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Office hour

• Jonas: W12-1PM, TH10-11AM FSM Cafe

• Huws: TUTH5-6PM 141 LeConte

• Kyler: M5-6PM 103 Birge

Introduction ODE:
F (x, y′, y′′, · · · , y(n)) = 0 (1)

e.g.
y′′ + y = 0 y′ + x2 = 0 mx′′ + 2bx′ + kx = F cos(ωt) (2)

PDE: e.g.
∂2u

∂t2
+ c2

∂u2

∂x2
= 0 (3)

The order of ODE is the highest order of derivative in the equation.
Linear ODE takes the form

a0(x)y + a1(x)y
′ + · · ·+ an(x)y

(n) = b(x) (4)

can also be written into the operator form

Ly =

[
a0(x) + a1

d

dx
+ · · ·+ an

dn

dxn

]
y = b (5)

so the linear property holds:

L[ay1 + by2] = aL[y1] + bL[y2] (6)

e.g.,
y′ = cosx ⇒ y = sinx+ c (7)

more e.g.,
d2x

dt2
= g ⇒ x =

1

2
gt2 + c1t+ c2 (8)

y′′ = y y(0) = 0 y(ln 2) =
3

4
⇒ y = sinhx (9)

We can also use vector field to solve the ODE. Just draw y′ − x or other plots.

Separability if the ODE has the form

y′ =
f(x)

g(y)
(10)

then we can just separate them

dy

dx
=

f(x)

g(y)
⇒

∫
dyg(y) =

∫
dxf(x) (11)

As practice,

y′ = (1 + y2)(4x3 + 2x) ⇒ dy

1 + y2
= (4x3 + 2x) dx ⇒ arctan y = x4 + x2 + c (12)
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so y = tan(x4 + x2 + c). If having the form y′ = p(x)y then it is easy to calc. For

y′ + p(x)y = Q(x) (13)

Let I =
∫
p(x) dx,A = ec, then for Q(x) = 0 we get y = Ae−I . Then

A = yeI ⇒ d

dx
(A) =

d

dx

(
yeI
)
= y′eI + yeI

dI

dx
= eIQ(x) (14)

we get
d

dx
(yeI) = QeI ⇒ yeI =

∫
QeI dx (15)

For example,
y′ +

1

x
y = cos(x2) (16)

Another e.g., Ra→ Rn→ Po. N0 is the Ra atoms at t = 0, N1 is the Ra atoms at t, N2 is
the Rn atoms ar t. Half life(?) for Ra and Rn is λ1 and λ2.

N ′
1 = −λ1N1 N ′

2 = λ1N1 − λ2N2 (17)

So
N1 = N0e

−λ1t N2 =
λ1N0

λ2 − λ1

(
e−λ1t − e−λ2t

)
(?) (18)

Bernoulli’s equation
y′ + P (x)y = Q(x)yn (19)

change variable z = y1−n, multiply by (1− n)y−n then

(1−n)y−ny′+P (1−n)y1−n = Q(1−n)y−nyn ⇒ z′+(1−n)P (x)z = (1−n)Q(x) (20)

ends up we get linear equation.

Exact differentials
P (x, y) dx+Q(x, y) dy = 0 (21)

If Equation 21 has the property ∂P
∂y = ∂Q

∂x , then it is considered an exact differential of
function F (x, y), where P = ∂F

∂x and Q = ∂F
∂y . Also P dx+Qdy = dF , and if dF = 0 then

F (x, y) = const.
An ODE is considered homogeneous of order n if

n∑
i=0

ai(x)y
(i)(x) = 0 an ̸= 0 (22)

If we assume y(x) = erx, then y(n) = rnerx, we get
n∑

i=0

air
i = 0 (23)

if the n roots are distinct, then

y(x) =

n∑
i=1

Aie
rix (24)

A little exercise,
y′′ + 5y′ + 4y = 0 ⇒ y = A1e

−x +A2e
−4x (25)
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Repeated roots (
d

dx
− a

)2

y = 0 (26)

let
(

d
dx − a

)
y = u, then (

d

dx
− a

)
u = 0 ⇒ u = Aeax (27)

So
y′ − ay = Aea ⇒ y = (Ax+B)eax (28)

If charactistic equation has a root of multiplicity k, then a possible solution

y(x) = erx(An−1x
n−1 + · · ·+A1x+A0) (29)

2
Review Linear operator:

L[au1 + bu2] = aL[u1] + bL[u2] (30)

n∑
i=1

ci
di

dxi
u = 0 ⇒ u =

n∑
i=1

Aie
rix (31)

Charactistic eqn
∑n

i=1 cir
i.

Complex roots

sinx =
eix − e−ix

2i
cosx =

eix + e−ix

2
(32)

Complex conjugate roots.

y = Ae(α+iβ)x +Be(α−iβ)x (33)
= eαx

(
Aeiβx +Be−iβx

)
(34)

= eαx(c1 sinβx+ c2 cosβx) (35)

General principle, isolate parts which are imaginary and those which are real.
Example: Spring-mass system

mÿ = −ky − lẏ k, l > 0 (36)

define ω2 = k/m and 2b = l/m,

ÿ + 2bẏ + ω2y = 0 (37)

assume y = Cerx, we get

r =
−2b±

√
4b2 − 4ω2

2
= −b±

√
b2 − ω2 (38)

overdamped: b2 > ω2. critically damp: b2 = ω2. underdamped/oscillatory: b2 < ω2
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In homogeneous equations
n∑

i=0

ai(x)y
(i) = f(x) (39)

f(x) is called forcing function. We can set y = yh + yp, solve
n∑

i=0

ai(x)y
(i)
h = 0 (40)

and guess yp. The guess are listed:

1.
f(x) = α sin(ωx) + β cos(ωx) yp(x) = A sin(ωx) +B cos(ωx) (41)

2.
f(x) = aeλx yp(x) = Aeλx (42)

3.
f(x) = amxm + · · ·+ a1x+ a0 yp(x) = Akx

k + · · ·+A1x+A0 (43)
k = m+ n, n is the order of ODE.

Method of Undetermined Coefficients

(D − a)(D − b)y = ecxPn(x) yp = xcecxQn (44)

e.g.,
(D − 1)(D − 2)y = ex + 4 sin(2x) (45)

guess
yp =

1

3
xex (46)

2 types of dynamical systems Differential equations and iterative maps.

Ẋ1 = f1(X1, . . . , Xn, t) · · · Ẋn = fn(X1, . . . , Xn, t) (47)

e.g. mẍ+ bẋ+ kx = 0, letX1 = x,X2 = ẋ, so

mẊ2 + bX2 + kX1 = 0 ⇒ Ẋ2 = − b

m
X2 −

k

m
X1 (48)

For Ẋ = sin(x), we can draw a plot. Actually we can solve
dx

dt
= sinx ⇒ − ln(cscx+ cotx) = t+ c (49)

But the solution is less interpretable than ẋ− x graph.

Linear stablility analysis Atx = 0, sinx ≈ x− x3

3! + · · · .

ẋ = x ⇒ x = et (50)

generally,
ẋ = f(x) f(x0) = 0 f(x0 +∆x) ≈ df

dx

∣∣∣∣
x0

∆x (51)

x0 is called fixed point.
∆̇x = f(x0 +∆x)− f(x0) = c∆x (52)

so the stability depends on c
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Existence and unitueness in 1D e.g. ẋ = x1/3 starting at x0 = 0, it will stay at
x(t) = 0. But integrate,

dx

dt
= x1/3 ⇒ 3

2
x2/3 = t+ c c = 0 (53)

we get x =
(
2
3 t
)3/2! The problem lies in the slope of x1/3 at x = 0 is infinity. So there is the

theorem.
Picard-Lindelof Theorem: consider the IVP ẋ = f(x), x(0) = x0, suppose f ,f ′ are

continuous on some open interval I ⊂ R and suppose that x0 ∈ I, then, the IVP has a
solution x(t) on some interval (−τ, τ) and that solution is unique.

Note, the solution might not exist forever. e.g., ẋ = 1 + x2, x(0) = 0, which leads to
x = tan t.

autonomous if ẋ = f(x), then the system is called autonomous. If ẋ = f(x, t), then it
is nonautonomous. But actually we can change nonautonomous into autonomous one by
adding a new state var.

matrix differential eqn (
ẋ1

ẋ2

)
= A

(
x1

x2

)
(54)

let A = PDP−1, then
P−1

(
ẋ1

dotx2

)
= DP−1

(
x1

x2

)
(55)

let z = P−1[x1, x2]
t, then we get ż = Dz. It will be separated, and can solve independantly.

3
For fixed point f(x0) = f0, then

f(x) = f(x0) + f ′(x0)(x− x0) +O(x− x0)
2 (56)

Type of fixed points, ẋ = f(x)

Stable f ′(x0) ≤ 0

Unstable f ′(x0) ≥ 0

Semistable f ′(x0) = 0

Fixed points in Rn

ẋ = f(x) x ∈ Rn (57)
An equlibrium solution, or fixed point, is a point x̄ ∈ Rn, s.t.,

x̄′ = f(x̄) = 0 (58)

Note, if f = f(x, t), then instaneous fixed points are not stationary Solutions. e.g.,

ẋ = −x+ t (59)

Linearization in Rn,

ẋ = f(x) = f(x̄) + J(x̄)(x− x̄) +O(|x− x̄|)2 (60)

where the jacobian J(x̄)ij =
∂fi
∂xj

(x̄)
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Phase plane analysis R2 for example, ẍ + x = 0, turns into ẋ1 = x2, ẋ2 = −x1, in the
x1 − x2 plane the trajectory is circle. Actually we can get

x1ẋ1 + x2ẋ2 = x · ẋ = 0 (61)

also can get
d

dt
(x2

1 + x2
2)/2 = 0 ⇒ x2

1 + x2
2 = c (62)

linearization, (
ẋ1

ẋ2

)
=

(
J11 J12
J21 J22

)(
x1

x2

)
(63)

let J = PDP−1, D = diag(λ1, λ2), y = P−1x,so ẏ = Dy, and ẏi = λiyi. It is easy to get
yi = yi(0)e

λit. When λ < 0 it is stable, λ > 0 is unstable.
In 2D, combine them, we get it is stable if Re(λi) < 0, but there may be a fast direction

and slow direction. If λ1 = λ2, then trajectory will all be straight line and no fast or slow
direction. If λ1 = λ∗

2, then it is also stable but spiral.

Figure 1: Fast dir and slow dir

Figure 2: Straight line and Spiral
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For unstable case Re(λi) > 0, the trajectories are same but reverse direction. If λ1 >
0, λ2 < 0, so there will be hyperbolic or saddle situation. Finally, if Re(λi) = 0, Im(λi) ̸= 0,
this will be completely circle.

Figure 3: Unstable case

Another situation is like
(
λ 1
0 λ

)
., where J is non-diagonizable.

Figure 4: degnerate node

4
Index theory Linear stablility is inherently local (falls apart if we go too far from fixed
point). But it tells us nothing about systems which only have higher order terms.

Example 4.1: Limit of linear stablility

ẋ = −x2 + y3 ẏ = y3 − y (64)
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J(x, y) =

(
−2x −3y2

0 3y2 − 1

)
J(0, 0) =

(
0 0
0 −1

)
(65)

It doesn’t tells us useful information.

Index theory, curve C is simple and closed. Simple means trajectories do not intersect.
Closed means it separates R2 into an inside and outside. Since C is closed, if we start with
an angle ϕc, as we move all the way around C, we need to end back up at ϕc. So ϕ must
change by an integer multiple of 2π.

So the index is
IC =

1

2π

∫
C

dϕ dϕ =
∂ϕ

∂f1
df1 +

∂ϕ

∂f2
df2 (66)

ϕ = tan−1 f2
f1

⇒ dϕ =
f1 df2 − f2 df1

f2
1 + f2

2

(67)

Ic =
1

2π

∫
f1 df2 − f2 df1

f2
1 + f2

2

(68)

Parameterize C to solve this.

Example 4.2: Circle index
C = {(x, y) : x2 + y2 = 1} is the unit circle, let x = cos θ, y = sin θ, then

df1 d =
∂f1
∂θ

dθ f2 =
∂f2
∂θ

dθ (69)

What is the index similar to Winding number, residues, Gauss’s Law.

Properties of the index

1. Suppose C is homotopic which can be continuously deformed into another curve C ′

without passing through a fixed point, then, IC = IC′

2. If C encloses no fixed points, then IC = 0.

3. IC does not change if we reverse the vector field in time, i.e., t → −t

4. If C is a trajectory for the system, then IC = +1

Index of a fixed point

• Stable nodes have index +1

• Unstable nodes have index +1

• Saddle nodes have index −1

Theorem 4.1:
The index of the fixed point at the origin of ẋ = Ax is sgn(detA)
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Theorem 4.2:
If a closed curve C surrounds isolated fixed points x1,x2, . . . ,xn, then

IC =

n∑
k=1

Ik (70)

, where Ik is the index of xk. Isolatex fixed point x∗ means ∃U ⊂ R2 containing no
other fixed points besides x∗

Corollary: any closed orbit in the phase plane must enclose fixed points whose indices sum
to 1. Proof: Let C be the closed orbit, from propertie 4, IC = +1.

Example 4.3: Lotta-Volterra system
Show the LV system

ẋ = x(3− x− 2y) ẏ = y(2− x− y) (71)

has no closed orbits, where x, y ≥ 0

Four fixed points. We can check every possible location for a closed orbit.

1. No fixed points ⇒ IC = 0 X

2. Surrounds (1, 1) ⇒ IC = −1 X

3. Surrounds some node on the axes ⇒ IC = 1

But actually as y = 0 leas to ẏ = 0, x = 0 leads to ẋ = 0, the trajectory cannot leave
the first quadrant. Trajectories must lie on either axes, but this cannot be because
trajectories can not cross.

5

Figure 5: Find type of nodes from the tr and det of Jacobian
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Different type of nodes:

Stable Re(λi) < 0

Unstable Re(λi) > 0

Saddle λ1λ2 < 0

center Re(λi) = 0, λ1 = −λ2 ̸= 0

degenerate J is non-diagonizable

Star λ1 = λ2 all real number

Spiral Re(λi) ̸= 0, Im(λi) ̸= 0

This is for 2D. For the general case, J is n × n matrix, there are n generalized eigenvalues
or eigen vectors λi.

Stable Re(λi) < 0

Unstable Re(λi) > 0

Saddle Some Re(λi) > 0, some Re(λi) < 0.

We can devide the space into stable manifold W s, unstable manifold Wu, and center manifold
W c.

Figure 6: Manifold

Theorem 5.1: Hartman-Grobman Theorem
The local behaviour of a hyperbolic(saddle) stable and unstable

node are treated as
special cases of saddle
node

node is topologically equivlent to the
linearized system.

dx

dt
= Ax+ f(x) is topologically equivalent with dz

dt
= Az (72)

h ∈ C1(Rn), h : x → z is invertible, A must be diagonalizable, Re(λi) ̸= 0
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Example 5.1: Pendulum

ẍ = − sin(x) ⇒ ẋ1 = x2 ẋ2 = − sinx1 (73)

First find fixed points is the (nπ, 0). If we only consider x1 ∈ [0, 2π), and using
periodic repeat for other place, then only two points.

xc = (0, 0) xh = (π, 0) (74)

Then consider jacobian,
J(xc) =

(
0 1
−1 0

)
(75)

find the eigenvalue and eigenvector,

λ1 = i λ2 = −i v1 =
1

2

(
1
i

)
v2 =

1

2

(
1
−i

)
(76)

so locally
x = c1v1e

λ1t + c2v2e
λ2t =

(
c′1 cos(t+ c′2)
c′1 + sin(t+ c′2)

)
(77)

For another point,
J(xh) =

(
0 1
1 0

)
(78)

λ1 = 1 λ2 = −1 v1 =
1

2

(
1
1

)
v2 =

1

2

(
1
−1

)
(79)

x =
c1
2
et
(
1
1

)
+

c2e
−t

2

(
1
−1

)
(80)

Figure 7: Pendulum phase trajectory. Organge lines show local behavior as calculated,
red lines show connected trajectory, blue line is a critical one.

If we want to linearize the problem, first using taylor series,

ẏ1 = y2 ẏ2 = y1 −
1

3!
y31 +

1

5!
y51 + · · · (81)
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we want ż1 = z2, ż2 = z1. Assume

y1 = z1 −
(
c130z

3
1 + c121z

2
1z2 + c112z1z

2
2 + c103z

2
2

)
(82)

y2 = z2 −
(
c230z

3
1 + c221z

2
1z2 + c212z1z

2
2 + c203z

2
2

)
(83)

Manifolds
First define Invariant Set, let S ⊂ Rn be a set

a) Continous time, S is invariant under vector field ẋ = f(x). If for any x0 ∈ S, we
have x(x0, ẋ = 0, t) ∈ S∀t. If it is restricted to t ≥ 0, then S is positive invariant.
t ≤ 0, S s negative invariant.

An invariant set S ⊂ Rn is said to be Cr (r ≥ 1) invariant manifold if S has the
structure of a Cr differentiable manifold. Shortly, locally a manifold has a euclid
structure.

6
Near identity change of variables.

ẋ = 7x+ 42x2 ẏ = 7y + 3xy (84)

want to linearize
Ẋ = 7X +O(3) Ẏ = 7Y +O(3) (85)

assume

X = x+a1x
2+a2xy+a3y

2+O(3) = f(x, y) Y = y+b1x
2+b2xy+b3y

2+O(3) = f(x, y)
(86)

So inverse are x = F (X,Y ), y = G(X,Y )

x = X +A1X
2 +A2XY +A3Y

2 +O(3) y = Y +B1X
2 +B2XY +B3Y

2 +O(3) (87)

so

x = (x+a1x
2+a2xy+a3y

2)+A1x
2+A2xy+A3y

2+O(3) = x+(a1+A1)x
2+(a2+A2)xy+(a3+A3)y

2+O(3)
(88)

so A1 = −a1, A2 = −a2, A3 = −a3. The case for y is similar. So the inverse transform is

x = X − a1X
2 − a2XY − a3Y

2 +O(3) y = Y − b1X
2 − b2XY − b3Y

2 +O(3) (89)

Differentiate w.r.t. time,

Ẋ = ẋ+ 2a1xẋ+ a2(xẏ + ẋy) + 2a3yẏ +O(3) (90)
= (7x+ 42x2) + 2a1x(7x+ 42x2) + a2(x(7y + 3xy) + y(7x+ 42x2)) + 2a3y(7y + 3xy) +O(3)

(91)
= 7(X − a1X

2 − a2XY − a3Y
2) + 42X2 + 2a1X(7X) + a2(X(7Y ) + Y (7X)) + 2a3Y (7Y ) +O(3)

(92)
= 7X +X2(−7a1 + 42 + 14a1) +XY (−7a2 + 14a2) + Y 2(−7a3 + 14a3) (93)

so a1 = −6, a2 = a3 = 0. Similarily,

Ẏ = 7Y +X2(−7b1 + 14b1) +XY (−7b2 + 3 + 14b2) + Y 2(−7b3 + 14b3) (94)
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so b1 = b3 = 0, b2 = − 3
7 . The transform is

x = X+6X2+O(3) y = Y +
3

7
Y 2 X = x−6x2+O(x3) Y = y− 3

7
xy+O(3) (95)

Stable, unstable, center subspaces. Let x0 ∈ Rn be a fixed point of ẋ = f(x), linearize
to have ẏ = Ay, the solution is y = eAtyc where y(0) = yc. We can denote ES , EU , EC ,
such that,

ES = spane1, . . . , eσ EU = spaneσ+1, . . . , eσ+Ω EC = spaneσ+Ω+1, . . . , en (96)

more locally
Es ⊗ Eu ⊗ Ec = Rn dimS + dimU + dimC = n (97)

Re(λS) < 0, Re(λU ) > 0, Re(λC) = 0

Complexificaiton(
a+ bi 0
0 a− bi

)
= Q

(
a −b
b a

)
Q−1 (98)

ES , EU , EC define what we call invariant manifolds. Invariant means structures do not
change with time. After linearize,u̇

v̇
ẇ

 =

AS O O
O Au O
O O Ac

u
v
w

 (99)

Center manifold theorem: Local stable, unstable, and center manifolds. Suppose ẋ =
f(x) is Cr, r ≥ 2, then x0 possesses the following:

1. unique AU local Cr stable manifold WS
loc(x0)

2. unique An local Cr unstable manifold WU
loc(x0)

A not necessarily unique Cr−1, center manifold WC
loc(x0), then less locally

WS
loc(x0)⊗WU

loc(x0)⊗WC
loc(x0) = Rn (100)

and W∆
loc(x0) is tangent to E∆, ∆ = S,U,C

Calculating: Perho’s method, Power series.

7
For linear system, eigenspaces are equal to corresponding manifolds. For nonlinear ones,
eigenspaces are tangential to their associated manifolds.

Calculating the invariant manifolds

ẋ = f(x, y) ẏ = g(x, y) ⇒ ẏ

ẋ
=

dy

dx

g(x, y)

f(x, y)
(101)

Many way: Graph transform, Perko’s method, butsSimplest way: Power series.
suppose vector field

ẋ = f(x,y) x ∈ Rn ẏ = g(x,y) y ∈ Rm (102)
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manifold is assumed to be n dimensional, y = h(x). vector field should lie tangent to this
surface at the fixed point, this lies tangent to the associated eigenspace. The following must
be satisfied.

∇h(x)︸ ︷︷ ︸
Jacobian,Rm×n

·ẋ = ẏ (103)

or same as
∇h(x)f(x,y) = g(x,y) (104)

This gives a set of coupled PDEs. For 1D manifold, it just is dy
dx = g(x, y)/f(x, y).

Power series suppose we are in R2,

ẋ1 = f(x1, x2) ẋ2 = g(x1, x2) (105)

First, diagonalize such that the eigenvalues lie along the axes.

x2 = h1(x1)
∂h1(0)

∂x1
= 0 = h1(0) (106)

h1(x1) = ax2
1 + bx3

1 +O(x4) h2(x2) = a′x2
2 + b′x3

2 + c′x4
2 +O(x5

2) (107)

Plug in series

ẋ2 =
∂h1

∂x1
ẋ1 ⇒ g(x1, x2) = (2ax1 + 3bx2

1 +O(x3
1))f(x1, x2) (108)

solve for a, b, . . . order by order.

Example 7.1: Power series

ẋ = x ẏ = −y + x2 (109)

dimEs = dimEu = 1 which is equivlent to dimW s
loc(0, 0) = dimWu

loc(0, 0) = 1.

Eu(0, 0) = {(x, y)|y = 0} W s
loc(0, 0) = {(x, y)|x = 0} (110)

, find Wu(0, 0), or say h(x)

∂y

∂x
=

−y + x2

x
=

−y

x
+ x ⇒ y =

x2

3
+

c

x
(111)

we require y = h(x) should satisfy h(0) = 0 and h′(0) = 0. so c = 0.

Wu(0, 0) =

{
(x, y), y =

x3

3

}
(112)

further let y = h(x) = ax2 + bx3 +O(x4),

x(2ax+ 3bx2 +O(x3)) = −y + x2 = (1− a)x2 − bx3 +O(x4) (113)

we get O(x2) : 2a = −a+ 1, a = 1/3, O(x3) : 3b = b, b = 0,..., so

h(x) =
1

3
+O(x4) (114)
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Notions of nonlinear stability

ẋ = f(x) ∈ Rn (115)

(Lyapunov) Stablility a trajectory x(t) satisfying Equation 115 is (Lyapunov) stable if
∀ε > 0, ∃δ = δ(ϵ) > 0, such that for any y(t) also satisfying Equation 115, Trajectory close

enough will always
stay close enough.|y(t0)− x(t0)| < δ ⇒ |y(t)− x(t)| < ε for t > t0 (116)

Semi-asymptotic stability similarily, but

|y(t0)− x(t0)| < b ⇒ lim
x→∞

|y(t)− x(t)| = 0 (117)

for some b > 0 . note there is no bound
for t0 < t < ∞

Asymptotic stability Lyapunov + semi-asymptotic.

Orbiral stability An orbit is a set of points passing through a point in phase space. usually
defined by an ODE or a map. While a trajectory is a function(curve) that passes
through a point in phase space. Positive orbit through a point x0 ∈ Rn is

O+(x0, t0) = {x ∈ Rn,x = x(t), t ≥ t0,x(t0) = x0} (118)

Similarily there are negative orbit O− for t ≤ t0. Define

d(p, S) = infx∈S |p− x| (119)

Orabital stablility just like lyapunov stablility, and asymptotic orbital just like aysmp-
totic stablility. But this time we foucus on the orbit.

8
Lyapunov Functions Prove / show stability in a fully nonlinear sense. No approxima-
tions, no “neighborhoods of validity”. No analaysis of the trajectories are needed. Only
vector field are needed, similar to index theory.

The general idea is, draw a boundary like circle around a point x0. The boundary U is

U =
{
x ∈ Rn : V (x) = C, V ∈ C1

}
(120)

the function V (x) is called Lyapunov function. Actually, take time average, as ẋ = f(x),

d

dt
V (x) = ∇V · ẋ = ∇V · f (121)

If vector field arrows (demonstrated by f) point towards x0, then....
What if there are closed trajectories around x0? Obviously, as ∇V · f = 0, dV

dt = 0, V is
consant on that trajectory, we call it a constant of motion for x.

Theorem 8.1: Lyapunov function
Consider ẋ = f(x),x ∈ Rn, let x0 to be a fixed point, and let V : U → R be a C1

function defined on some neighborhood U of x0, s.t.

(i) V (x)0 = 0 and V (x) > 0 if x ̸= X0

15



(ii) V̇ (x) = ∇V · f ≤ 0 in U \ {x0}
Then x is stable, more over, if

(iii) V̇ (x) < 0 in U \ {x0}, then x is asymptotically stable.

Example 8.1:

ẋ = y ẏ = −x+ ϵx2y (122)

Fixed point (0, 0), Jacobian is

J =

(
0 1

−1 + 2ϵxy ϵx2

)
J(0, 0) =

(
0 1
−1 0

)
(123)

This is a non-hyperbolic fixed point and we can not know its stablility, so we test the
Lyapunove funtion

V (x, y) =
1

2
(x2 + y2) (124)

Note this is a very common lyapunov function. It satisfies V (0, 0) = 0, V (x, y) > 0
for (x, y) ̸= (0, 0).

∇V = (x, y) V̇ = ∇V · f = xy − xy + ϵx2y = ϵx2y2 (125)

Therefore, if and only if ϵ < 0, V̇ < 0

Asymptotic behavior of trajectories ẋ = f(x), x ∈ Rn, x0 is an ω-limit point of
x ∈ Rn, denoted ω(x), if there exists a sequence {tn}, tn → ∞, s.t. x(ti) → x0.

α-limit points are defined similarily by taking some sequence {sn} s.t. sn → −∞.
The set of all ω-limit points is called the ω-limit set. Same for α-limit set.

Properties of ω-limit points let x(t) be some trajectory, let M be a positively invariant
compact set, then for p ∈ M ,

i. ω(p) ̸= ∅

ii. ω(p) is closed.

iii. ω(p) is invariant under the flow. i.e. a union of orbits. (ω(p(t′ > t)) is the same).

iv. ω(p) is connected.

Attracting set / trapping region A closed, invariant set A ⊂ Rn is called an attracting
set / trapping region if there exists some neighborhood U of A s.t.

∀t ≥ 0 {x(t)} ⊂ U and
⋂
t>0

{x(t)} = A (126)

All trajectories starts in U will end up in A in finite time. In comparison, Region of attraction
is a neighborhood region of a fixed point, where all points in the region will finally goes to
that fixed point.
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Topological transitivity A closed invariant set A is said to be topologically transitive if
for any open sets U, V ⊂ A, ∃t ∈ R, s.t. {x(t)}∩V ̸= ∅, where x(t) is trajectories in U . This
is to say, some trajectory that passes through U will cross V at some time t.

An attractor is a topologically transitive attracting set.

Theorem 8.2: La Salle Invariance Principle
ẋ = f(x), x ∈ Rn, M ⊂ Rn positive invariant set. M also a trapping region, with
a boundary that is at least C1, V̇ (x) ≤ 0 on M , E = {x ∈ M : V̇ (x) = 0}, M is
the union of all trajectories that start in E and remain in E for all t > 0, then for all
x0 ∈ M , x(t) → M as t → ∞ (crosses this point)
(Another version): Let Ω ⊂ Rn be a compact, positively invariant set, V ∈ C1(Ω) s.t.
V̇ ≤ 0 in Ω, E = {x ∈ Ω : V (x) = 0}, let M be the largest invariant set in E, then,
every solution starting in Ω, approaches M as t → ∞.

Corollary: suppopse x0 to be a fixed point, let V ∈ C1(D) positive-definite s.t. V̇ ≤ 0
on D, let s = {x ∈ D : V̇ = 0}, and suppose that no solution can stay in S, other
than x(t) = x0, then x0 is asymptotically stable.

Example 8.2:

ẋ1 = x2 ẋ2 = −h1(x1)− h2(x2) ⇔ ẍ1 + h1(ẋ1) + h2(x1) = 0 (127)

hi(0) = 0 and yhi(y) > 0, ∀y ̸= 0. Also assume that
∫ y

0
h1(z) dz → ∞ as |y| → ∞.

Consider
V (x) =

∫ x1

0

h1(y) dy +
1

2
x2
2 V (0) = 0 (128)

obviously V (x > 0) for x ̸= 0.

V̇ (x) = x2h(x1) + x2(−h1(x1)− h2(x2)) = −x2h2(x2) ≤ 0 (129)

define a set {x ∈ R2 : V (x) = 0} = {x2 = 0}, so if we have x2(t) = 0, then ẋ2 = 0,
x1 = 0, so x = 0, according to the corollary, x = 0 is aysmptotically stable.

Constants of motion ẋ = f(x), Ω ∈ Rn, a constant of motion is some quantity I ∈
C1(Ω), s.t.

İ =
dI(x)

dt
= ẋ · ∇I(x) = 0 (130)

i.e. I(x(t)) = c ∈ R.

Example 8.3: constants of motion in 1D oscillator

mẍ = F (x) F = −dV

dx
⇒ mẍ+

dV

dx
= 0 (131)

⇒ d

dt

[
1

2
mẋ2 + V (x)

]
= 0 (132)

I(x, ẋ) =
1

2
mẋ2 + V (x) (133)

17



constants of motion can be used to plot the trajectory. n dimensional systems requires
n− 1 constants of motion to constrain them. Solvability.

Nonlinear centers consider f ∈ C1,

ẋ = f(x) x ∈ R2 (134)

suppose that there exists I ∈ C1 s.t. İ = 0, and suppose that x0 is an isolated fixed point.
If x0 is a local minimum for I, then all trajectories near x0 are closed.

Reversibility in Systems
mẍ = F (x) (135)

let y(t) = x(−t), then ÿ(t) = ẍ(−t), we get

mÿ = F (y) (136)

so this system is reversible. A reversible system have trajectories symmetry with ẋ = 0
because ẏ = −ẋ(−t).

Theorem 8.3:
Suppose that x0, f(x) = 0 at x0, and suppose that ẋ = f(x) is reversible, then,
sufficiently close to x0, all trajectories are closed.

Example 8.4:
show that the system

ẋ = y ẏ = x− x2 (137)

has a homoclinic orbit for x ≥ 0.

At (0, 0), unstable direction (1, 1). Obviously y increases when x is small, but de-
creases when x is large, it will surely drop to y = 0 at some point. Now we need to
apply the theorem. Let x′(t) = x(−t), y′(t) = −y(−t) by showing there is a

same trajectory below
y = 0

,

ẋ′ = y′ ẏ′ = x′ − x′2 (138)
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9

Figure 8: Different limit cycles, left to right: stable, unstable, asymptotically stable

Limit Cycles For an example,

ṙ = r(1− r2) θ̇ = 1 (139)

Figure 9: An example of limit cycle

Actually, if on a boundary all vector point inwards, and on the inside fixed points vectors
point outwards, then there must be a limit cycle in it.

Example 9.1: Van der Pol oscillator

ẍ+ µ(x2 − 1)ẋ+ x = 0 µ ≥ 0 (140)

ẋ1 = x2 ẋ2 = −x1 − µx2(x
2
1 − 1) (141)

note that when µ → 0 it turns into normal harmolic oscillator.
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Ruling out Closed orbits Three methods:

1. Gradient system ẋ = −∇V (x),

2. Lyapunov funtions V (x) > 0 for x ̸= x0, V (x)0 = 0, V̇ (x) < 0, not ̸=

3. Dulac’s Criterion ẋ = f(x), find g(x), ∇ · (gẋ) < 0 or > 0 ∀x.∫∫
A

∇ · (gẋ) dA =

∫
C

gẋ · ndl (142)

Proving closed orbits
Theorem 9.1: Poincaré-Bendixon Thm
ẋ = f(x) ∈ C1 in R, R has no fixed points. In R exists a trajectory C, then either C
is a closed orbit or C approaches a closed orbit as t → ∞.

Example 9.2: Strogatz

ṙ = r(1− r2) + µr cos θ θ̇ = 1 µ > 0 (143)

we are going to prove trajectories finally stay in annulus between rmin, rmax. First
we want ṙ < 0, since we know ṙ ≤ r(1− r2) + µr, we can choose rmax to let the rhs
to be negative.

(µ+ 1)r − r3 < 0 ⇒ µ+ 1 < r2max (144)

so rmax =
√
µ+ 1. Similarily, rmin =

√
1− µ

Liénard Equation

ẍ+ f(x)ẋ+ g(x) = 0 ẋ1 = x2 ẋ2 = −f(x1)x2 − g(x1) (145)

Theorem 9.2: Liénard’s theorem
For 1. f, g ∈ C1, 2. g(−x) = −g(x), 3. g(x) > 0 for x > 0, 4. f(−x) = f(x),
5. F (x) ≡

∫ x

0
f(u) du, F (0 < x < a) < 0, F (x > a) > 0, F (∞) = ∞, then Liénard’s
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equation has a unit stable limit cycle.

Proving limit cycles: G(x) =
∫ x

0
g(u) du, V = ẋ2/2 +G(x),

V̇ = ẋẍ+ g(x)ẋ = −f(x)ẋ2 (146)

10
Asymptotic methods Prerequistie: there is a small quantitiy 0 < ϵ ≪ 1 or µ ≫ 1, µ−1 ≪
1.

Relaxation oscillations
ẍ+ µ(x2 − 1)ẋ+ x = 0 (147)

can be transformed into

F (x) =
1

3
x3 − x ω = ẋ+ µF (x) ω̇ = −x (148)

let y = ω
µ

ẋ = µ(y − F (x)) ẏ = − 1

µ
x (149)

relaxation has slow time scale O(µ−1) and fast time scale O(µ).

Example 10.1: Estimate period of the limit cycle
VdP
µ ≫ 1, up to the first order the time, on the fast boundaries really fast. For the slow
branch, ẋ ≈ 0, y ≈ F (x),

− 1

µ
x =

dy

dt
= F ′(x)

dx

dt
= (x2 − 1)

dx

dt
(150)

dt = −µ(x2 − 1)

x
T = 2

∫ x(tb)

x(ta)

−µ(x2 − 1)

x
dx (151)

can approximately use x(ta) = 2, x(tb) = 1, get T ≈ µ(3− 2 ln 2) = O(µ)

Weakly nonlinear oscillators

ẍ+ x+ ϵh(x, ẋ) = 0 (152)

The last term is small nonlinearity. Try x(t) = x0(t) + ϵx1(t) +O(ϵ2), I.C.

x0(0) = 0 ẋ0(0) = 1 x1(0) = 0 ẋ1(0) = 0 (153)

For h = 2ϵ, the exact solution is

x = (1− ϵ)−1/2e−ϵt sin
(
(1− ϵ)1/2t

)
(154)
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But using pertubation theory shows

x = sin t− ϵt sin t+O(ϵ2) (155)

this solution is not good because ϵt → ∞ as t increases, which doesn’t match the actual
damping.

note expansion of y = ẋ in previous case is good.

Method of two-timing Idea: define two different timescales for the problem. 0 < ϵ ≪ 1.
Slow: O(ϵ−1), T = ϵt; Fast, O(1), τ = t.

ẍ+ 2ϵẋ+ x = 0 ẋ = y ẏ = −x− 2ϵy (156)

I.C. x(0) = 1; ẋ(0) = 1. Let

x(t, ϵ) = x0(τ, T ) + ϵx1(τ, T ) +O(ϵ2) (157)

ẋ(t, ϵ) = ∂τx0 + ϵ(∂τx1 + ∂Tx0) +O(ϵ2) = y0 + ϵy1 +O(ϵ2) (158)
ẏ(t, ϵ) = ∂τy0 + ϵ(∂τy1 + ∂T y0) +O(ϵ2) = −x0 − ϵx1 − 2ϵy0 +O(ϵ2) (159)

For the O(1),

∂τx0 = y0 ∂τy0 = −x0 ⇒ x0 = a(T ) sin t+ b(T ) cos t y0 = a(T ) cos t− b(T ) sin t
(160)

Using I.C., find a(0) = 1, b(0) = 0. For the O(ϵ),

∂ττx1 + 2∂τTx0 + 2∂τx0 + x1 = 0 (161)

turns into

∂ττx1 + x1 = 2(∂Ta(T ) cos τ − ∂T b(T ) sin(τ) + 2(a(T ) cos τ − b(T ) sin τ)) (162)

we want cycle terms to be zero, so

2∂Ta(T ) + 2a(T ) = 0 2∂T b(T ) + 2b(T ) = 0 ⇒ a = a(0)e−T b = b(0)e−T (163)

and
x1 = c(T ) sin(τ) + d(T ) cos(τ) (164)

so
x = x0 + ϵx1 = Ae−ϵt sin t+O(ϵ) (165)

While exact solution is

x = e−ϵt(A sin
√

1− ϵ2t+B sin
√

1− ϵ2t) (166)

Method of Averaging
ẍ+ x+ ϵh(x, ẋ) = 0 (167)

ẋ = y ẏ = −x− ϵh (168)

since the trajectory is a little deviated from unit circle, assume

x = r(T ) cos(τ + ϕ(T )) y = −r(T ) sin(t+ ϕ(T )) (169)
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where
r = 1 + ϵr1 + · · · ϕ = 0 + ϵϕ1 + · · · (170)

so we get

ṙ cos(t+ ϕ)− rϕ̇ sin(t+ ϕ)− r sin(t+ ϕ) = −r sin(t+ ϕ) (171)
−ṙ sin(t+ ϕ)− rϕ̇ cos(t+ ϕ)− r cos(t+ ϕ) = r cos(t+ ϕ)− ϵh (172)

the equations turns into

ṙ = ϵh sin(t+ ϕ) rϕ̇ = ϵh cos(t+ ϕ) (173)

r and ϕ not change in fast time scale because ϵ ≪ 1 is very small, so the above can be written
as

∂r

∂T
= ϵh sin(τ + ϕ(T )) r

∂ϕ

∂T
= ϵh cos(τ + ϕ(T )) (174)

Turn h into fourier series,

h =

∞∑
k=0

ak cos(kθ) + bk sin(kθ) θ = t+ ϕ (175)

with O(ϵ) equation

∂ττx1 + x1 = −2∂Tτx0 − h = 2 [∂T r(T ) sin(τ + ϕ) + r(T )∂Tϕ(T ) cos(τ + ϕ)]− h (176)

still don’t want cycle terms

2
∂r

∂T
− b1 = 0 2r

∂ϕ

∂T
− a1 = 0 (177)

so

∂r

∂T
=

1

2
b1 =

1

2π

∫ 2π

0

h(θ) sin θ dθ = ⟨h sin θ⟩ (178)

r
∂ϕ

∂T
=

1

2
a1 =

1

2π

∫ 2π

0

h(θ) cos θ dθ = ⟨h cos θ⟩ (179)

h(θ) = h(r cos θ,−r sin θ) (180)

ẋ = ϵf(x, t) ⇒ ⟨ẋ⟩ = 1

T

∫ T

0

ϵf(x, t) dt (181)

⟨ṙ⟩ = 1

TP

∫ TP

0

ϵh sin(t+ ϕ) dt =
1

2π

∫ 2π

0

ϵh sin tdt (182)

11
ẍ+ x+ ϵh(x, ẋ) = 0 0 < ϵ ≪ 1 (183)

because ϵ is very small, the solution is like harmonic oscillator, but modified by slow time
scale T .

x0 = r(T ) cos(τ + ϕ(T )) θ = τ + ϕ (184)
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Example 11.1:

ẍ+ x+ ϵ(x2 − 1)ẋ = 0 x(0) = 1 ẋ(0) = 0 (185)

x = r cos θ ẋ = −r sin θ (186)

h(x, ẋ) = h(r cos θ,−r sin θ) = (r2 cos2 θ − 1)(−r sin θ) (187)

r′ = ⟨h sin θ⟩ = r

2
− r3

8
rϕ′ = ⟨h cos θ⟩ = 0 (188)

r(T ) = 2(1 + 3e−T )−1/2 (189)

x(t, ϵ) =
2√

1 + 3e−T
cos t+O(ϵ) (190)

Poincaré-Lindstedt
Example 11.2: Unforced Duffing oscillator

ẍ+ ω2
0x+ ϵx3 = 0 x(0) = 1 ẋ(0) = 0 (191)

τ = ωt x(τ) = A cos τ +B sin τ (192)

ẋ =
d

dt
x =

dτ

dt

d

dτ
x = ωx′ ẍ = ω2x′′ (193)

the equation turns into
ω2x′′ + ω2

0x+ ϵx3 = 0 (194)
let

x(τ) = x0(τ) + ϵx1(τ) +O(ϵ2) ω2 = ω2
0 + 2ϵω0ω1 +O(ϵ)2 (195)

we get
ω2
0x

′′
0 + ω2

0x0 + ϵ(2ω0ω1x
′′
0 + x3

0 + ω2
0x

′′
1 + ω2

0x1) +O(ϵ2) = 0 (196)

O(1) : x′′
0 + x0 = 0 ⇒ x0 = cos τ (197)

O(ϵ) : 2ω0ω1(− cos τ) + cos3 τ + ω2
0x

′′
1 + ω2

0x1 = 0 (198)

⇒ x′′
1 + x1 = − 1

ω2
0

(cos3 τ − 2ω0ω1 cos τ) (199)

⇒ x1 = A sin τ +B cos τ +
ω1τ

ω0
sin τ − 3τ sin τ

8ω2
0

+
cos 3τ

32ω2
0

(200)

Matching initial condition,

x1 =
1

32ω2
0

(cos 3τ − cos τ) +

(
ω1

ω0
− 3

8ω2
0

)
τ sin τ (201)
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let secular term to vanish, we have

ω1 =
3

8ω0
(202)

And the solution is

x(t) = cosωt+
ϵ

32ω2
0

(cos(3ωt)− cos(ωt)) ω = ω0 +
3ϵ

8ω0
+O(ϵ2) (203)

We are assuming x and ω can be expressed by series of ϵ, and get periodic solutions. So
if system is not periodic, then PL method does not work.

Question 1:

ẍ+ µ(x2 − x2
0)ẋ+ ω2

0x = 0 µ ≫ 1 (204)

let y = ẋ, then ẍ = y dy
dx ,

y
dy

dx
+ µ(x2 − x2

0)y + ω2
0x = 0 (205)

define ϵ = µ−1 ≪ 1,
ϵy

dy

dx
+ (x2 − x2

0)y + ϵω2
0x = 0 (206)

define z = ϵx, d
dx = ϵ d

dz , y(z) = y0(z) + ϵy1(z) + ϵ2y2(z) +O(ϵ3), I find

ϵ2(y0 +O(ϵ))(y′0 +O(ϵ)) +

(
z2

ϵ2
− x2

0

)
(y0 + ϵy1 + ϵ2y2 +O(ϵ3)) + ω2

0z = 0 (207)

The highest order is ϵ−2

O(ϵ−2) : z2y0 = 0 ⇒ y0 = 0 (208)
O(ϵ−1) : z2y1 = 0 ⇒ y1 = 0 (209)

O(1) : z2y2 − x2
0y0 + ω2

0z = 0 ⇒ y2 = −ω2
0

z
(210)

so
y = ϵ2 − ω2

0

z
= −ϵ

ω2
0

x
(211)

12 Bifurcation Theory
Bifurcation point is point where bifurcation occurs. Bifurcation is a critical ? value at which
the qualitative behavior of our dynamical system changes.

12.1 Saddle-node Bifurcation
ẋ = r + x2 (212)

two fixed points become no fixed points. and vice-versa.
We can plot Bifurcation diagram, which is x verses parameter.
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Example 12.1: Normal forms

ẋ = r − x− e−x (213)

fixed point x+ e−x = r, can solve with graphs. We take series

ẋ ≈ r − x− (1− x+
x2

2
) = r − 1− x2

2
(214)

12.2 Transcritical Bifurcation
ẋ = rx− x2 (215)

12.3 Pitchfork Bifurcation
supercritical pitchfork: ẋ = rx− x3; subcritical pitchfork: ẋ = rx+ x3

12.4 Hysteresis
ẋ = µx+ x3 − x5 (216)

12.5 Imperfect Bifurcations
ẋ = h+ µx− x3 (217)

12.6 ?
ẋ = µ− x2 ẏ = −y (218)

when µ > 0, x = ±√
µ, y = 0, it is easy to find unstable point (−√

µ, 0) and stable point
(
√
µ, 0). when µ = 0, half-stable point (0, 0). When µ < 0, the fixed point disappeared, but

we have “slow” region around origin.

ẋ = −ax+ y ẏ =
x2

1 + x2
− by a, b > 0 (219)

3 fixed points, find ac where two of the saddle points collapse. First look at the nullcline,

ẋ = 0 ⇒ y = ax (220)

ẏ = 0 ⇒ y =
x2

b(1 + x2)
(221)

find fixed points,

ax =
x2

b(1 + x2)
(222)

It is easy to find (0, 0) is a fixed point. Other points satisfy

ab(1 + x2) = x ⇒ x∗ =
1±

√
1− 4a2b2

2ab
(223)

26



so when ab = 1/2, bifurcation occurs. ac =
1
2b . Look at jacobian,

J =

(
−a 1
2x

(1+x2)2 −b

)
⇒ tr(J) = −(a+ b) < 0 (224)

∆ = ab
x∗2 − 1

x∗2 + 1
(225)

middle point is unstable, others are stable.

Summary

ẋ = µx− x2 transcritical (226)
= µx− x3 supercritical pitchfork = µx+ x3 subcritical pitchfork (227)

Tran Super Sub
µ < 0 0, µ 0 0,±√

µ
µ = 0 0 0 0
µ > 0 0, µ 0,±√

µ 0

12.7 Hopf Bifurcations
λ cross the y axis (imaginary) of the complex plane.

ṙ = µr − r3 θ̇ = ω + br2 (228)

Jacobian at the origin
J =

(
µ −ω
ω µ

)
(229)

the eigenvalue λ = µ+ iω, so the sign of µ determines the stablility of fixed point.

13 Chaos
Chaos can only happen in Rn, n ≥ 3.

Undorced Duffing oscillator

ẍ+ δẋ+ ω2
0x+ ϵx3 = 0 (230)

The Hamiltonian is
E = −1

2
ẋ2 +

1

2
ω2
0x

2 +
1

4
ϵx4 (231)

Usually it has no chaos. But when forced with A cosΩt, chaos can happen because now it
is time-dependent and non-autonomus. It is topologically equivalent to systems 1 dimension
higher, so chaos can exist.

13.1 Definition of chaos
A state of disorder.

27



Devaney’s definition
A dynamical systerm is chaotic if it is

1. sensitive to initial conditions,

ẋ = f(x) x(0) = x0 x′(0) = x′
0 (232)

|x(t)− x′(t)| ≥ |x0 − x′
0| (233)

2. Topologically transitive. A continous map f : X → X is topologically transitive,
if for every pair of nonempty set A,B ⊂ X, ∃n ∈ Z s.t. fn(A) ∩B ̸= ∅. Or for
continous case ϕt(A) ∩B ̸= ∅. A,B in this case are topologically mixing.

3. Has dense prodic (and can be different) orbits.

Horseshop map, equivalent to homoclinic hateroclinic tangle. Shift map.

13.2 Melniko function
H(x, y),

ẋϵ =
∂H

∂y
+ ϵg1(x, y, ϵ) ẏϵ = −∂H

∂x
+ ϵg2(x, y, ϵ) (234)

M(t0, ϕ0) =

∫ ∞

−∞
DH(τ0(t)) · g(τ0(t), ω(t− t0) + ϕ0, 0) (235)

General system,
ẋ = f(x) + ϵy(x, t) (236)

M(t0) =

∫ ∞

−∞
f(h(t− t0)) · (?)g(h(t− t0)) dt (237)

ẍ+ x− x3 = δ sinωt H(x, y) =
1

2
y2 +

1

2
x2 − 1

4
x4 (238)

First calculate homoclinic orbit

H(x, y) = H(x(0), y(0)) = H0 (239)

ẋ = ±
√
2

√
H0 −

1

2
x2 +

1

4
x4 (240)

±
√
2

∫ x(t)

0

dx√
4H0 − 2x2 + x4

=

∫ t

0

dt′ = t (241)

start with x(0) = 1, ẋ(0) = 0,then H0 = 1/4

±
√
2

∫ x(t)

0

dx√
4H0 − 2x2 + x4

= ±
√
2 tanh−1(x(t)) (242)

so the orbit is

x = tanh

(√
2

2
t

)
ẋ(t) =

√
2

2
sech2

(√
2

2
t

)
(243)
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from
ẋ = y ẏ = −x+ x3 + δ sinωt (244)

we know
g1 = 0 δg2 = δ sinωt (245)

M(t0) =

∫ ∞

−∞
f(xh(t), ẋh(t))× g(xh(t), ẋh(t), t+ t0) dt (246)

=

∫ ∞

−∞
(f1g2 − f2g1) dt (247)

=

√
2

2

∫ ∞

−∞
sech2

(√
2

2
t

)
sin(ω(t+ t0)) (248)

= πω
√
2 csch

(√
2

2
πω

)
sin(ωt0) (249)

require
M(t0, ϕ0) = 1

∂M

∂t

∣∣∣∣
t0

̸= 0 (250)

13.3 Lyapunov exponent
|δ(t)| ≈ |δ0| eλt (251)

lyapunov exponent λ(x0, δ0), general

ẋ = f(x) = f(x0) +Df(x0)(x− x0) +O(x− x0)
2 (252)

Df is Jacobian. Eigenvectors ei,
δ0 = ϵciei (253)

Example 13.1:

ẋ = x− x3 ẏ = −y (254)

three fixed points (−1, 0), (0, 0), (1, 0).

λ((0, 0), δx) = +1 λ((0, 0), δy) = −1 (255)

λ((−1, 0), δx) = −2 λ((−1, 0), δy) = −1 (256)

for point (x(t), 0) (
ẋ
ẏ

)
=

(
1− 3x2(t) 0

0 −1

)(
x
y

)
(257)

we get

x2(t) =
e2t

e2t + 1
(258)

(
ẋ
ẏ

)
=

(
1− 3e2t

e2t+1 0

0 −1

)(
x
y

)
(259)

so
x = x0e

−2t(1 + e−2t)−3/2 δx = δx0e
−2t(1 + e−2t)−3/2 (260)
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also
δy = −δy0e

−t (261)

so
λ((x, 0), δx) = −2 λ((x, 0), δy) = −1 (262)

λ(x0, δ0) = lim
t→+∞

1

t
log

|δ(t)|
δ0

(263)

Example 13.2:

ẋ = x+ x2 − 1

y
ẏ = −2y (264)

x0 = 1, y0 = 1

1.
x(t) = et y(t) = e−2t (265)

2.
A(t) =

(
1 + 2x 1

y2

0 −2

)
=

(
1 + 2et e4t

0 −2

)
(266)

3.
δ̇ = Aδ (267)

δ̇y = −2δy ⇒ δy(t) = δy0e
−2t (268)

δ̇x = (1 + 2et)δx + e4tδy = (1 + 2et)δx + δy0e
2t (269)

⇒ δx(t) = e−2+t+et(δx0 + δy0/2)− etδy0 (270)

4.

λ((1, 1), (1,−2)) = 1 λ((1, 1), any other dir) = lim
t→∞

1

t
(t+ et) = ∞ (271)

Lyapounov exponents for 1D discrete time systems xi+1 = f(xi)

λ(x0) = lim
n→∞

1

n
ln

|fn(x0 + δ0)− fn(x0)|
|δ0|

(272)

λ(x0) = lim
n→∞

1

n

n∑
i=1

ln |f ′(xi)| (273)

Example 13.3:
f(x)=rx x < 1

2 r(1− x)x ≥ 1
2
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f ′x = +r + r
1

2
− r x >

1

2
(274)

λ = lim
n→∞

=
1

n
n ln |r| = ln |r| (275)

14 Fractals
Chaos happens on a strange attractor. Non chaotic strange attractors exist.

X,Y same cardinality if and only if ∃f bijection s.t. f(X) = Y .
Fractal dimension usually is larger than topological dimension.

14.1 Hausdorff dimension
logC + d log s = log n] (276)

also known as similarity dimension.

Example 14.1: Cantor set
s = 3, n = 2

d =
log 2

log 3
(277)

Example 14.2: Han snowflake
s = 3, n = 4

d =
log 4

log 3
(278)

Moran’s equation

sd = n ⇒ 1 = ns−d =

(
1

s

)d

+ · · ·+
(
1

s

)d

(279)

so we can have s1, s2...

Example 14.3: Asymmetric cantor set
s1 = 4, s2 = 2,

1 =

(
1

2

)d

+

(
1

4

)d

(280)

let x = 2−d, then x2 + x− 1 = 0

x =

√
5− 1

2
d =

log x

log 1/2
(281)
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14.2 Box counting dimension

d = lim
ϵ→0

ln(N(ϵ))

ln(1/ϵ)
(282)

dcorrelation ≤ dinformation ≤ dhausdorff (283)
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