
il=l0 4, o] |wv (99)
w O O A, w

Center manifold theorem: Local stable, unstable, and center manifolds. Suppose & =
f(x) is C",r > 2, then @ possesses the following:

1. unique AY local C" stable manifold W5 (xo)
2. unique A,, local C" unstable manifold WU (z0)

A not necessarily unique C" !, center manifold W< _(z), then less locally

loc
Wige(o) ® Wio(@0) @ Wige(ao) = R” (100)
and W2 () is tangent to B2, A = S,U,C
Calculating: Perho’s method, Power series.

7

For linear system, eigenspaces are equal to corresponding manifolds. For nonlinear ones,
eigenspaces are tangential to their associated manifolds.

Calculating the invariant manifolds

. . g _ dyg(z,y)
Many way: Graph transform, Perko’s method, butsSimplest way: Power series.
suppose vector field
©=f(r,y) zcR" y=g(zy) yeR” (102)

13



manifold is assumed to be n dimensional, y = h(x). vector field should lie tangent to this
surface at the fixed point, this lies tangent to the associated eigenspace. The following must
be satisfied.

Vh(x) =19 (103)

——

Jacobian,RmXxn
or same as
Vh(z)f(z,y) = g(z,y) (104)

This gives a set of coupled PDEs. For 1D manifold, it just is % =g(z,y)/f(z,y).

Power series suppose we are in R?,
i1 = f(z1,22) @2 = g(21,22) (105)
First, diagonalize such that the eigenvalues lie along the axes.

oh1(0)

Ty = hl (1’1) 6:131 =0= hl(O) (106)
hi(z1) = ax? +bx +O(x*)  ho(xe) = a'xd + Va3 + /a5 + O(x)) (107)
Plug in series
. Ohy, _ 2 3
T = 6—1:11“1 = g(z1,22) = (2az1 + 3bxy + O(ay)) f(z1, 22) (108)
solve for a, b, ... order by order.
Example 7.1: Power series
t=x §=-y+a’ (109)
dim E*® = dim E" = 1 which is equivlent to dim W} _(0,0) = dim W}%_(0,0) = 1.
E*(0,0) = {(z,9)ly =0} Wi (0,0) = {(z,y)[z = 0} (110)
, find W*(0,0), or say h(x)
oy —y+22 —y 22 ¢
gL 7 = — 4+ — 111
ox x x tro= oy 3 * x (111)

we require y = h(z) should satisfy h(0) =0 and A'(0) = 0. so ¢ = 0.

w*(0,0) = {(x,y),y = x;} (112)

further let y = h(z) = ax® + ba® + O(a?),
z(2az + 3b2? + O(2?)) = —y + 2 = (1 — a)2? — ba® + O(z?) (113)

we get O(z?) :2a = —a+ 1,a =1/3, O(23) : 3b =b,b = 0,..., s0

h(z) = = + O(z?) (114)

14



Notions of nonlinear stability
z=f(x) eR" (115)

(Lyapunov) Stablility a trajectory x(t) satisfying Equation 115 is (Lyapunov) stable if
Ve > 0, 30 = §(e) > 0, such that for any y(t) also satisfying Equation 115,

ly(to) —z(to)| <d = |y(t) —=(t)| <efort >ty (116)

Semi-asymptotic stability similarily, but
ly(to) —z(to)| <b = lim [y(t) —z(t)| =0 (117)

for some b >0 .
Asymptotic stability Lyapunov 4+ semi-asymptotic.

Orbiral stability An orbit is a set of points passing through a point in phase space. usually
defined by an ODE or a map. While a trajectory is a function(curve) that passes
through a point in phase space. Positive orbit through a point o € R™ is

O (xo,tg) = {x € R", & = z(t),t > to, z(tg) = To} (118)
Similarily there are negative orbit O~ for ¢ < ¢y. Define
d(p,S) =inf,es |p — x| (119)

Orabital stablility just like lyapunov stablility, and asymptotic orbital just like aysmp-
totic stablility. But this time we foucus on the orbit.

8

Lyapunov Functions Prove / show stability in a fully nonlinear sense. No approxima-
tions, no “neighborhoods of validity”. No analaysis of the trajectories are needed. Only
vector field are needed, similar to index theory.

The general idea is, draw a boundary like circle around a point xy. The boundary U is

U={zeR":V(z)=C,VeC'} (120)
the function V() is called Lyapunov function. Actually, take time average, as & = f(x),

%V(az) =VV.-&=VV.f (121)

If vector field arrows (demonstrated by f) point towards xg, then....
What if there are closed trajectories around xy? Obviously, as VV - f =0, %/ =0,V is
consant on that trajectory, we call it a constant of motion for .

Theorem 8.1: Lyapunov function

Consider & = f(x),x € R", let xo to be a fixed point, and let V : U — R be a C*!
function defined on some neighborhood U of xy, s.t.

(i) V(x)o =0 and V(z) > 0 if  # X,

15

Trajectory close
enough will always
stay close enough.

note there is no bound
for to < t < o0



(i) V(®)=VV-f<0in U\ {xo}

Then x is stable, more over, if

(iii) V(z) <0in U\ {zo}, then x is asymptotically stable.

\

Example 8.1:

=1y = —x+ex’y (122)

Fixed point (0,0), Jacobian is

J= <_1 +02€xy ;2) J(0,0) = (_01 é) (123)

This is a non-hyperbolic fixed point and we can not know its stablility, so we test the
Lyapunove funtion

Viry) = 5@ +17) (124)

Note this is a very common lyapunov function. It satisfies V(0,0) = 0, V(z,y) > 0
for (z,y) # (0,0).

VV = (z,y) V =VV.f=ay—ay+ e’y = ex?y? (125)

Therefore, if and only if € < 0, V < 0

Asymptotic behavior of trajectories & = f(x), * € R", x( is an w-limit point of
x € R", denoted w(x), if there exists a sequence {t,}, t, — 00, s.t. x(t;) — xo.

a-limit points are defined similarily by taking some sequence {s,} s.t. s, — —o0.

The set of all w-limit points is called the w-limit set. Same for a-limit set.

Properties of w-limit points let x(t) be some trajectory, let M be a positively invariant
compact set, then for p € M,

i wp) #0

(p)
ii. w(p) is closed.
(p)

w(p) is invariant under the flow. i.e. a union of orbits. (w(p(t’ > t)) is the same).

p) is connected.

Attracting set / trapping region A closed, invariant set A C R™ is called an attracting
set / trapping region if there exists some neighborhood U of A s.t.

Vt>0 {x(t)} CUand [{z(t)} =A (126)

t>0

All trajectories starts in U will end up in A in finite time. In comparison, Region of attraction
is a neighborhood region of a fixed point, where all points in the region will finally goes to
that fixed point.

16



Topological transitivity A closed invariant set A is said to be topologically transitive if
for any open sets U,V C A, 3t € R, s.t. {z(t)} NV # 0, where z(t) is trajectories in U. This
is to say, some trajectory that passes through U will cross V' at some time t¢.

An attractor is a topologically transitive attracting set.

Theorem 8.2: La Salle Invariance Principle

& = f(x), x € R", M C R" positive invariant set. M also a trapping region, with
a boundary that is at least C', V(z) <0on M, E = {& € M : V(z) = 0}, M is
the union of all trajectories that start in £ and remain in E for all ¢ > 0, then for all
xo € M, x(t) > M as t — oo (crosses this point)

(Another version): Let  C R” be a compact, positively invariant set, V € C1(Q) s.t.
V<0inQ, E={zecQ:V(z)=0}, let M be the largest invariant set in E, then,
every solution starting in (2, approaches M as t — co.

Corollary: suppopse xg to be a fixed point, let V' € C1(D) positive-definite s.t. V<0
on D, let s = {x € D :V = 0}, and suppose that no solution can stay in S, other
than x(t) = xo, then x is asymptotically stable.

\

Example 8.2:

T1 = X2 To = —hl(l‘l) — hg(l‘g) & T+ hl(il) + h2($1) =0 (127)
hi(0) = 0 and yh;(y) > 0, Yy # 0. Also assume that [} h1(z) dz — oo as |y| — .
Consider - )
V) = [ mdy+gad V) =0 (128)
0

obviously V(x > 0) for  # 0.
V(m) = ZCQh(ZL‘1) + $2(—h1($1) — h2($2)) = —172h2(1?2) S 0 (129)

define a set {x € R? : V(z) = 0} = {z2 = 0}, so if we have z5(t) = 0, then iy = 0,
z1 =0, so x = 0, according to the corollary, * = 0 is aysmptotically stable.

Constants of motion x = f(x), 2 € R", a constant of motion is some quantity I €
CL(Q), s.t.
dI(x)

I=
dt

=& -VI(z)=0 (130)

ie. I(xz(t)) =ceR.

Example 8.3: constants of motion in 1D oscillator

mi = F(z) F:—i—‘; = méﬁ—k%zﬂ (131)
afr
— |z = 132
= 3 [2mx +V(a:)} 0 (132)
1
I(x, @) = §m;z';2+1/(x) (133)
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constants of motion can be used to plot the trajectory. n dimensional systems requires
n — 1 constants of motion to constrain them. Solvability.

Nonlinear centers consider f € C?,
&= f(x) xcR? (134)

suppose that there exists I € C! s.t. I = 0, and suppose that z, is an isolated fixed point.
If x( is a local minimum for I, then all trajectories near xg are closed.

Reversibility in Systems
mi = F(x) (135)

let y(t) = x(—t), then §(t) = &(—t), we get
mij = F(y) (136)

so this system is reversible. A reversible system have trajectories symmetry with & = 0
because § = —&(—t).

Theorem 8.3:

Suppose that xg, f(x) = 0 at xg, and suppose that € = f(x) is reversible, then,
sufficiently close to xg, all trajectories are closed.

Example 8.4:

show that the system

t=y g=x—2a° (137)

has a homoclinic orbit for x > 0.

At (0,0), unstable direction (1,1). Obviously y increases when x is small, but de-
creases when x is large, it will surely drop to y = 0 at some point. Now we need to
apply the theorem. Let a'(t) = x(—t),y'(t) = —y(—t) ,

i = y/ y/ =7 = 1,/2 (138)

by showing there is a
same trajectory below
y=0



. S

X

Figure 8: Different limit cycles, left to right: stable, unstable, asymptotically stable

Limit Cycles For an example,

P=r(l—1?) 6=1 (139)

y=r(l-r?H
0=

X=X( K1Y=y
veYUI-X3 X

Figure 9: An example of limit cycle

Actually, if on a boundary all vector point inwards, and on the inside fixed points vectors
point outwards, then there must be a limit cycle in it.

Example 9.1: Van der Pol oscillator

@ —Di+z=0 p>0 (140)

Zi‘l = X9 1“2 = —T1 — [Ll‘g(xf — 1) (141)

note that when p — 0 it turns into normal harmolic oscillator.
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> ————

Ruling out Closed orbits Three methods:
1. Gradient system & = —VV (),
2. Lyapunov funtions V() > 0 for & # xo, V(x)o = 0, V() < 0, not #
3. Dulac’s Criterion & = f(«), find g(x), V- (g&) < 0 or > 0 V.

//AV~(g:i:)dA:/Cga':~ndl (142)

Proving closed orbits

Theorem 9.1: Poincaré-Bendixon Thm

# = f(x) € C! in R, R has no fixed points. In R exists a trajectory C, then either C
is a closed orbit or C' approaches a closed orbit as t — oo.

Example 9.2: Strogatz

7 =r(l —7r2) 4 prcosf =1 pw>0 (143)

we are going to prove trajectories finally stay in annulus between 0, Tmaz- First
we want 7 < 0, since we know 7 < r(1 — r2) + ur, we can choose 7pq. to let the rhs
to be negative.

(p+Dr=r?<0 = p+1<rie (144)
SO T'maz = \/,lm Slmllarﬂy, Tmin = \/m

Liénard Equation

Theorem 9.2: Liénard’s theorem

For 1. f,g € C1, 2. g(—2) = —g(x), 3. g(z) >0 for x > 0, 4. f(—x) = f(x),
5. F(z) = [} f(u)du, F(0 <z < a) <0, F(z > a) > 0, F(c0) = 0o, then Liénard’s
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equation has a unit stable limit cycle.

V =i+ g(x)z = — f(z)d> (146)

10

Asymptotic methods Prerequistie: there is a small quantitiy 0 < e < Lor > 1,7 ! <
1.

Relaxation oscillations

F+p?-Di+r= (147)
can be transformed into
1
F(a:):§z37x w=2a&+ uF(z) w=-—x (148)
let y = % ,
t=ply—Fx) g= T (149)

relaxation has slow time scale O(p~1) and fast time scale O(y).

Example 10.1: Estimate period of the limit cycle

vdpP

1> 1, up to the first order the time, on the fast boundaries really fast. For the slow
branch, & = 0, y &~ F(x),
1 dy dx dx
=2 )= = (2212 150
LT (@) =@ -1 (150)
2_1q x(tp) 2_1
dt:_M T:2/ —Mdm (151)
X x(ta) X
can approximately use x(ty) = 2, z(tp) = 1, get T =~ u(3 — 2In2) = O(p)
‘Weakly nonlinear oscillators
i+xz+eh(z,)=0 (152)
The last term is small nonlinearity. Try x(t) = x(t) + ex1(t) + O(e?), 1.C.
20(0) =0 0(0) =1 21(0) =0 1(0) =0 (153)
For h = 2e¢, the exact solution is
o =(1—e¢ Y2 tsin ((1 - e)l/%) (154)

21



But using pertubation theory shows
r =sint — etsint + O(e?) (155)
this solution is not good because et — oo as t increases, which doesn’t match the actual

damping.
note expansion of y = & in previous case is good.

Method of two-timing Idea: define two different timescales for the problem. 0 < e < 1.
Slow: O(e™1), T = et; Fast, O(1), 7 = t.

i+2et+x=0 T=y y=—x—2ey (156)

I.C. (0) = 1;£(0) = 1. Let

w(t,€) = xo(T,T) + ex1 (1, T) + O(e?) (157)
@(t,€) = Orxo + €(Orxy + Orxg) + O(€2) = 1o + ey1 + O(€?) (158)
y(t,€) = Oryo + €(Ory1 + Oryo) + O(€%) = —xg — exy — 2eyp + O(€?) (159)

For the O(1),

Orx0 =Y Oryo=—x9 = x9=a(T)sint+b(T)cost yo = a(T) cost — b(T') sint

(160)
Using I.C., find a(0) = 1,b(0) = 0. For the O(e),
Orr1 + 207720 + 20,20 + 21 =0 (161)
turns into
Orrx1 + 21 = 2(0ra(T) cos T — Orb(T) sin(7) + 2(a(T) cos T — b(T) sin 7)) (162)

we want cycle terms to be zero, so

20ra(T) +2a(T) =0  20pb(T)+2b(T) =0 = a=a(0)e ? b=>b0)e"T (163)

and
x1 = ¢(T) sin(7) + d(T) cos(7) (164)
0
T =120+ er; = Ae”sint + O(e) (165)
While exact solution is
r=e ““(Asiny/1— €2t + Bsiny/1 — €2t) (166)
Method of Averaging
Z+x+eh(z,£)=0 (167)
T=y y=—x—c¢h (168)

since the trajectory is a little deviated from unit circle, assume

z =71(T)cos(t + ¢(T)) y = —r(T)sin(t + ¢(T)) (169)
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where

r=14er;+--- p=0+¢€p1 +--- (170)
so we get
icos(t + @) — résin(t + @) — rsin(t + ¢) = —rsin(t + ¢) (171)
—rsin(t 4 ¢) — r¢ cos(t + ¢) — rcos(t + ¢) = rcos(t + @) — eh (172)
the equations turns into
7 = ehsin(t + ¢) r¢ = ehcos(t + @) (173)

r and ¢ not change in fast time scale because ¢ < 1 is very small, so the above can be written
as

or . ¢
T = ehsin(t + ¢(T)) "ST = ehcos(T + ¢(T)) (174)
Turn A into fourier series,
h=>"agcos(kb) + by sin(kf) 0 =1t+¢ (175)
k=0

with O(€) equation
Orr1 + 21 = —20p;00 — h = 2[0pr(T) sin(r + @) + r(T)0r¢(T) cos(T + ¢)] —h  (176)
still don’t want cycle terms

or oo

QaiT*bl =0 27’87 — ax =0 (177)
S0
o L L ) sn0d6 = (hsing) (178)
ar ~ 2" T am ) sin = (hsin
dp 1 1 [*T B
"7 = 501 = 5 ; h(0) cos0df = (hcosb) (179)
h(6) = h(rcosf, —rsinf) (180)
1 T
z=ecf(z,t) = (&)= T/ ef(z,t)de (181)
0
. 1 TP . 1 2 .
(ry = T—P/O ehsin(t + ¢) dt = %/0 ehsintdt (182)
11
Ftateh(z,i)=0 O<e<l (183)

because € is very small, the solution is like harmonic oscillator, but modified by slow time
scale T'.
xg =r(T)cos(tT + ¢(T)) 0=1+¢ (184)
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Example 11.1:

i+rtez?—1)i=0 x0)=1 20)=0 (185)
z=1rcosf &= —rsinf (186)
h(z,3) = h(rcos@, —rsin@) = (r? cos? @ — 1)(—rsin6) (187)
roord
r’ = (hsinf) = 578 r¢’ = (hcosf) =0 (188)
r(T) =2(1+3e”T)"1/2 (189)
(t.o) 2 cost+0(e) (190)
x(t,€) = ———= cos €
V1+3e T

Poincaré-Lindstedt

Example 11.2: Unforced Duffing oscillator

iPtwirt+er=0 20)=1 2(0)=0 (191)
T=wt (1) = AcosT + BsinT (192)
. d dr d / - 2 1
= — = —-— = - 1
&= T = Gt =we ¥=wr (193)
the equation turns into
Wi fwir +ex® =0 (194)
let
2(7) = 20(7T) + €21 (1) + O(€?) w? = w2 + 2ewpwy + O(e)? (195)
we get
Wizl +wirg + e(2wowrxf + 2 + wiz! + wizy) + O0(e?) =0 (196)
o) : zy+x9=0 = T9=cCOST (197)
O(e) : 2wowi (— cos ) + cos® T + wixr + wizy =0 (198)
1
= 2 +z1 = ——(cos® T — 2wow; cosT) (199)
wo
. wiT . 3rsinT  cos3T
= x1=AsinT+ BcosT+ —sinT — ——5— + ——5 (200)
wo 8wy 32wg
Matching initial condition,
3
x] = m((:0337' —cosT) + <:(1) - Sw(%) TsinT (201)




let secular term to vanish, we have
3
= — 202
w1 8o ( )
And the solution is
3
2(t) = coswt + ?ewg(cos(?»wt) —cos(wt))  w=uwo+ 8—;0 +O(?)  (203)

We are assuming = and w can be expressed by series of €, and get periodic solutions. So
if system is not periodic, then PL method does not work.

F+p@®—ad)i+wiz=0 pu>1 (204)

let y = &, then & = yj—z,

v+ p(a? ~ )y + wh = 0 (205)
define e = = <« 1,

eyj—i + (2® — 2d)y + ewdz =0 (206)
define 7 = ez, & = ek, y(2) = 10(2) + ey1(2) + 4a(2) + O(e®), T find

22
o+ ()5 + 0 + (5 = a3) (s +ev1 + -+ 0 + ez =0 (207

The highest order is e 2

O(?): 2yo=0 = y=0 (208)
O(): 22p=0 = y=0 (209)
2
0): 2Pys—alyo+wlz=0 = yp= —% (210)
SO 5 %
y=¢€— Y _ _ %o (211)
z x

12 Bifurcation Theory

Bifurcation point is point where bifurcation occurs. Bifurcation is a critical ? value at which
the qualitative behavior of our dynamical system changes.

12.1 Saddle-node Bifurcation
i =r4 2’ (212)

two fixed points become no fixed points. and vice-versa.
We can plot Bifurcation diagram, which is T verses parameter.
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Example 12.1: Normal forms

t=r—x—e " (213)

fixed point T 4 e™% = r, can solve with graphs. We take series

2 2

. R
x~r—x—(1—x—|—?)—r 1 5 (214)
12.2 Transcritical Bifurcation
& =re— 1 (215)

12.3 Pitchfork Bifurcation

supercritical pitchfork: & = rz — z3; subcritical pitchfork: & = ra + a3

12.4 Hysteresis
&= px+ x> — b (216)

12.5 Imperfect Bifurcations
& =h+pr— 2> (217)

12.6 7

Poy=—y (218)

when > 0, x = +,/p1, y = 0, it is easy to find unstable point (—,/f,0) and stable point
(v/11,0). when g = 0, half-stable point (0,0). When p < 0, the fixed point disappeared, but
we have “slow” region around origin.

T=pu—z

.T2

T 1+ a2
3 fixed points, find a, where two of the saddle points collapse. First look at the nullcline,

T=—axr+vy U —by a,b>0 (219)

=0 = y=ax (220)
O (221)
v= Y= (1 +22)
find fixed points,
22
= 222
T 1 22 (222)

Tt is easy to find (0,0) is a fixed point. Other points satisfy

. 1+ V1— 442

2ab (223)

ab(l+2?) =2 = =
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so when ab = 1/2, bifurcation occurs. a. = 2%. Look at jacobian,

— 1
J = ( 2 _b) = tr(J)=—(a+b) <0 (224)
(1+z2)2
2 —1

middle point is unstable, others are stable.

2 transcritical (226)

= px — 2° supercritical pitchfork = px + 3 subcritical pitchfork (227)

T=pur—2x

Tran  Super Sub
pw<0 0O,pu 0 0, £/
pw=0 0 0 0
w>0  0,pu 0,&/n 0

12.7 Hopf Bifurcations

A cross the y axis (imaginary) of the complex plane.

F=pr—r° 0=w+br? (228)

J = (5 ;“’) (229)

the eigenvalue A = p + iw, so the sign of p determines the stablility of fixed point.

Jacobian at the origin

13 Chaos

Chaos can only happen in R™ n > 3.
Undorced Duffing oscillator

P+ +wir+e® =0 (230)
The Hamiltonian is 1 1 1
E = —53':2 + §w§x2 + Zea:‘l (231)

Usually it has no chaos. But when forced with A cos ¢, chaos can happen because now it
is time-dependent and non-autonomus. It is topologically equivalent to systems 1 dimension
higher, so chaos can exist.

13.1 Definition of chaos
A state of disorder.
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Devaney’s definition

A dynamical systerm is chaotic if it is

1. sensitive to initial conditions,

z = f(x) z(0) = x z'(0) = x|,

(1) — @' (1)] = [wo —

continous case ¢+(A) N B # (. A, B in this case are topologically mixing.

3. Has dense prodic (and can be different) orbits.

2. Topologically transitive. A continous map f : X — X is topologically transitive,
if for every pair of nonempty set A, B C X, 3n € Z s.t. f*(A)N B # 0. Or for

(232)

(233)

Horseshop map, equivalent to homoclinic hateroclinic tangle. Shift map.

13.2 Melniko function

H(z,y),

& —aH—i—e (x,y,€) '——aH—i—e (z,y,¢)
€ — (9y 9a\&,y, Ye = O g2(,Y,

Aﬂm¢w=[%DHMN»ymﬁ%Mﬁ%w+%ﬂ)

General system,
@ = f(z) + ey(x, 1)

M) = [ Fht =~ o)+ (hg(htt — t0)

1 1 1
i+ x— 2= dsinwt H(m,y):§y2+§x2—zx4

First calculate homoclinic orbit

H(z,y) = H(x(0),y(0)) = Ho

1 1
T = :t\/i\/Ho — 51'2 + ZZE4

z(t) t
+V2 / de - / dt' =t
o V4Hy — 222 + 24 0

start with z(0) = 1, £(0) = 0,then Hy =1/4

va [ V3 tanh!
V2 — +v/2tanh ! (z(t
/0 VA4Hy — 222 + 24 anh ™ (z(t))

so the orbit is

V2 . V2 5 (V2
z = tanh (775) z(t) = - sech (715)
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(238)

(239)

(240)

(241)

(242)
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from
=y = —x+ 2>+ dsinwt
we know
g1=20 0go = dsinwt

M(to) = /_C><> F(zn(t), 21 (t) x g(zn(t), 2n(t),t +to) dt

= / (fig2 — fagr)dt

o0

= g /_C:; sech? (?t) sin(w(t + to))

= 7wv/2 esch (?mu) sin(wtp)

require
oM

M(%Oyg()) =1 ot

£0

to

13.3 Lyapunov exponent
16()] ~ |60] €™
lyapunov exponent \(xg,dp), general
& = f(x) = f(xo) + Df (@o)(@ — z0) + O — a0)*

Df is Jacobian. Eigenvectors e;,
0o = €c;e;

(244)
(245)

(246)

(247)

(248)

(249)

(250)

(251)

(252)

(253)

Example 13.1:

f=x—23 Yy =-y
three fixed points (—1,0), (0,0), (1,0).

A(0,0),62) = +1  A((0,0),0y) = —1

)‘((71’0)’5‘%) =-2 )\((71,0),62}) =-1
for point (x(t),0)

we get
$2(t) — i
et +1
P\ _ (1= 0 (=
Y 0 -1) \y
S0
x = xoe (1 e 2)73/2 5z = dxoe 2t (1 +e72)73/2

(254)

(255)

(256)

(257)

(258)

(259)

(260)
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also

Sy = —Sype " (261)
S0
A((z,0),6r) = =2 A((z,0),6y) = —1 (262)
C ot L1oe 9]
Az, 00) = t_l}inoo n log 5 (263)
Example 13.2:
. o 1 :
T=v+a" — - y=—-2y (264)
Y
ro=1,y0=1
1.
z(t)=¢"  yt)=e (265)
2 1 t At
_ 1+2x = (142" e
At) = ( 0 32> = < 0 _2) (266)
3. _
0 =Aé (267)
oy = =20, = §,(t)=d,e % (268)
0 = (1+2¢")0, + ¢*6, = (1 4 2¢')d, + 6,0¢* (269)
= 8,() = e 2T (5,0 4 6,0/2) — €60 (270)
4.
A((1,1),(1,-2)) =1 A((1,1), any other dir) = lim %(t+ ey =00 (271)
—00

Lyapounov exponents for 1D discrete time systems ;11 = f(x;)

|f" (z0 + 60) — f"(x0)]

1
AMzo) = nh_)n;o - In o] (272)
1y
AMzo) = nh_}rréo - Zln |f ()] (273)
i=1

Example 13.3:
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1 1
fle=+r + 3 —ror>g (274)
. 1
A= h_}m =—nlnjr|=1Inlr| (275)
n— oo n

14 Fractals

Chaos happens on a strange attractor. Non chaotic strange attractors exist.
X,Y same cardinality if and only if 3f bijection s.t. f(X) =Y.
Fractal dimension usually is larger than topological dimension.

14.1 Hausdorff dimension
log C + dlog s = logn] (276)

also known as similarity dimension.

Example 14.1: Cantor set

s=3,n=2

log 2
= 2
d log 3 (277)

Example 14.2: Han snowflake

log 4
log 3 (278)
Moran’s equation
1\* 1\?
sl=n = lzns_d:<> +--~—|—<> (279)
s s

so we can have sq, so...

Example 14.3: Asymmetric cantor set

S§1 = 47 SS9 = 2, J J
1 1
1= (2> + (4> (280)

let z=2"% then2?+2—-1=0

z= d= (281)
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14.2 Box counting dimension

In(N
d = Tim BV() (282)
e—0 In(1/€)
dcorrelation < dinfo’r‘mation < dhausdorff (283)
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