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B4R 775 AR5 AR

Kinetic theory: )%, EaHLH%  Dynamics: 3)7)%

Multidisciplines, multidisciplinary #&¥r2=l: AMURR T 5408, meim iy T a2
K

fEMk: B &FhE (5 P11)

1 BRZEERHE
Boltzmann equation(1872)
dN:/f(r,v,t)d3rdsv (1)

f: PDF, probablity density function. JCEMEEL, MR E 040
NYER A E] dPrd3y = dedydzdu,do,do,
HWOREMIRIE: HEWIRA BRIVIER, PULHE .

df:f(r+vdt,v+§dt,t+dt)—f(r,v,t) (2)

Taylor expansion (1st order)

of of of F .
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£ 1 KRER

FIH p = muv,

of df
it : F- — (=L — v (f
ot e VTf " fo < de ) collision ) ( requenCY)

v RER, B R RN,
ek Ao eis?

o B M —0 @ zx) B, compressible — imcompressible

o X u— 0K, N-S— Euler

FEME, TREEEUNHELE, café, Wt EEFFFIRK

RGIARREZRRESENREZE: CUWR, 51

WREHM: 200942 A 25 H <l 2> RJAEM: 2019 43 A 24 H
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1 £3

1.1 PDF

f: PDF n is the particle number per unit volume

n:/fdudvdw

If m is the mass of one molecule, then p = nm

N = / ndxdydz

N: total particle numbers.

1.2 WIR#“BFHIE

/ / f(q, p,t)dgzdq,dq.dp.dp,dp.
momenta J space

phase space: AH%¥[H] dg,: " XMbR  dp,: momenta | X BNE

of  p _df
8t+m Vof+F -Vpf = i

% : external forces + diffusion + collision, EAG KK EN

1.3 Others
NS 52

0
p<£+v~V®v) = —Vp+ uV?v + pg
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£ 2 XRER

V2o : momentum diffusion, ZHEY HL
Lorentz force
F=q(E+vx B)

conjugate: B, WIS FIR AR

2 YEE AN SRR

multidisciplinary, hierarchy: Z¢Ek
Kinematics: 1282 Kinetic theory: ZjH %, ZFHLE Y
Dynamics: 8 /12

o Newtonian(1687)
d
o Lagrangian(1778)
doL oL
dt 0ge  Oqa
« Hamiltonian(1834,1835)
o _oH
Pe” "0 " Opa
e Schrédiner equation
R _, ov
— LV 4ol =i
2mV +v ih 5

XA A
k% : fluctuation CPT symmetry reversal: CPT XJFK
Boltzmann equation IR 1 B[] e Ji AN AR 14
IR A WOWARST, EMAERL.

3 BBGKY REFEHRSHE
TRFE T .

RGIARRERRESENET: CUWR, /51

WREHM: 201942 H 27 H <l 2> aBek: 2019 4 3 H 25 H
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RFAEHB: 20194 3 A 4 H wEEH: 2019 4£ 3 A 25 H

WA AR e e, AN (5—3k? ), Bhartt.
o paradiam: yE8i{; paradiam shift: 4% F%

o postulate: A¥%; axiom: AFXL

o XIUFHL: convective (advective) derivative

o aka: also known as

o steady: EHM: unsteady: JEEH 1)

1 IHRS#H

BEY GREE) T(r,t)
bDr or oT or 0T
Dot Tor ot o YT )
v VT BOVHSSL, AL OF SRR HE, 2 AKEH.
s EW) NS SRMAEANERE, 20 P16 B 1.7
Vv ik

RGIARREZRRESENRZE: CWWR. 57
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1 ZM5IFEMRIE

* Schédinger’s equation, Linear equation

oV (r,t)

h2
(—v2+v>u4r¢)_ih o

2m

« Principle of superposition & i i

Gross-pitaevskii equation (Bose-Einstein condensation)

hQ 2 2 . 8\]:}(7’,t)
(—mv +o(r) +g|Y(r,t) ) U(r,t) =ih Y

nonlinear
* N-S Equation

B . .
p <(,;t) + (v- V)v> = —Vp+ uV3v + pg

2 TENHMELN
Of the order of magnitude: BA %=L

2.1 Capillary number
B, RFMEEREK

/L pv  danamic viscosity x velocity

Ca

v/L vy surface tension

RIETK ST TR T AR 7 2 2



% 4 XRER

2.3 Newtonian fluid

v
%7 —H @
Pa N~~~

Dynamic Viscocity 31 /15 & — [u] = [Pa- 5]
Kinematic Viscosity 1z 2% &

W] = LT, [v] = (D]

Diffusion < r? >=6Dt, < 2% >=2Dt F: RFESHRIRMIELL?

0
P <v + (v- Vv)> = —Vp+ uV3v + pg

ot

1Rk UERA [p] = [pv?] = ML3L*T—2 = ...
SRENHTHE
- 225

dz [z]" | da™

2.4 Deborah number

T relaxation time

De=— =

T  observation time
(Maxwell) relaxation time: FII—"YIN Sy, FEA 5T H BECRIF R[] o

De > 1, Solid; De < 1, Liquid; De ~ 1, Jit3844 !

2.5 Water, e.g.

7~ 10725, HFE 12 107 m(A)
LN

(10)

(12)

WREH: 200943 H 6 H <l 2>

: 2019 4 3 H 25 H
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v =0.0738N/m = 7.38 x 1073N/m p ~ 1.02 x 1073Pa - s.
S v~ T2m/s Z/KKIBHPEGE, E205 10%°m/s. Hence,

_ 10~ 19m(A)

—12
10%ms ~ 107" "s (13)

A HFIESRANT 5
PEMb: ER R B AT HOR A (W) P325-326); sl R EAUEENFIEA A KR, MY #E
ABOAFARAR? BBV 2 RAE I R T TR I

3 FiRIHFIRES
e
Q=Vxv=culw (14)

SN
V-Q=V-(Vxv)=0 (15)

Rt BB AE, NEE.

3.1 FiRARIERR
L AR — R e B PR KRR — i .
2. I AN BEAETR A A B K

(G 71) RE—)

RGIARRERRESENREE: CUWR, /57

WREEHM: 201943 H6 H <| 3> WRBE: 2019 4£ 3 H 25 H
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. > S |
1 HIEBARAGTE
1788 4, Lagrangian Mechanics
HP: Hamilton’s principle, first principle (1834,1835)
1.1 ERE5zHEEE
action 1EH &= .
S = / Ldt L=T-V
ty

L : Lagrangian, & MrE
Kinetic energy )
T =T(4,t) = 5mq?

¢ : generalized velocity, | SERE

potential energy for conservative f = —VV, V(q), q: generalized coordinate

1.2 T4
HP: 65 =0 stationary value HAH, —MZRH/D

to

S= [ L(q,q,t)dt
ty
ta

S+65= L(g+dq,q+ dq,t)dt

t1

ta
55 = / [L(q+6q.d+ 56,1) — L(q, 4, D)}t
t1



EENRNF % 5 KIREIR

variation A%4); isochronous variation ZER}25 7>

. . dz - . s dz
derivative 7, its variation ¢ (E)

W ZEL AN AR 73 ) SR«

5 dz\ _ 6(dz) dad(dt) d(dz) dz d(d?) (6)
dt ) dt (dt)2  dt (dt)2
dx d _
BEATZE R TT t
2 (0L OL
55’:/ (-5 +.-5'>dt 8
. \og "1 g 1 (®)
5q : REIHE
X8 T4 4y, integral by parts.
to 8[/ to 8L
|5t = [ G o)
oL t2 2 d oL
- . _ — . 1
aq 9, /t aaq (10)

dq : virtual velcity

0q : virtual displacement

%s : generalized momentum

AR BN, EAMA SR AE:

6q(t1) = dq(t2) =0 (11)
T2 u /g 5
2 L doJL

1.3 Hi&EAHAGTE
H 0q 1L, AIARdEEHH 1A
oL doL

g di0g " 1)
o d oL 0L
&aq}' - 9q; B (14)

WREHM: 200943 H 11 H <l 2> aBek: 2019 4 3 H 25 H
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HdT
oL ov
9q; N _3% =0 (15)
doL _d, .~ .
390G = a(qu) = mg; = F; (16)
AAGE — B A !
J7SCARAR AT DL AR, ) SCEBE T DL A .
Yok 5 B SRIRUFR A% BT H R i B H T 7 .
2 HFEEMRE
Continuity equation
Ip
E+V-(pv):0 (17)
W BUERIT, AT ITE IR RN
Dp N
D TP dive =0 (18)
B S A X AR A AR D
p_
~ oD divv (19)
EAT RSN, A -
dive = 0 D—? =0 (20)

sonic boom: &%

PEMb: UEMSZIRBN 5 R A XUt R L

RS AKRERRBEENRE: CWR, /Tt

WREHM: 2019 43 H 11 H <| 3>

sk 2019 £ 3 H 25 H
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1 1%if Field theory
Vorticity 2 =V x u = curl u
V-Q=V:-(Vxu)=0

V¢ as a scalar in soblev space,

V x (Vep)=0
1,7, k: base vectors

7
9 0
ox oy 0z
9¢ 98¢ 0¢
ox Jy 0z

o .

k
(0% 9*¢ \ . . _
z <8y82 B 3z8y>z+()'7+()k_0

Helmholtz decomposition representation, ;i N—"N T ITCES
U=V +VXxA Vx(Ve)=0,V-(VxA) =0

e

orthogonal decomposition I1FE%Z %) fi#

2

~

15

7t

EGANFRCE, EHEHE: EHE S > h. 3 S ~h i, BEAEH!
h=h/2m, h: plank const
AL B2 06 T WChL. W B B ) 5 28— SR P
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3 SHNFERHGE

[2]-dimension, tension T, [T] = MLT~?; Line density j, [u] = ML, Then ¢ ~ /T /u
(FRFER R scality)

trig (trigonometric) function — ff F& %L

Ve UE B SEHR B A X AL il o3 75 7

45 P29-30

Kinetic energy; potential energy

Lagrange equation(L(q, ¢,t) = L(q, q:, 1))
aoL oL _
dt 8¢ 0q

When L(q7 qt; Gz, t)
9L 9 9L OL

oo, " oxou,  ou
PEMb: S BERSTHE On—I y)
XU bijective; Jux: paradigm; RXFFX: antisymmetry

Epsilon €;;1, or Levi-civita (FF4EH) symbol, or permutation symbol.
4 ZEREFHIEA

oD op
V- (VxH)=V-|(J+—|=V-J+—
(V< H) ( ot ) ot M

PEMb: E B 52 o = O e LR 1
22 se i 3 77 A e A T e
RGOk E, — MR, P70: ROMFR. ol NN

RGIARREZRRESENRZE: CWWR, 57

WREHM: 201943 H 18 H <l 2> aBek: 2019 4 3 H 25 H
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Neother’s theorem (1918), symmetry

1.1 FFREH
Homogeneous function 75X k%L, BHA LN
FOx1 AT, . Az,) = N f(2r, 2a, ..., 20)

m: degree of homogeneity. e.g., Kinetic energy T' = 1/2mg>

1.2 BRAISFR R # E R

Euler’s homogeneous function theorem

Taking derivative about A:

of of of
o0 T 90w 2T T a0

Let A =1, then

Tp =mAN" (.. xy,)

m

1.3 REET

conservation of energy: t-homogeneous



8 7 RRER

i (AP A YE: Fkg B H EA RS L(ga, §o). Total differential:

(fL=T-V)

dL oL . oL .
i =2 (Gue 57.1)
Caon, o,
= Qi 9g, 0o+ gg_do

_d /oL,
~at \ag,

.doL oL _
" dt 0§, Ogn

d oL . d oT .
i(Shie)-u (T )

d T _
..dt<a %qa_L>:0

oT oT )
—_— v —_— Y = Y = 2T

oT
Z —— (o — L = const
9qa

e

2T — (T — V) = const T+ V = const

2 ZEFEEMNEKRFLE

convention centre: <=J&H1:(»

Einstein summation convention: Z]5E

Summation is taken over repeated index.

2.1 BE. HE. REHETF

(10)

(11)

(12)

(13)

(14)

PRAEHH: 2019 4£ 3 H 19 H

<|2|> RJaBE: 2019 46 3 A 24 H
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o gradient

o6  0p. 0. 06

= i = - a5 1
Vo a:ch_e, 3$z+ ayj—i— sz (15)
e divergence
0 0A; 04A;
V- A= € e Aje; = aixjei cej = A0 = A = oz, (16)
kronecker delta
1, ifi=j
€; ej = (5@‘ = (17)
0, ifi#j
0A, O0A, O0A,
Apg = pe + By + 92 (18)
e left curl
0 0A; 0A;
VxA= %ei X Ajej = 87;61' X e; = T;gijkek (19)
Epsilon symbol, Levi-civita. even/odd permutation 123, 231, 312
e right curl
0 0A;
AxYV = Aiei X %Gj = %ei X €e; = Ai,js,;jkek (20)
j j
VEV.: 3iE B A Jie JB A0 A i A S
a-b= (aiei) . (bjej) = aibjéij = CLibi (21)
TIFEWIHERA 1 free index.
Repeated indices- dummy index/ silent index
2.2 FEREFOINAEFF
A A A
A= A21 A22 A23 A= Aijei (%9 ej? (23)
Azr Azp Asg
trace ¥ tr(A) = A;;
trA=A:1 I=,e; X e;j = e; ® e; identity tensor (24)

BWREEHM: 2019 4 3 H 19 H <| 3> RRBe: 2019 4 3 H 24 H
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colon product

—
A:T=(Aje;Rej): (e ®er) = A;;00j, = Aijdi; = Ay (25)
—_——
(25 J7%: A
fEdb: EMA:T=1:A

2.3 projection tensor of rank two

n: outward normal

fo=(f-n)n=f-(n®@n) (26)
fr=f—fa=Ff-T-n@n)=f-P (27)
Hrb G B S5 a2

RGARRERLRRESENEF: L

BWREEHM: 2019 4 3 H 19 H <| 4> RRBe: 2019 4 3 H 24 H
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FE%

R EHM: 2019 4E 3 H 20 H BEBM: 2019 4F 3 H 24 H

1 AT, B8
conservation of momentum dq = €

variation of Lagrangian, isochronous

Zi 6qo¢— Zaqa

Lagrange equation

dor oL _
dt 8¢,  0qa
Hence
d 0L d oL d
0 Zdtf)q dtza:c‘?qa € dtzo;p"‘ 0

.. Ptotal = Zpa = const
2 FKE

Prove: (v-V)v=v:-Vv=v:-VRu

ej(viei) = V;,;€j X e;

8x]-
v-Vev=(ue)(v;e @ e;)
(91%
= Ukvi,jékjei = vjvi’jei = Uj—ei
a$j

_ % + v a + 8’01 +
= Ula ™ a 0 ’Ugavg €
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free index & dummy index

2.1 MENMHET
Laplacian (operator)

v

1
+v-Vv=—-—-Vp+vViv+g
ot p

2 L L
Re = u[;v/L = % = 1)7 V] =L*T"! <a®>=2pt

0 0 o J 0?
2 _A_vU.U_ N[ L )2 L P 9
Vi=A=V-V <8xiez) (&cje]) Ox; axjé” Ox2

7

2.2 BENFEFERE

V-o=0
8 80'1" (‘901--
(Mek) (0ijei @ ej) = le%‘e]‘ = 81:; €;

PENV: A2k NS J57iEH—1/p - VpIilrl ¥ R BURA -V (p/p)

2.3 WHEH S

T="T,e Xe; S = Sner® e
T:S8 =T;;Séudj = T;;Si;
A=Ae ®e,
trA = Ajne; - €m = Apmbim = Ay
PEMb: GEW] sk AB IR FIEE B &M

RGTARREZLRESENREZE: L

WREHM: 201943 H 20 H <l 2> WaBek: 2019 4 3 H 24 H
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FE%

PREEHB: 2019 4 3 A 25 H wGBM: 2019 4 4 A 11 H

1 IaHEE (AHETIE)

Angular momentum, isotropy, isotropic: %[ [F] 4

infinitesimal rotationd¢ (pseudo vector)
or=0p xr ov=40¢p X v

variation of Lagrangian (JEREUIAL L Fxfikg B HE)
oL 8L
L= 95 -
5 Z::l (8ra 0T+ G 5va) 0
+L=T-U=mg¢*/2—U(q), conservative force f = —VU

oL oL

ﬁva:pa 8Ta_f Pa
R A Equation 1,Equation 3

n

0L = Z [Pa : (5¢ X ra) +poc : (5¢ X va)]

a=1

= Z[5¢ (Ta X pa) +5¢'('Ua Xpa)]

a=1

:5¢'Z(Taxpa+”;axpa)

a=1
n

:5¢-%Z(raxp0)20

"+ ¢ is arbitrary (JER T L Rzl

Z(ra X po) = L = const

a=1
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2 HIHRE

recall: moment of inertia, rigid body V& AL IERMA T KRR, N K.

L=1Iw 9)
w: angular velocity
contraction, I: identity tensor
continua (continuum mechanics)
L:/rx(pv)dV:p/rx(wxr)dV (10)
:p/[w(r-r) —r(r- w)]dV (11)
5 [(wr*) = (ror)-w)ay (12)
= <p/(7"21 -r® r)dV> ‘W (13)
.'.I_,O/(TQI—’P®’P)dV (14)
Iy, = p/(r25ik —rir)dV (15)
Iw.:p/(x2+y2+22—x-x)dV:p/(y2+z2)dV (16)
I, = —p/zde (17)
In matrix form
Iz:c Izy Izz

fEdb: ERATREEHK, HHES AR E.

fo=(f-nn=f-(non) (19)
fr=f-fu=f1-f non)=f-I-non) (20)

WREHM: 200943 A 25 H <l 2> R EM: 2019 4 4 A 11 A
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3 WHEHHEZMR
A: (BC) = tr(AT(BC)) = tr((ATB)C) = (BTA) : C (21)

4 FHE-MREIEE
caylay-hamilton, 5F4iF 2 T30 2540 56 B A 5
XA(A) =M — 4] Xa(A)=0 (22)

adjoint matrix B = (A — A)" = \2B; + AB, + B, BB = I |B|

BA — A) = |\ — A| = X*By + A\*(By — B1A) + A\(Bs — ByA) — B3 A (23)
=I(A = A)(A = A2)(A = A3) (24)

By=1 By—BjA=al Bs—ByA=ay] — BsA=uasl (25)
0=A%+a;A* + axA + asl (26)

flA) =aol +a 1A+ -+ a, A" + - = by A2 + b A+ byl (27)

FRART—AAE R R B RE ] — R AN ORI 2 TR o BRI B2 JR ) e MR T e = i, DALk
WhZ A B L N =K.

PRk #E3 C-H g

parallelepiped *FAT/NHAE [u v w]

VA € Lin Lin:All set of tensors

PENb: Bk a1 I M e X T7 30

[Au v w| + [u Av w]| + [u v Aw]

L(A) = T —trA (28)
L(A) [Au Av w] + [A[Z z Zl)]'w] +[u Av Aw] %(Am‘Ajj A4 (29)
n(a) = et 4 (30

YENb: A2 0T UL parallelpipied 5 RIXFE I TE A ?

RGIARREZLRESENREZE: L

WAEHW: 2019 43 H 25 H < 3> RGBS 2019 44 A 11 H
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%
AEHB: 201944 A 1 H wEEH: 20194 4 A 14 H

1 pHZkHR

SRR, curvilinear coordinates. 4R & coordinate system.

HAMPRR, rectangular coordinates, Cartesian coordinates orthogonal.

AEFRZE line of coordinates #B/& B 2k

HRSUARFRZR: /D MRFRE R L.

triple (z', 22, 23), unit bases (e, ez, e3), €; - e, = d;

1637 %, Rene Descartes, (R7iE) QI T —EBKR, #H 7 NN AR —ERENT 2
K&, 1 think, therefore I am.

radious vector

T = 1'161 + I’ZEQ + 1'363 = xiei (1)
AR EE, R WAL >R T
o or @)
€= ozt

1852 4, G. Lamé, spherical surface equations of equilibrium. ¢!, ¢?,¢3, ¢* = ¢*(a!, 22, 23)

2N

Curvilinear cooedinate (according to Equation 2)

or ozF  oz*
dz* dq' Tqiek (3)

gi =



% 10 REIR

gi 81‘1)2 (8:122)2 <0x3)2
bi=2- H; = — )+ - )+ .
H; \/( oq' oq' Iq'

Example polar coordinate.

X By A SR A

9o
9y

()

€ 1

r=ax'e +2’e, = pg, = pcostle; + psinbe,
p=Vrt+y?
0 = arctan 2 = Arg(x,y)
x

Arg: argument.

dz't  9(pcos 9)6 N d(psin0)
1

9o = agP op op

g dz'  9(pcosh) d(psinb)
0= =

dg% 00 00
Lamé coefficients

H, =+/cos?0 +sinh? =1 Hy=p

b, = —pgp = cosfe; + sing e,
by = —1 = —sinfe; + cosfe
si C
0 , g 1 2

e, = cosbfe; + sinfe,

e + e; = —psinfe; + pcosfe, (8)

WREHM: 200944 H 1 H <l 2> B

2019 4 H 14 H



EENRNF £ 10 RIRER

b,| | cosf sinf| |e
{bg} B [— sin 0 cosHl {eQ}
b, by =1
velocity in curvilinear coordinates, ¢' = ¢*(t)
v — dr _ Ordg’
dt  Jq¢* dt

ek fERRARbR RS B pb, + pOby
projection of acceleration along b; (V£ AL tHI% A KFT)

=q'gi = ¢'H;b;

; dv 1 or 1 dv dr

i _

“T & Hog  H g

1 [d or ov
_E{&G'@qi)_v'@qi]
Or _ Ov 1 |d ov ov
Cor=or) = (* o) " o)

Let T=v*/2=v-v/2

.1 (dar or
“Tm \atag ~ ag

Example polar coordinate )
1 5 p'2 +p292
o] = ———

T==
2 2
aqa, = — — = _
r=atap op PTF
1d 94 - .
= = (p20) = 2p6 + pbi
ag pdt(p) po+p

fEM: G i RN 5

9ij = 9i " gj 9=g-g"

Ve SRR ()
_or _Or

ds* = dr - dr = g;;dq'd¢’

(12)

(21)

(22)

(23)

WAEHW: 200944 H1H < 3> RGBS 2019 44 A 14 H
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3 IRMAIRRIEX

inertial coordinate system
oL

=

space is homogeneous & isotropic L = L(v?,t)

0

time is homogeneous —> L = L(v?)

doL oL _

dt 8¢~ dg~
~—
=0
d oL = L const
—— = — = cons
dt 0g~ v

BT 2L REANKT v HEREL, Bk
v = const vector

WE S LRI Bl R AR AR 2t R 1 IR AR AR &R

4 nFIRE %A

teRr,v,s €R?
g1(t,r) = g1(t,r + vt)
gt,r) =gt +1,7+s)
gs(t,r) = gs(t,7R)

R: “Hrliese sk
3+143+3: HICinlmgHE.

(25)

(26)

(27)

RGIARREZCRESENRZE: &

WREH: 20194 H 1 H <|4|>

sk 20194 4 H 14 H
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FE%

AEHB: 20194 4 A 2 H wEEH: 20194 4 A 14 H

Monge % H

1 uERA

EEEH r=r(q,q2, -, qn,t), HREX, RFEIEE.

dr Or or dg;
=& "ot "o d

X ¢y RIWT, 755

ov &*r dg; i
8qj 8t8q] Z 0q;0q¢; dt Z Jq; 8q]

(2)

BN AR ¢, HBERTNIUAZE . &5, BN ¢, ¢ ... BEAMI, Ha— IR M A

B i =j NAAE,

Z@r@. 87'8%_87“
dq; 94, 40y 9g; 045 0q;
2 F—MRIE
First principles
_dp
F=1

Hamilton’s principle

d 0L 0L

ta
frd L —_—— =
55 =4 /t L

Virtual work principle, virtual displacement principle

(3)
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Real displacement

or " or
dri(qt, ..., q", t) = —dt _dq’
ri(d's. 0"t =5 +;aqzq (6)
q*,...,q" : generalized coordinates
virtual displacement
or _ .,
ori =y 3 8q (7)
SEJF A2 S5 AR 43, isochronous variation.
3 REINRIE
KRNTI5r25, YEF T (applied) M2 J7 (constrained).
F,=F" + f (9)
Sl 5
F.(a) (”) . l e 1
211 + 117 508 =0 (10)
AR ARIIEDIAE.
or or
. 25, = =F". = : 5g; =0 11
;L 506 =0  Q=F"-5- ) Qi (11)
C{am eI DE VR AWAN 1
p
_ 12
i =0 (12)
33, . 5
(@ _ ) 9Tlis
zi: (F m dt2) T 8q; =0 (13)
d?r Or;
mdz—r . Ori _ i mv@ - m’uga—r (15)
dtz2 9q; dt 0q dt dq
d Ov Ov
= " (mvZl ) — el 1
g <mv 3q’) muv 94 (16)
doT oT
e R ot a2 _aoal ob
(. kinetic energy T = mv=/2) = 197 0q (17)

WREHM: 200944 A 2 H <l 2> R EM: 2019 4 4 A 14 H
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AT -V) T-V)
dt 9 g =0 (18)

D’Almbert’s principle.
R SR, R

4 KEWMKBEENS
modern mathematics point of view
[ (V) x (V) (19)

V: vector space VxV x---xV V*: dual space V* x V* x ... x V*

K1 A AN 2H B8 23 1]
Catesian product, direct product L, B
Two set X & Y, ordered pair

XxY={(z,y)lre X NyeY} (20)

f & r 4 s B
T =Tye' ®e* (21)
T=T/"" e 2e”® -we" ®e;, @ e, (22)

EAGKEN (r,s) B, B r+s B, (0,0) 8 scalar, (1,0) 2N aef, (0,1) B4 ble;
PEk: 5 (1,1),(2,0),(0,2) KA 5K &

trA=1:A (23)
trA2=T:A2=A": A (24)
YEMb: P86 =45t
Z B MK B AIAH, linear map. w € V,v € W,c € K K is a field.

flutv) =f(u)+ f(v)  fleu)=c(u) (25)

homogeneous function of degree 1.

f(C1U1 + coug + -+ + Cnun) = le(ul) + C2f(u2) 4t Cnf(un) (26)

WAEHWM: 200944 H 2 H < 3> RGBS 2019 44 A 14 H
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R AKXRELCRHBSENEE: &k

WAEHWM: 200944 H 2 H <l 4> RGBS 2019 44 A 14 H



\ E|; ALY A /_' Ay K S
EENRANFE F 12 RIREIL
%

AEHM: 201944 A 3 H BEBM: 201944 A 14 H

1%
1.1 Nf SRR A AR —— A B R AN E

DUAEFRATIIAL bR R RRBHA AR R, DL GEE UG, B BATA IR g1,9. (HED,
W —A ] FE BE S REAT 70 i

Kl

R

v =v'g) +v°gy (1)
T A5 R ERR S PR
IR G A TR EAR RN A [ B B o B AR, g 0!, 0%
AR RR B AL bR R A TR %
U = Uyt + uyJ (2)

WP u,, BARFEEH w-i, WNi-i=1,4-7=0, FFHUERRE uyo
K, 7ERMAAR R P BRATBSEETEH, 4RANEE

v-g =v' +v?coso (3)

Horp ¢ RPIADRER IS XFEFARETT (IS R R . O T OIS, JATFIA T3 AEM
Mk g, g, 17

g gi=1 g -g=0 (4)
92‘91:0 92'92:1 (5)

o E T LA e N
gi g’ =0 (6)

XN RR G S . (Figure 1)
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g2

g1

g2

B 1 AR ARk

HATE g1, g2 AN, gt g* FONIEARIE, o', v? BT
B, BABEH W&, FOVIEAIAM R — 4,

v = 119" + v2g° (7)

RN T X A 513 sy i, JF H A FEAR L E RN, mldtadi 287 BRI IAFR S i B AR -
XEeAE = A b DLRME . ZRE =i i, IF HR A 2 R 2 5E o

1.2 w{a] BRI T

PUE FE K ROT
ds? = dr - dr (8)
Hb dr =rig;, T2
ds* = dr - dr = (dr'g;) - (dr;g’) = dr'dr;g; - ¢’ = dr'dr;6] = dridr; 9)

SRT, XA My R BN B, AR IR ANE — AR R, ANEFAL R
AR — A2 bs R R

ds* =dr - dr = (dr'g;) - (dr'g;) = dr'dr’g; - g; (10)

KB T gi-g; B, BATEEBHED gi;, HIKRB—MNERE, RHONERKERIHZD &,
H 58 SCAT AR A — R ARAE R . TR AR A R ) FTR

ds* = dr'dr g;; (11)

WREHM: 201944 H 3 H <l 2> WaBek: 2019 44 H 14 H
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HYE b, RMEMEEZAEAET IR E Y RN, AR L R R R
&, W1 RH
g; = hijgj (12)
1E B T g, 133
gi - g1 = hijg’ - g = hij0l = hy, (13)
AW B A2 go
PATKEPRR Sy “EEIKE R, BRI B TR RS .

1.3 JLMMEIF

BRILEB/EE (] 15.1)  KJLEMAFMY, ds? = da? +dy? +d2?, WRIE=AT5 1 )3 )
BAEAMALL, Bl g, =4,5,k, WETMALER, HNMRER g; AHLHER.

9ij = ds* = dxidxjgij = (dxz)Q = da® + dy2 +dz? (14)

o O =
o = O
= o O

AR EE (ETH 15.5) (ERJ LRSI PR, FEAH
u=ux+2y v=xr—y w=z (15)

FHECBRARRR 2, HTARAR REED0 T 40708 Pl A R B, MG ERN du® + dv® + dw? Bi%
TR, MR EA . TS K E R AR .

#ACLRE
ds? = dz? + dy? + dz? (16)
R E BRI AR, 4 zyz #O8 wow. FEIHRAFE]
x=(u+2v)/3 y=(u—0)/3 z=w (17)
R
2 2 5
ds® = §du2 + §dudv + §dv2 + dw? (18)
A Z IR A R
ds* = (du dv dw)g;;(du dv dw)" (19)
LA K
2 1
9 9
95=15 5 0 (20)
0 0 1

WAEHWM: 200944 H 3 H < 3> RGBS 2019 44 A 14 H
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THBATRI AN BRI K. BRI vyz I RT, 2B 1:(3,-1,4) — (5,0,2) &
RE MK R

L=+v(5-32+0-(-1)2+(2-42=3 (21)

AHXT N, 7E wow AFR R, EAT DI NHBRIRAR : (1,4,4) — (5,5,2). FRATHI RS
RS HELN SR

u=14+4t v=4+t w=4—-2t te€]|0,]1] (22)

RIGRADFAKRE, 1R ds UL B Rk &

L:/dsz/@:/m (23)

:/\/gdu2+§dudv+3dv2+dw2 (24)

L) R @) w

:/01\/3x16+;x4+g+4dt:/013dt:3 (26)
S KA

1.4 B4

4B, R A R T AR I LIRS m B = R R B ARG ]
WNE AR ELAITET, FERUSOY ALAERE, T AT SR LI AR B 8 . (B B B R
REiZAe s BUAE TH R A0 R R il A AR IR L LA 2 T o 3 B 5 LY o

MAE— AR R ok 55 “AERR) L LS 22 18] b o SCIERES 7, L3R d BE AR B 8 SRR
B, AR EAE R R, BN R BERUA Re S IR RAERTALAR R b, 1 NI RS T 2D R
B R LI M1, WA AR RS R T ELEI R 1, DR AT DL SR ik B i
BICH LRI R ds, REEERTE B BE. IPIRTMERM, R85 IFRE—
NBNLZAEZ DI, RIERENTIER. XA S RENLR TR, WA K
P RARTE R .

£ EmRg b, AV AR AT T BT T, ARRE R, TR
I SRS BRIl 545 B2 oT R OT sRAT U 5. FREARR A = R %%, (E s =]
PAVGAE S, 100 RN S 2 R M 0T doe, BEER TR RS AV RIBE B A i, I HAR N —
Aok, M2 EAKR, FILERASEAET RN E.

WAEHWM: 200944 H 3 H <l 4> RGBS 2019 44 A 14 H
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REIH CERIE S 30R) Msse & CGRE AT

2 IKEFRE

Cartesian product -~ JL#, direct product (EA)

Newtonian mechanics, Newton’s principle of determinacy

o €R™ g cR™  tcR (27)
R3" x R3" x R — R3"
spherical devitoric tensor
1 1 1 1
ol=-(trA)I=-(1:A)I=-I1: A)=-(IRI): A (28)
3 3 3 3
deVA:A—aI:A—%(I(EQI):A:(]I—%I(@I):A:IP’:A (29)

Mgk EMtt. F, =FI-n®n)
VU #425K & 4th order identity tensor

I= 6ik6jlei Ke; Qe Xe (30)

M 1324 (kjD.
MRS EE PR IR RAH X 4 (FE AR 1234)

I®I:5ij5klei®ej ®er e (31)
I:I= (5ik6jlei RKe;ep® el) : (6pqepeq) (32)
= 5ik5jl5kp5lq5pqei X e; (33)

= 5ip0iq0pg€i€; (34)

= 5ijei ® €; (35)

ek VYR B AL sk B A B sk B XA AR (P123), SEATP R ) sk

stress measure N /] &, strain measure VA& &

RGIARRELRESENEZE: L

WAEHWM: 200944 H 3 H <5 > RGBS 2019 44 A 14 H
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1 $htbETH®

Legendre transformation
H=> pig—L
i=1

" oT
=2 541

im1 Y4
=T —L=2T—(T-V)
=T+V=E

Euler homogeneous function

flow) = afw),  T=jmd

2 RRRHFS
(& 2F 1), WAL,
LS JER (A 2 RV |4 1).
2. Hor: (3]2), (2|1)-
3. Bk#E: (21Q 1)
A, H JEASHICRE BOEHE: (2]1) = (1]2)*
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EH:
<A‘ = |A>* |A> = (ah .- "an)t <A| = (CLT, .- "a:z) (6)
|A)" = (a1,...,a,)" = (af,...,a}) = (A (7)
(BlA) = (b5,...,b)(as, ..., an)" =Y _bja; (8)

(B]A)* Zb*a) —Zab (A| B) (9)

bracket:bra-ket
REF: BgEEH (R, A
fEMk: N-S e (BEEis D) AN 5E

B, o
_ —in?Y 1
o VAV = ih (10)

3 EEE

3x3 (3 by 3) matrix S, eigenvalue and eigenvector, diagonal, diagonized
K ERMAPTESA TR S12FEBH . Gurtin M E. An Introduction to continuum mechanics
Spectral theorem

Se=we = (S—wle=0 (11)

I: identity tensor of rank two

nontrivil solution if and only if(iff)

S —w S12 Sis
Sa1 Sz —w Sos =0 (12)
Ss1 S32 S33 — w

characteristic equation w?® — Iw? + Iyw — I3 = 0, three distinct eigenvalues wy # wy # wsz # 0;
two distinct eigenvalues wy,ws = ws.

Spectral theorem: let S be symmetric. Then thesis on orthonormal basis for V' (vector
space) consisting entirely of eigenvectors of S. Moreover, for any such basis e, es, e3, the

corresponding eigenvalues wy, ws,ws, when ordered, form the entire spectrum of S, abd(?)

S = Zwiei ®e; (13)

WREHM: 201944 H 8 H <l 2> WaBek: 2019 4 4 H 28 H
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4 FEMNATE

principle invariants

IL=trS=1:5=5;; =w; +ws +ws (14)
1
L= §(tr25 — trS?) = wiws + waws + waws (15)
1 . :
I5 = g(tr35’ —3trS trS8? + 2trS%) = wiwow; (16)

YENk: P92 Hria], ERERES R PRI 2
NS Tn=o0on
fEMb: FRAE 13-10

L4 P95-97
fEb: HH 14-13 # 14-14

R ARRELRRHBSENEE: &k

WAEHWM: 200944 H 8 H < 3> RGBS 2019 4 4 A 28 H
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T 7 AT N

e : unit vector

1 Square root theorem

R C WTUABHTIE MR, G2 U K7

C:UQZZwiei@Jei (2)
)
U:Z\/Uiei@)ei (3)

2 Polar decomposition theorem

There exist positive definite, symmetrical tensors U and V', and a rotation R, such that
(F MR 53 R AAS 1R 53 i)
F=RU=VR (4)

Moreover, each of these decompositions is unique: in fact

U=VFTF V =VFFT (5)
Proof.(1)
F=RU F'=U"R"=UR"! (6)
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EALATIE R — .
Ffta 1T A = AT, FEHRE 2314

(6jk6ilei X €; Rer® el) . (quep X eq) = jk5u5kp5lquqei X €; = Ajiei (%9 €; = AT (8)

3 REEM

i+ Tiakat = FYfm (9)
D d
—~ 47T 1
Di dt+ vV (10)

YENV: & 19-20 i

fEb: $REVER S MK E MBI RN KR OFTD

3.1 REBEHEHBRTS

(3% 16 11 P108)
WJ‘/E% 21,22723; E/Egé*/i 571,572,@30 E'fﬁﬁ r %9%?’\] gdi1,92,93s3» ﬁ\:q:
_ Or or 0IP oxP

P = —_— -1 i — i 7P
9= 5w " o om;  vow U@
2nd kind Christoff symbol.
dg, k
L =T% 11
Ot ng ( )

X B H R LA R, A% EXE Curvilinear 11 5 R N%. BT EIHEIRG SR
SEWRE, BN ETEATAI T 2.

T g =55
dg; 9 (or\ _ *r  OPr (1)
Oxt  Oxt \Oxi )]  Oxidxi  Oxidat
T2 Ffj = Ffi, FEXT R o
XA =ik, £ 3% =27 MEBE. TN REmE, R4 184
YENV: JEBI =R n 4EXFRIKE E BN
2
N?*(N +1) (13)
2
AR R R A bR 5 E B 16.3 o
e (14)

WREHM: 201944 H 10 H <l 2> WaBek: 2019 44 H 14 H
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u=u'g;
du _duw' o 0gm dr?  du’
a - a? 0w dt  d
B Du'
T Dt

=9 + Umvjrj‘mgi =

(15)

d“t n umvjrglm) g; (16)

(17)

(. $ME S TARMIZZE my, ER T2 ELR R & .

RGIARREZCRESENRZE: L

WAEHM: 20194 4 A 10 H </ 3|>

sk 20194 4 H 14 H
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1 ,.‘\/H%%Efg

Black hole no-hair theorem (S. Hawkin, 1972)
hair : complicated informations

almost no-hair, 3 hairs : mass, angular momentum, electric charge

)

2 REFERBAND

i
B

scalar-valued function
strain energy MAZRE, extensive quantity w = w(E), MNAZRER FREF RN T,

2.1 Banach Space
CEHAH2 = ANBE + KR

Topological space » Metric space (distance) » normed vector space » inner product » R"™
Ju#: norm 564 completeness
Banach Space : 56 £ Wt [n) & 75 [A]
Soblev Space
WH: (A, B) = |A||B|cosf
2.2 —L£fS

F(A), 24 gerivative, 4. Tl FHIEFE A HREH .

Tensor of rank two.
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1. Lin : the set of all tensors. Multi-linearity, linear map
flarug + aouy + - + apuy,) = arf(ur) + - + ap fun) (1)
2. Lin™ : the set of all tensors with detA >0
3. Sym : Symmetrical tensors
4. Psym : Symmetrical, positive-definite
5. orth : orthogonal tensors. Q' = Q7

6. orth™ : rotation det(QQ7T) = detQ? =1

2.3 JEREMNATE

Taylor expansion YA, B € Lin, infinitesimal € € R

0
f(A+aB) = f(A) + 87;2 : (aB) + o(a”B?) (2)
O/(A) o . f(A+aB)-f(A) df(A+aB) 5
0A a—0 @ do 00
VA € Lin, characteristic equation $¢iE 77 &
A —w Aqp A
|A—wI| =] Ay Ay —w Ay |=—w+ N —Lw+1;3=0 (4)
Az Azg Azz —w
IlztI‘A:Aii:IZA:wl‘f'WQ"—w:g
otrAa) . I:(A+eB)-1:A _
o B = lin - ~1:B (5)
_0(trA)
0A 1 (6)
I = $[tr’ A — tr(A?)] = wiws + wiws + wWaws
o(trA)* OtrA
A 2(trA) 9A (7)

WREHM: 20094 4 A 15 H <l 2> R EM: 2019 4 4 A 28 H
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otr(A?) . I:(A+hB)>-1:A°
pa B=im h
. I:(A*>+hAB+hBA+h’B?) —1: A?
= lim
h—0 h
1 I:(h(AB+ BA)) + h?1: B?
50 h
=1:(AB+BA)=1:(AB)+1:(BA)
=2AT . B

EE (A+hB)? MEIT. Safi T RAR
A:(BC)=(BTA):C=(AC)": B

ks P51 2G2" An 25as

Ig =detA = W1waWws

parallelpiped volume [u v w] = (u X v) - w

VA € Lil’l, 13 =detA

B det(AB) = det Adet B, det(cA) = &3 det A

0(detA) det(A+¢eB) — detA
m

oa B=In e
/\qj
det(A +eB) =det[cA(e "I+ A 'B)] = e det Adet(e 'I+ A™'B)
5
3 -1 -1 _
J(detA) B —1lim det Adet(e 'I+ A™'B) —det A
0A e—0 £
HH|FH Equation 4

det(A'B+e ') =+ L(A'B)e ? + L{()e ' + I;()

J(detA) Bl e(det A)L(AT'B) +e%(...)+€3(...)
0A T T 50 e
— (det A)(I: (A~'B))
= (det A)(A™T: B)
~ O(detA)
" 0A

= (det A)A™T

(8)

RGIARREZLRESENREZE: L

WA 201944 A 15 H <| 3> aBek: 2019 4 4 H 28 H
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FE%

WAEHY: 2009 4 A 17 H

XKIRZEID

miEBM: 2019 £ 4 H 28 H

1 B

principal stress

HAHHHE, L=mvxr=m(wxr)Xxr

3]

S KE. a=tr/3=1: A/3,devA = A —al

I 73 75 TR AR /N (R R = 36 A 5 70~ 2%
Lin, Lin™ — det A > 0

Sym, Ps,,, positive definite

Orthogonal Q7! = QT,det QQT = detI =1
8V TR R 3 itk o

WYFE=F=YM,=0

ortht — det@Q > 0

2 ZEEEENFS

(16-18)

WP BEAfEME AR R EIZ8) T RE?
;  Dvt v’
Dt dt

configuration space {7 J2 %% ]

+ ™ok

mk
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Al 16.4 o d
¢" dg”
— I A (6)
oL dg” dg* dg” dg*
Ak u(suki 1/7(51/ = 9kv—+ T
g~ ImO Ty T Im gy Ok = gy T ey @

Curvature 7 1 %, YRz, 2025 SR Iizsl, Yovkd R 2 do

.

3 MR

t = 0 undeformed configuration, initial configuration ¥J4EJH, reference configuration =
F .

COEEMFAERH A, YERANEREA A, BERRERAH R

t =t current configuration XA, RIE#JIE

x : current configuration; X : reference

x = x(X,t) (8)
dz = \(X +dX,t) — x(X,t) = g—;dX = FdX 9)
3.1 two-point tensor
x is current, X is reference.
(%UZ-
Fi, = aXKei@)eK (10)

RNt YL AV NG NG

deformation gradient

RGIARREZCRESENRZE: L
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EENRANDFE F 17 RRZEIL
it
PRFEH . 2019 4 4 A 22 H BGBEM: 2019 4 4 H 24 H

1 ZBEF
Kinematics. X7l dynamics, kinetics (2 >] Bogliubov HREEELE)
[if] 7€ A4 bR &R fixed / absolute.
YT material maniform i % continuous media, mechanics of material manifold (M?)
E3XxR =
configuration (¢ = 0 , reference / initial / undeformed configuration, K(X))

(t =7, current / deformed configuration)

bijective XU, deformation function z = x(X), X = x "'z

ox
= —dX = FdX 2
x4 d (2)
de = FdX = dXFT (3)
F' is a two-point tensor
T 0X Xk ¢
85{:1»

FT — 9X ex Re; (5)

polar decomposition F' € Lin,U,V € P,,,,,, R € orth™ is a rotation.
F=RU=VR

P176 VIMGtds F(X): T — 7(?), X € K(B), B : material manifold.

VA € Lin 1st kind, Lagrangian. 2nd kind, Eularian. 3rd king, Mixed (two-point)
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(FTF ¥R b R/ 50 4P S B M Teh, BRLRR s T I, 77 L A
NE TR )

o0x; ox; Oox; Ox; Oox; Ox;

_ T _ J ) (PN - J LI = d !
C=FF = <aXAeA®eJ) <aXKe,®eK> oX . 8XK5”6A®6K oX, 8XK8A®6K
(6)

o0x; ox Oox; Ox ox; Ox
B:FFT = <8XKei®6K> <18M®€l> = aXKﬁ(SK]V[Gi@)EZ = 8XK 8X;ei®el
(7)

ﬂﬁgi%ﬁﬁqj%%’ iEEH cc Psym
ek 1 26.3, 26.4
FEK N, =M (I P18D)

2 Four definition of Strain

strain measure, stress measure.

2.1 Green strain

(AP I5-JERAT T /2 RS

dx? —dX?=FdX  -FdX —dX -dX (8)

= dX(F'F)dX — dzldX 9)

=dX(FTF -1)dXx (10)

=dX(2E)dX (11)

= dX2E" (12)

ET = %(FTF—I) = %(C—I) (13)

DR, PRl

E:%(FTF—I):%(C—I) (14)

M

ek /TR IR, W] 2% P252

Qo _y0w
OE ~oC

WREHM: 20094 4 A 22 A <l 2> R EM: 2019 4 4 A 24 H
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2.2 Almansi strain

(TG - T7) /2 BT

de? —dX? =dz -dx — F 'deF'dz
=dalde — deFTFldz
= dx(2e)dx

[Fl 2L,
e= %(I —F TP

2.3 Logarithmic strain

infinitesimal

2.4 Cauchy strain

RS AKRECRTESENRERE: &k

WAEHW: 2019 44 H 22 H < 3> RGBS 2019 4 4 A 24 H
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HWAEH: 201944 H 24 H BJEfEii: 2019 £ 4 H 28 H

(53-8)
S:%(U®V+V®v):%((V®v)T+V®v)

PEMk: HEEFEIEERR 12-24

+ P180-182
Linear elastic Z&#%: ZHEHE —Fh I,
(27-25)

1 Theory of elastic

elasticity 5% 772 plasticity %% /7%
fEk: 9] 27.5, 27.6

R AKRECRTESENEE: &k
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PAEH . 201945 A 6 H wEEH: 201945 H 6 H

1 £3

1.1 almansi strain

Dirac symbol
(current length)? — (original length)?

2(current length)?
(dz|dx) — (dX|dX) = (dz|dz) — (F~'dx|F~'dz)
= (dz|dx) — (deF~T|F~'dz)
= {(dz|I — F"TF~'|dz)

(I-FTF

N

S.e =
1.2 M52
d2q7. . dq“ dqu B

d\? AN dN
A: proper time T, q - generalized coordinate, r - free index, u, v - dummy index.

0

d2 qr

m
dr?

+I,---=ma

1.3 Basics
1. Neother’s theorem, field equations.
2. superposition — Linear — Taylor expension (1st)

3. Dimensional analysis, (rough) order-of-magnitude estimate.



EENRNF % 19 RIRER

2 Dimensional analysis

model, prototype, dimension number

fine structure const, o = e?/4erhc, ¢ : speed of light.

PEk: kA A ER, iRk TAZEBOERZ)T Enrico Fermi ££_EURINEAE44 S

SR T W2 Jec

Lederman, Rabi

2.1 foundamental and derived

physical quantitles: foundamental (M, L,T,1,0,N,J) / derived

mims .
r

F=-C¢

7’2
inverse square rule.

Point sorce, area of surface 47mr?
In R", F ocr— (=1

2.2 intensive and extensive

intensive p, T, ...

extensive m, S,V

2.3 =2

universal, primary, dimensional homogeneity.

GMm
F=— 5T =ma 9)
2 M? 173m—2
MLT™* = [G]ﬁ [G]=M LT~ (10)
Kepler’s 3rd law, 1618
- i GM
M[G) = LT =5 = const = oy (11)
L,
6] = (R (12)
L/T: velocity. Second velocity
2GM M
v? = 2GM 02~ eM (13)

WREHM: 200945 H 6 H <l 2> RaBk: 2019 45 H 6 H
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black hole, Rg ~ 2GM /c?
plank length

l, = VhG/c* (14)
B 75 /1 quantum gravity
[E] = [mc®] = ML*T 2 (15)
[h] = ML*T~*T = ML*T~* (16)
[Gl=M'L*T*  [Gh=LT*= (%)%2 = [°][12] (17)
by~ VhG/S (18)

~: order of magnitude

plank time, t, = 1,/c ~ \/hG/c® ~ 10745

2.4 TENY

Bernoulli eqn

1
p+ 5/)1)2 + pgh = const (19)

dimension homogeneity, additive term

[pv?] = ML?L*T~? = ML 'T* (20)
n terms, n — 1 dimenionless.
1o » _ (21)
2gh  pgh
Froude number v
2.5
V-u=0 (23)
mass conservation,
Dp .
Df + pdivue =0 (24)
incompressible DD—f =0
ou )
p(g+u'V®u):—Vp+,uVu+pg (25)

WAEHM: 200945 H 6 H < 3> RGBS 200945 3 6 H
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1.
oV /pV2 L fL
LAY SO 2
T L TV v (26)
> Ap /pV? A
P /P p
— ~ = _—F 2
L L pv2 (27)
> V2 /uV  pVL
pV2 fuV p
LN = 2
T 732 . Re (28)
4. froude number, FYE/EML
pV?
Fr = sqrt— / pg (29)
L
Komlogoror, 1941
(jv(x 4 7,t) — v(x, t)?) = £33 (30)
energy ML?T—2 93
€] mass X time MT (31)
Spectrum E(k), k — wave number, [k] = L™*
1 [e.¢]
§<v(m,t) “b(x,t)) = /0 E(k)dk (32)

self-correlated function
R : ﬂ‘%[E(kz)] cE2/3|—5/3

Fermi: better be approximately right than precisely wrong.

R AKRRECRHESENEE: &k

WAEHM: 200945 H 6 H <l 4> RGBS 200945 3 6 H
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AEHB: 20194 5 A 8 H wEEH: 20194 6 A 19 H

1 FAPHEN

[ Bwar| = B - e -
PENk: HERRAr I EARIA A

2 plank mass

plank length [, plank time [,, quantum gravity i, G, c

M = ML*T™'  [G]= M 'L’T

nl MLT T e
—_ = = M2— = —
{G] M-1L3T—? L= m=Vg

3 Buckingham

Edgar Buckingham (1914) II-theorem.
Variables x1,...x,, primary dimension k, n — k

semi-infinite bar, longituclinal wave ¢y, transverse wave cr

o = Ee, [E] = [o] = [00"] = [p] = [pgh] = ML'T>

m—Mr3{ﬂ—£c~¢f

o(x,t) —o(x 4+ dx,t) = pdexAuy = —o,dxA
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0(—Ee 5

- <8:17 )_E8 = puyFE €=Uy (7)

|E
Eurr = PU¢ Cr = —_ (8)

p

hyperbolic.

T, = zV°T (9)

M 5#H anecdote
fENV: P316-317

4 dirac notation

2edx? = (dz|dx) — (dX|dX)
= (deldz) — (I-uw®V)dz|(I—u® V)dz)
= (dz|dz) — ([dz| I-u e V)" 1-u® V) |dz)
—(dz[I-(I-u®V) I-ueV)|dz)
5}
1
86—1; + (u-V)u = —;Vp+1/V2u+g
v: diffusivity momentum, kinematic viscosity.
Re= PV _ L
o v

7: flux of momentum.

6 Thickness of boundary layer

T
d=cy|v—
Uo

(laminar).

(14)

(15)

(16)

(17)

WREHM: 201945 H 8 H <l 2> aBek: 2019 46 H 19 H



EENRNF £ 20 RIREIR

[ug) = LT [x/up) =T (18)

adiabatic shear, non-slip boundary 1EMV: & #HHEK R

7 Schrodiner equation

2
M, ve—ine, (19)
2m

¥: wave funcation, non-dimensional.

Let t = 7, 7 : characteristic time, = L&, L : length. ¥(x,t) = ¥(,1)

K2 ih
divided by $m(£)?
272 174 ihT? ihT
— Uiz U = U, = —U; 21
2L L (L2 rgmL? " imL? (21)
g2 .
— Z\Pj\f‘ + V\IJ = 27;6\115 (22)

RS AKRECRTESENERE: &k

WREHM: 201945 H 8 H <| 3> WRBE: 2019 4 6 H 19 H
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%R

AR 20194 5 A 13 H REEK: 20194 6 H 18 H

1 ENMEEARE

JIFPRNER 8.1
FEARTIRA JIH R
5173 1073
557 10-¢
R 7 1/137
57 1

[MG] = L*T™? [G]=M'L*T?
2

m
P =591 x 1073
hec

Boltzmann constant S = kg In (2

k] = J/K = ML*T~20""

Planck length lp, Planck time tp, planck mass mp
Planck temperature Tp = m,,c?/kg {EMb: &— T H B E

bijection, strain compatibility equation.

E€ij,st T Estij = Eis,jt T Ejt,is
dmey, EHHl, CGS: centimeter, Gram, second.
e’] = [E][L] = ML*T™*  [hc] = [E-T|[V] = [E][L]

planck charge

qp = Vhe = v 4mreghe
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Tk IARMEFBCK T, R - FEEE TR, L.

KLt analogy, AN 5E4AHAL?

2 FHEHY

Weber number, v, o. surface tension.

[V|=J/A=FLL?=FL*'=MT? (7)
2

We = ;)/LL (8)

3 FEH

Bo=P o = |2 (9)
v pg

P TR KBRS AE R, A AR AT AR E 73 ? /S AR K B A RE b (E?

YENV: AHEKEI TR R, BAFHERE . ELENESET 1 10~'2m/s
Better be approximately right than precisely wrong. fi# /7 FEANERERHI&M, 1534
R R, EAUHBEAS T

RGIARRELRESENREZE: L

WREHM: 20194 5 H 13 H <l 2> WaBik: 2019 4 6 H 18 H
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AR 201945 A 15 H wEEMH: 2019 4 6 A 18 H

1 FRELUNEXRSE

guesstimation, Enrico Fermi

fEMl: maximum height of a mountain on earth; . 1AM, KEPUERIEES KA
PEAS T

Mount Everest o = pgh, E : Young’s moculus, [E] = [p]

strain ¢ = 0/E = pgh/E, plastic strain €, = 6.977/1000, Let € = ¢,,, h = Az

density p = 4 x 10°kg/m?, E = 64.5GPa, h,,4, = 11.6km

M =105 G = 10%, mega-A

Method II. o = pgh, oy = 450MPa , hppoe = - - .

Method III.

2 HinikbRg

quant %5 (B L)

royal mint 4 A/7 gold standard system , ZFil 1720 stock.
ISR S B R (45-46)

Jellfe 1 7000 SEBE, ST 20000 S

year 1717 & AfI Ounce #r] gold = 3 % 17 %64 10 1
PEMb A 554 R A= i s 1 e ) Bl )

“I could calculate the orbits of heavily bodied, but could not calculate the madness of

people “ ——Sir Issac Newton
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3 Others

PRk 58— F) TR EE

R = Z Z b’Y®N’Y:n1®NI+n2®NH+n3®NH[ (1)
~y=1,2,30'=I,I1,III1

R R Y HTTE I HITE R sk &
strech ratio, FE N AL & WA

R AKRECRTESENERE: &k

WREHM: 200945 H 15 H <l 2> WaBik: 2019 4 6 H 18 H
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KIEM B 1%, Darcy’s law, (Darcy-) Stokes-Brinkman equation, N : fiifi. KIAK
1EM]: kenadical?

STRATE] K 10712s, WERNE R LIR T . EEREL N 1 BHER R, KT 1 52
fi] 445 o

Navier, 1822 4FJj#£. 1820+ Suspension bridge

PR K A AERTFR K B AL, Je e R FRAL

1 TIhitie

YR material manifold

Refernce configuration, t = 0; current configuration, t = ¢

deformation gradient tensor. two-point tensor F = g—;
ox
F=—=F,ze,®e 1
X Be€.®ep (1)

determinant of F'
ox ox ox

89X Y 0z
— |9y 9y dy| _
det F = |02 Oy du)_J (2)
0z 0Oz 0z

9X oY 02
J : Jacobian, J = g—;} ; dv = dx - da = dx(da)n
dV =dX -dA
stress = d(force) / d(area)

Cauchy stress o = df/da

JdX -dA =dz-da = FdX -da = dXF"da (3)
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dX(JdA — F'da) =0 (4)

o dX fEEYE, JdA = FTda
da=JF "dA (5)

1.1 PK1

Piola-Kirchhoff stress of the first kind (PK1) df = oda = JoF~TdA

df T T
qA Jo T (6)

where 7 = Jo in current configuration, 7 : kirchhoff stress

0X 00X,
P = (Jope,®e)- (a?Men ®ey)= Jak.laTMdmek R em (7)
P=JoF " (8)

1.2 PK2

S=8T8=JFloF T (JF'oFT)T = JFloF T

1.3 velocity gradient tensor

w0 (0m\_ 0 (0w\X _ 0 (0a\oX L.,
l_”®V“_aw_am<at>_aX<at> 0w_0t<8X> oz L F ©)

strain rate

I+17
d— *‘2 (10)
symmetrical d = d?,l = d + w
spin
T

1.4 work conjugate

w=Jo:d=Jo:(l-w)=Jo:l=Jo: (FF )= (JoF "):F=P:F (12

WREHM: 20194 5 H 20 H <l 2> WaBik: 2019 4 6 H 18 H
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QGreen strain

E= %(FTF -1) (13)
E= %(FTF +FTF) (14)
w=(JoF ") : F (15)
=JF 'FoF T . F (16)
= (JFloF 1) (FTF) (17)

pe _
-y w _S:E (18)

Summary

w=Jo:d=Jo:l=P:F=8:E (19)

RGIARRELRESENEFE: L

BWREHM: 2019 45 H 20 H <| 3> BRBE: 2019 4 6 H 18 H
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[eV] = [kaT] = [RT/Na] = [hw] = [hw] = [he/A 1)

[€*] = [E][L], ac = €*/m.c?

1 SeEYARRAIER
mg : gravity; CApgiyv? @ lift; L : characteristic length;  m : pyqLl3; A : L2

C Apaiyv? ~ 2, Loird o 2
Pair I @)

2 TEPRH - XAEE
solid-like liquid Z&[E 44, 1A 74 @&
v = —ng N~ (3)

Kk~ L?

K, analogy, #fESHE, ¥HOTE, EE fux

3 Jacobian

/fda::/fi::dt (4)

f(@), (t)
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[ szt = [[ a0 yw0) 1] dudo (5)
ox ox
5e oe|_ Oz,y)
__ | Ou ov | __ )
|Jé|'_"gz g% - 6(U,U) (6)
9z Oz Oz
ou ov ow
| 5] = gL Sv fu (7)

Jz Jz Jz

du v ow

il = (®)
ox

PEab: SRERAAFR Y E AT EE AR A A AR
Professor, Reader, Lecturer

xal

4 REWE

deformation gradient F', Jacobian J = det F’

d d oJ
= — = — F = == F 1
U dtJ dt det(F) oF 1)
velocity gradient 1

v 0 (dx\ 06X d [ox
_ _ov_ 0 (dz)\ oA d (0% 11
l=veVe =5, 8X<dt> 0w dt<6X) .
I=FF' = F=IF (12)
C=F'F B=FF"  detC = det(F'F) = (det F)? (13)

ek B&AF trC=trB?

WREHM: 200945 A 22 A <l 2> RJAEM: 2019 46 A 30 A
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5 1THIRFIREFERSFH

ddet F . det(F +¢cA)—detF
: A= 1lim
oOF e—0 c

det(F + M) = X2 + L(F)\? + L(F)\ + I3(F)

ddet F A= Tim det[eF(e7' T+ F~1A)]
oOF e—0 €
— lim det(eF)det (e 'I+ FtA)—J
e—0 £
e ST L(ET ) 4 (R A)e + I(FA))
e—0 £

=JL(F'A) =Ju(F A =J1: (F'A)=JF7T:A

~0J  0detF

- = — -T
" OF OF JE

Volume strain

(]- + 511)d331(]- + 522)(11‘2(1 + 633)dl‘3 — d$1d$2dl‘3
d(IJld.’Ide.’Iig

Ev = " e11 + €22 T €33

fEb: 29-45, 5.1?

Spectral decomposition

6 ERKELSHE

xr, = )\1X1 Ty — )\2X2 xr3 = )\3X3
3 3

i=1 i=1
C=F"F=) XN;oN; B=FF'=) XMn,on;

v le_NenN 1 m en
E_Z2()\i DN;®N:  e=(1-1/A)n@n;
principal stretch {EMV: 5 HBRNAR, P 77 NAE, 25 [A] b B R AR

RGIARREZLRESENREZE: L

BWREEHM: 2019 5 H 22 H <| 3> BRBE: 2019 4 6 H 30 H
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1 TENH - wRANE
lorentz force, magenetic field

0
p{£+(u~V)u] = -Vp+uV?u+pg+3jxB

where, j - current density, ohm’s law. j = o(E + B X u)
j x B~oB?V uNV2u ~ pV ) L?

|Lorentz force  [oB2VL? BI o
viscous force uvo I
Hartman number

PEab: HY N-S J5 FEHERFh A B 4%

2 {RFRRTE LR

Time derivative

o

T
J—aF.F JF ' . F

ov 0 [(dx\ 0X S

l_”®vf”_am_ax(dt>am_FF

l=d+w
sJ=Jtrl = Jtrd = JV - v

dv = JdV = J(V-v)dV = V - vdv
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Xy A AR 2

Truesdell, Noll, NLFT: Nonlinear field theory, field equations

BRT: Ty
HE 30-4

mass continuity equation

charge

j o« TERIEEE

diffusion

Fick’s law, J = —DVe¢

thermal conduction

q=—-kVo

wave function W

probability density p = |\IJ|2

probability density flux

ARSI L A B A A s AT S AN IR .

J:

3 EEMHTE

ap B
E+V-(pv)—0

dp . ,
a-ﬁ-V-J—O J = pvq

STV J=0

o0
ch-i—V-q—O

dp
o TV =0

h

mi

(U* VT — UV

(10)

(11)

(12)

R ARREZIRRESEHRZE:

¥

EEH®: 2019 £ 5 H 27 H

<] 2>

e 2019 46 A 18 H
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LN

L:

Du

Dt

CPI - Corruption perception index & f& 541

dc c c
= — DV? Z ~ D—
ot Ve T L2

VD7

oscillatory flow, pulsatile flow (}k#))) , Womersley number yK8 7344

Wo:Lﬁ

character length; w : frequency; v : Kinematic viscosity

Du 1
— =--V V2
Dt p p+vViu+ f

— v/T=w ,vV?u — vv/L?
o I w /inertial force
vo/L2 v viscous force
transient force
Wo=\—s
viscous force
v
+/— — length
w

Wo — £ _ characteristic length
& Stokesboundarylayerthickness

stokes boundary layer

Roshko number
Ro= St -Re=W?
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2 Others

Tk E

P=I-n®n (9)
Cauchy’s stress principle (1822)
traction force t,, = on

n-a-nzaijnmj
kg @) FESE, pdo =dm, RIFATLABGE (35 P216)
AR RYIRFEE: SELPRFETREEAS? (32-12)

Vx -P=0 (10)

R AKRELRESENREE: &k

WREHM: 200945 H 29 H <l 2> WaBik: 2019 4 6 H 18 H
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1 EEMRE

J B ST AE

dp
FHLfif 57 E

0

ait)+v-.1:0 J = pg
BT 1R

o TV I =0 J_2mi(¢w YVY)

Ei:

@+V~J—O J=—DVe

ot - N
P SR B

00
pcpa-i—v-q:() q=—rV0

FEP B, momentun diffusion

d(pv)
ot

2
T:—M<V®v+v®V—3(V'v)I>

+V.1=0

v,
E—I/VU

ARG 2% Vv =0
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o XY HOTE

o
E—A—U-V[ﬁ] =aV-l
ZKtt, Analogy

Kinematic viscosity

V] = [g] — [*T' = D]

N -
2 S N-S HiE
conservation equation

9(pv)
ot

+V.-7=0

shear stress
T=—-[(Vouv+veV)+ AV v)]

o= —pI+ A\(trd)I + 2ud

A @ bulk viscosity; p : dynamic viscosity

Stokes’ hypothesis

2 2
A+ Zp=0 A=-2
+31=0, S

V'T:—,LL[VQ’U-F(V”U)@v—%V'(V*’U)I}

for incompressible fluid, V-v =0

diffusion tensor

WREHM: 201946 H 3 H <l 2> aBik: 2019 46 H 17 H
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3 =N
WIS, B

1% 14
TR 5
% 4 (v V)e=DV3 (21)
ot
t=oar,de=d8L,v=42=42LL
e (ds 1D,
ém+(®,mga_pvw (22)
PEb: A K48 NS 7%
Péclet number, Pe fifl 7. 341
Pe = Re - Pr K:ﬁﬂ (23)
(0% UV «
[v® v]
fEMb: HES 33-8
RS ARRELRESENEE: &
WREHM: 201946 H 3 H <| 3> WRBE: 2019 4 6 H 17 H
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TENWTTE

1 TENY - HEEMHY

Fourier number (Fo) {8 B %

00
g = 1
Perg, ¥V g =0 (1)

Fourier’s heat transfer

q=—kVT (2)
k-thermal diffusivity
h-heat transfer coefficient

L[h] = [x] (4)

B IRRRHL R RNk eI R BR T BRI RE A AT ?
Q- FRGEE, S T AR A I TR I R AR

thermal diffusion:

at
mass diffusion: 5
t

TENUARIEETET, RMBELMEHA R 5 ~0/7, aV?0~alf/L?

characteristic time for thermal conduction 7 ~ L?/«, so Fo = t/7, Fo-dimensionless time



£ 28 REID

2 PDE ByZ%&E!

PDE-partial differential equations
 hyperbolic, X i, wave motion, 5| JJi T £ ?
« parabolic, #1#, flux
o elliptic, &

B B E AR T L. ()

go: heat flux at reference configuration. (per dA)
q: heat flux at current configuration. (per da)
qo-dA=gq-da

EHHRAR da=JFTdA
qo=JqF T =JF 1q
. YT S IR
b &1 e, N sk,

isotropic
1
Eik = gOéAT(Sm = Ekk = aAT
anisotropic
1
Eik = gaikAT

;- thermal expansion tensor;

4 Others

PEMb: WS BN i, ki = 15 MRS R: 3LJ7; =25 PHREFR: W7, N7 =7

=3 KW F: Bah. =ph FX. WREMR. Wk
R A AT . ST A 4
fEalk: HfE 34-6

WREHM: 200946 5 H <l 2>

: 20194 6 H 17 H
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R AKXRELCRHBSENEE: &k

WREEHM: 201946 H 5 H <| 3> WRBE: 2019 4 6 H 17 H
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1 TENY - BRAERE - KR

Ohnesorge number
IKHFFIE# S, Capillary number

Ho
Ca=— 1
5 (1)
Capillary velocity
v
v~ = 2
. (2)

~ : surface tension. Capillary time (viscous)

L L
tyis ~ — = a (3)
vy

Lord Rayleigh 5 | — AKX TIRBNUFF The theory of sound

pR3 m m v
“‘\/W\E“’ﬁ T\ W
PR T RS 2. R T simple harmonic oscillator
i+ wir =0 (5)

[y = ML*T2L"% = MT 2 [k] = MT? (6)

analogy between (coefficient of stiffness of spring) & (surface tension). WK HIAH 2T —4
AN . ATRE IR M SR I IR &

E~T (7)

Oh _ tvis — (8)
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2 HESECE

(pv) -V = pdivv +v - Vp (9)

(vo) V=wv-(odiv)+ (v®V):0o (10)

3 kiEBaRFEH
AR R %A EEERE L R VIL T A%, M kE. uP =0
SEAEIE R T4 impermeability condition v - n = 0
4 others

VEb: HERITEEE—58 8, (34-8)(34-12,13)(35-14,15)(35-20)(35-24) (35-26)
[E{A, free body diagram. Jiff: contour volume #EHlAAF, 1EMk: EAT A& RAR R

PRFL?
HiEHE e RTT

RGTARREZLRESENEZE: L

WREHM: 20194 6 H 10 H <l 2> aBik: 2019 46 H 17 H
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1 3
NS HHERFEFER, ¢,q90 ZARFR
2 EENH
ou; Ou;  10p 0%u;
ot Y gm T pox VOwpan 1)
on=YWe _ 1 _ 2)
Re pyL

i Hr laplace, Suratman number Su
= Oh™2 (3)

L = = =
T W/LLE T upel T 2

3 Invariance

Galilean transformation, classical mechanics, continuum mechanics. fllI7!]#% A8 75 25 4 77

SFESAN 1 R E A
rr=r—vt t'=t—r71 (4)
v : uniform motion.

4 inertial frame

TRk AR R IR 5
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1. space is isotropic and homogenous.
2. time is homogenous.
3. Simplicity

L(g,q,t) — L(¢*t) — L(4°)
doL oL _, _,
dt0g 0q 0q

(?)

d?r , d2r’
Femgz T omg

N L
5 MAENEERIM
Take divergence V onto N-S equations
1

1
V- (—pr—l— 1/V2u> = —;VQp +vV3(V - u)

ot ot

V'<8u+u-Vu> :g(V~u)+(V®u):(u®V)+(u~V)(V-u)

D
=5;(V-w)+(Veu): (ueV)

Vip=—p(Vou): (ueV)

HE 5.
. _ Uj U;
(Vou): (ua V) Jz: Oz,
JR IR S T AR, BT LR A BUE .
0%*p du; Ou;

L length, u velocity.

r = — u = — = 1—
L Y L
1.
v* * * ok
Viu=0 = £~(uu):0—>Vu:0
> d(uu*) \% \Y
Owu) ) Y ) = — Y
auycy T g W) = = ey
ou* 1

ot* Re

L .
—— = const q = const

(13)

(14)

(15)

(16)

WREHM: 200946 A 12 A <l 2> RAEM: 2019 46 A 17 H
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3. 1Bk = HETLTENNE (11)

1. Re similarity 8L, 2. BF % (space and time) 3. Time reversal CH[E] 28 )
t* = —t*,u* = —u*, Re Bl (FHIEID AN 2 I 8] S35 !
4. Jig#% rotation (fixed angle) & reflection

€; - éj = cosf = (77]

T =ax U = au

R ARRERRBEENRZFE: )

BWREEHM: 2019 4 6 H 12 H <| 3> WRBE: 2019 4 6 H 17 H
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1 E3

Z R AL, AT E R, BURSPUNAR, AN TKE, FAE, NS Jf
RN, ? BUE.

ELEVETTRE: AT WREE. A SRS MEREE, RESEiA.

MU SR 42 Vv = 00 WBIEEREBBUTELE dv= (V- u)dy

2 Galiliean invariance

r=r—vt wv=const t'=t+a (1)

BNES % R AR e AR AR, BRI SR IR

2.1 Extended Galiliean invariance

v = v(t) is rectilinear

Ou; o du; _ 19p , Pu; @)
ot kaxk - pox; Oz 0xy, ‘
1 0p 10 10 .
Tptm T e A= )
P priA; (4)

pu?

p
U SRAE IR A s, W 2T A2 1 B B X R

p=p+pr-A (5)
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2.2 rotation invariance

RS
ij = € €; (6)
de;
di = Qe (7)

Q : spin, Q;; = -Q;;, Q= QF R

frame acceleration
dUsz'

Aij = JL‘ijkai + 2’Uiji —+ T

§36

- =x) + Q(x — xo)x — o = Q" (x * —x)) (10)

fEMV: i (36-4)

4 =N
RGBT RS

R ARRERRHBSENEE: &k
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1 83
ik TEAEL FitESI WA nian? TPILHE, BUNTKEMECAE L 2 ELVERUY

2 KEMR/LBESENM

LA 37
BHHE n MIKEREME. — D n KR v Qu, @ - Qu,, LEBMEER, Frxt
N A A5 35 2 R 3K

(m @u ® -+ ®u,)* = (Qu1) ® (Qusz) ® -~ © (Quy) (1)
wF Mk, ERIB
(w1 ®u2)” = (Qui) ® (Qus) = (Qu1) ® (u2Q") = Q(u1 ® u2)Q" (2)
IRED, R bR S R LA R

2.1 THHEKRENRK/LESENM

ABTRE AT AR B, . i, WIEATE LR F = 02/0X, MT 5
G AMEHTE, F vee 010w 0

xr xr €
“oxX " 0w ox  OF ®)
IR, BTGB G MR, NP AR, R L A
MER. HREEZ—, RSERBPHRE X RRER, FH X=X, BOEL X A

MEEE TR

F*
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WAL TR L AL 300 2 2 WL EER i@ 422 th AT TR S BT h KB R de =
FdX, HT: dz* = Qdz, (dz)* = (FdX)* = F*dX, Kt ERk7.

HTHERTEE J = det F AFE— A SOWARTAR A0 R i B 22 TC B ] & 396 A2 B L LA 2 WL T
BA A B R

J*=det F* =det(QF) = (det Q)(det F) = det F = J (4)
NHFRATRE “AHRTIG-Fg AR A “LERTPT-AXAK” (Finger) 22 TE 5K BRI 2 ML
C*=(F'F) = (QF)"QF = F'Q"QF =F'F=C
B* = (FF")" = QF(QF)" =QFF'Q" =QBQ"
2.2 HANAOEJLESEN M

FIVHIET /) (traction) K ¢ RMVEN ) o MERITINEL n KGR ¢t =on. WDRE ¢
Mon BN ¢ =Qt, n* =Qn, FILA

t'=Qt=(on)*=0cn"=0"'Qn = Qt=Qon=0Qn = o*=QaQ” (6)
U, TP R VR R B ) S A T R T R, A L A R R 1
FIRERMNATH TR EBA 2 WL : 7= Jo, BAREEEMEIN/iKE.
2.3 PKI1 # PK2 N AKEMNK/LEESEINM
PK1 B JE XK P = JoF-T, N (37-6) Al (12-13) B, #f

P =J0"(F) T =JQoQ"(QF) " =JQoQ"Q "F " (7)
=JQoF T =QP (8)
UL, MEAPE KRR PK1 AR C &A1 74— s 5K i

AEL AL Bk E RO LA ZR .
PK2 MAKEXNK: T = F~'P, ZHNEEN, HEHKRN

ARTEAR L K B A ek

T"=(QF)'QP=F'Q'QP=F'P=T (9)

AR PE- M AT K C KL, PK2 /RS H ML RIN Jak i, AR RANbRE —F,
AN AR TR R L LA A AR K
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3 KERRUWE
3.1 REHE. TR, REXRKENR/LESENMH
BB KRB, BT L= FFY, 8, SR S RN
I'=QF(QF)"' = (QF +QF)F 'Q ' = QQ" + QIQ" = 2 + QIQ" (10)
fEEt, SR T ERKENEAMR (20-13) R, FIA (36-6) Rl Q= —Q7, 4

l* +l*T l+lT
=5 =Q—5 Q" =QdQ"
. l* _ l*T

w' = 5 =Q+QuwqQ”

A, RIS IRAE A BRI (W 2R B S KK L AR 2 R (K T, WER I 46
S ZANEERL AR, ST R Bk R 2 W R
Mo(38-2) XM =R w* = QQT + QwQT HHEHFEH:
Q=w'Q-Qu
QT — _QTw* +wQT

d*
(11)

3.2 BUWRERMEN

H 2SR 3L (36-1) Ky WA, A: o = Qu = Qu+ Qu, ¥ (38-3) :Lhi
B— AN, BEITFEA:

W= Qu+ Qu = (w'Q — Qw)u + Qu

(13)
=w'u* + Qi — Qwu
RN c32 R KA
(4 —wu)" = Q4 — wu) (14)
I bR E S R R RN BRI (co-rotational rate):
u=1u-wu (15)
3.3 BUKERHENX
XPTAR R R M EOR I ke A, A A* = QAQT, HI ST
A" = QAQ" + QAQT + QAQT (16)
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¥ (38-3) AARN LB, B3
(A-wA+A40) = QA -wA+ Aw)QT (17)
B E T ES R A ROy E 58 2-1LE B (Jaumann-Zaremba) ALK
A=A-wA+ Aw (18)
R, 2 A BURTPER ) o, 75 2IESA T2 H RO PG 5 ) )58 2 - 3L A8 R LR -

06=0—wo+ow (19)

4 Others
SRR BT, RN bR E TR ?
5 FTTENE - PUEKEL
B A5 1) i 50 A o] 35 K A

RGIARREZCRESENRZE: L

WREEHM: 2019 46 H 19 H <| 4> WRBE: 2019 4 6 H 19 H



EENRANFE F 33 RIREIL
FE%

B 20194 6 A 25 H wEBEH: 2019 4 6 A 25 H

B =a(trA) I+ A

trB=3atrA+pftrA = trA= 3a1—|—[3trB
= 3@‘1 GBI+ A
A=p3" (B - 3;1 5(trB)I>
2

Constitutive relation. constitution-%g7%. paradigm-y&z{
2 )\ A axiom

rheology 8% ; theology %

HE: NS HREMAZME, TTEN, Tl

Voo P O O =t
- Oz y 0z = Fwe T Eyy T Ekk = UE
RAE (?)
3

FFHifH tension [E4E compression. Zh[A] longituclinal. ## 7] transverse.
PRI A longituclinal extension
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YEk: A yasa LI VR E L.

ZeiE linear elastic. & INJ5HE superposition principle
PRl RiAE 2RI

i N —NERK RS, KRR L2

Stress-strain relation

o = 2ue + A(tre)l (6)
A = A(trd)I + 2ud (7)
S=cC (8)

4 MERIRRHE

Grashof number .
Ekk = a(T — To) Eik = gOé(T — T0)51k (9)

buoyancy  gL*B(Twau — Two)
viscous force V2

Gr = (10)

B = a R R

RS ARRERRRESENEF: L
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T XHR#H%; Joseph John Thomoson, four to seven courses per year; Geim

s = 2ue + A(tre)l
71+ AT ER, JCM Li, (james) 2R
cQ

3 0

1
eij = (L +v)oi; —voudi] +
S BUE s LN
Eik = %OK(T — To)ézk
B RO — AN Fr B AE B S 2 R A HAR R AV
PENb: 3R s8-1 fid, XLk s8-2,3

1 MRy
o Cauchy elastic, 7 &
 hyperelastic, hyper: to a higher degree 4

« hypoelastic, to a lesser degree K51, (KM

ISR PEAY IC R

A )
Jaumann rate o = o0 — wo + ocw
A
o = 2ud + A(trd)I

work conjugacy
w=Jo:d=17:d=P:F=T:E
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spin
-1 1+17
w=g— d=— (6)
BE E XA XS 1
7 =2ud + A(trd)I (7)

RS AKRECRTESENERE: &k
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1 E3

stretch ratio \;

watE: A%, potential
R AL B AR 2 P B Y
MBS -2 J -1

RGIARREZLRESENEF: L
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A
WAEHM: 20094 7 H1H BiaE: 201948 H 1 H

1 E3

FEEHIRENRIE . KRR TR, iR 0 — 4R3I V- o = pa

BT FEILAT S Bk

V.o =0 H¥HE X

HaRMER? MANS AL, SRS FEE, a2, fesE RO

RGIARREZLRESENEF: L
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FE%

AR, 20194 7 H 3 H

BEBEM: 20194 7 H 3 H

1 B3

FiEsFIE, ELLMETIRE, iR S

event observer

*

p=p

J=J

continuity equation, Lagrangian viewpoint, pf = J*p*

obvious, mathematical humor, scale 5/

2 objectivity of continuity equation

*

dp
ot*

+V* - (pv) =0 =

ap 0

ap* a , ., B
Ot + 8.1';( (p Qlkvk) =0

ox

— 4+ —(pQuvp) 2 = A

ot Oz,

Ox}

2"~y = Q(t)(@ — )

ox
ox*

Q
o0x,
Oz}

_Op

= le

det@Q = +1

0
A= En + aTL_p(PUk)szle

U QuQp =0k =

_ Oz
783316

5kp

adp 0 B
ETl 5kp67p(m)k) =0

op 0 B
En + Txk(pvk) =0
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div(po)l;. v* = Qu
S E RN, equations of equlibrium

0
<V* U*)k - %(QMO—MQR’S)

0 Oz,
- T%(QZTUTSQICS)TJZ‘?
aars aars
= erkaququ = kaéquxq
* * 807”5 _
Duhem i &

e:%(V®u+u®V)
fENb: HIFRA s10-1

FABFRIFAS LK B ? 26-6, 225 EH

(18)

RGIARREZCRESENRZE: L
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1 HittRArm T E RS E

X = Rg" +0g° + Zg?

x=rg" +0g° + 29°
Or  10r  Or

OR RO 02
[F]= |r20 00 00

"sr Roe "a:
0z 10z 0z
O9R R0© 0Z
ds? = g datdr” = ¢g"dx,dx,
1

[gw] = r

dp B
E'FV'(pU)—O

TR TR B ¢ - —to NS 7 FEANIH AL B8] S

Q=Qie.ve; Q=Q e e,

QQT = (Qijei ® ej) . (QST‘eT b2y es) = 6j7’Qistrei es = 6isei ®e, =1

1
€:§(V®u+u®V)
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D?eyy _ 0% N D?%ey, (10)
0x0y oy? Ox?

VxexV=0 (11)

825jk
aixiei X €;Ejk & aixlek X e = mgij'rrbgklnem e, (12)
€jk,il€ijmEkin = 0 (13)

HIRAH . KA finite deformation, compability condition

32@-
m&azwei Rey =0 (15)
RGARRERLRRESENEF: L
WIERM: 2019 £ 7 3 A <[ 2> R Ed. 2019 47 1 3 O



A = =4 Yaray o H &5
EENRANFE F 39 XR=EIL
it
WAEHE: 201947 H 5 H BiEBS: 201948 A 1 H

FXVXIO

A2 7 72
AELR 2L 813718 non-linear classical field theory
AT, AR ZEME —HA, BHERA B E B
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