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I 

前言 

正如你们在本页顶端所见，这本讲义是我大一下学期（2017-2018 春季学期）在中国科

学院大学学习线性代数课程时整理的课堂讲义。根据我选择的班级，此门课程是由来自中科

院数学与系统科学研究院的李子明研究员主讲。李老师讲课认真细致，在课后还会将手写的

电子版课堂讲义上传以供大家复习使用。 

不过，手写版的讲义使用起来或多或少有一些不便。而我恰好有些 Word 输入公式和排

版的经验。有一次我为了防止在课上犯困，尝试着带上电脑，在课堂上将所讲的内容做成

Word 文档并导出成 PDF 格式，发现效果确实不错，不仅没有犯困，听课也更认真了。于

是，接下来直到期末我便利用课上的时间将课堂内容录成初稿，课下再对着李老师上传的电

子版讲义校对，同时修复了一些笔误，在步骤跳跃的地方补充了一些自己的理解。同时抽空

将本学期之前的内容也文档化，并征得李老师同意，将初步成品放在公众号上与大家分享。

在最后整理时，将出现的各定理等取了一句话描述的名字，并且在书末整理附上特殊符号

表。这些确实是艰辛枯燥的工作，但作为一种复习的方式，坚持下来也还是有不少收获。 

同时值得一提的是线性代数课程配有每周一节的习题课。习题课分两个班，由助教老师

上课。我所上的习题课是由张秉宇老师主讲。张老师风趣幽默，数学功力深厚，讲评习题、

整理知识点、拓展内容对于学习线性代数都十分有价值，并且也很贴心地每周上传手写的电

子版习题课讲义。后来我认识到，习题课的内容也是线性代数课程不可或缺的一部分，习题

的解答与拓展和课堂所学内容相辅相成。因此，虽然原先计划是课堂讲义，但我认为还是应

当加入习题课的部分。于是，我在张老师的习题课讲义中选取了最有价值的一系列题目和知

识点，将其文档化并附在正课讲义的后面。 

将手写版讲义文档化之后，大约有以下几点好处： 

1、支持搜索内容； 

2、美观性、可读性加强； 
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3、消除了大部分电子讲义中的笔误； 

4、占用的存储空间大大减小，翻阅也更方便； 

当然，囿于本人时间精力和水平能力有限，也有以下一些不足与遗憾之处： 

1、未能在目录及引用的各处添加超链接； 

2、未能整理杜昊老师的习题课讲义； 

3、由于时间较为仓促，可能有一些疏漏之处； 

4、所取的定理等的名字可能有描述不到位的情况。 

使用这本讲义的同学需要注意以下几点： 

1、书中定理等的名字大部分是依我对这部分内容的理解而取而非李老师所取； 

2、书中定理等的序号在尽量保持与原讲义相同的情况下作了调整以规范； 

3、习题集选中题目的编号 A-B，A 为习题课的周次，注意与作业的次数区分，B 仅

为一次习题课中内容的编号，与实际的讲课顺序、习题顺序均无关； 

4、虽然目录没有超链接，但是我整理了 PDF 的书签（或在一些软件中称为大纲），

可以通过这一功能或通过目录的页码来进行快速跳转。 

最后，感谢李子明老师、张秉宇和杜昊两位助教老师一学期的辛勤付出，感谢所有为完

成这本讲义整理集提供各方面帮助的热心同学们。 

II 

庄逸 

2018 年 7 月 15 日 
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第一章 空间与形式 



§1 抽象向量空间

§1 抽象向量空间

【定义 1.1.1】向量空间 

设 (𝐹𝐹, +, 0,⋅, 1) 是域 

𝐹𝐹𝑛𝑛 = ��
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
�│𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐹𝐹�

设 𝑢𝑢�⃗ = �
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� , 𝑣⃗𝑣 = �

𝛽𝛽1
⋮
𝛽𝛽𝑛𝑛
� ,𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝐹𝐹 

定义：𝑢𝑢�⃗ + 𝑣⃗𝑣 = �
𝛼𝛼1 + 𝛽𝛽1

⋮
𝛼𝛼𝑛𝑛 + 𝛽𝛽𝑛𝑛

� 

设 𝜆𝜆 ∈ 𝐹𝐹, 𝜆𝜆𝑢𝑢�⃗ = �
𝜆𝜆𝛼𝛼1
⋮

𝜆𝜆𝛼𝛼𝑛𝑛
� 

则 𝐹𝐹𝑛𝑛 是域 𝐹𝐹 上的 𝑛𝑛 维线性空间 

设 �𝑉𝑉, +, 0�⃗ �是交换群，(𝐹𝐹, +, 0,⋅, 1)是域

定义数乘：𝐹𝐹 × 𝑉𝑉 → 𝑉𝑉, (𝜆𝜆, 𝑣⃗𝑣) ↦ 𝜆𝜆𝑣⃗𝑣 

满足以下性质： 

(𝑖𝑖)∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑣⃗𝑣 ∈ 𝑉𝑉,𝛼𝛼(𝛽𝛽𝑣⃗𝑣) = (𝛼𝛼𝛼𝛼)𝑣⃗𝑣  �结合律� 

(𝑖𝑖𝑖𝑖)∀𝑣⃗𝑣 ∈ 𝑉𝑉, 1𝑣⃗𝑣 = 𝑣⃗𝑣 

(𝑖𝑖𝑖𝑖𝑖𝑖)∀𝛼𝛼 ∈ 𝐹𝐹,𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝑉𝑉,𝛼𝛼(𝑢𝑢�⃗ + 𝑣⃗𝑣) = 𝛼𝛼𝑢𝑢�⃗ + 𝛼𝛼𝑣⃗𝑣 

则称 𝑉𝑉 是 𝐹𝐹 上的向量空间 �线性空间� 

𝐹𝐹是 𝑉𝑉的基域  
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【例 1.1.1】平凡线性空间 

平凡线性空间 𝑉𝑉 = �0�⃗ � 

𝐹𝐹是任何域  ∀𝛼𝛼 ∈ 𝐹𝐹,𝛼𝛼0�⃗ = 0�⃗  

 

【例 1.1.2】坐标空间 

坐标空间 𝑉𝑉 = 𝐹𝐹𝑛𝑛 

 

【例 1.1.3】矩阵空间 

𝐹𝐹上的矩阵： 𝐹𝐹𝑚𝑚×𝑛𝑛 

矩阵加法，矩阵数乘 

零向量是 𝑂𝑂𝑚𝑚×𝑛𝑛 

 

【例 1.1.4】多项式空间 

𝐹𝐹[𝑥𝑥] 是线性空间,∀𝑓𝑓,𝑔𝑔 ∈ 𝐹𝐹[𝑥𝑥] 

𝑓𝑓 + 𝑔𝑔 是多项式相加，数乘为 𝛼𝛼𝛼𝛼,𝛼𝛼 ∈ 𝐹𝐹 

 

【例 1.1.5】函数空间 

设 𝑆𝑆 是非空集合，𝐹𝐹是域 

Func(𝑆𝑆,𝐹𝐹) ≔ �𝑓𝑓�𝑓𝑓:𝑆𝑆 → 𝐹𝐹 映射� 

设 𝑓𝑓,𝑔𝑔 ∈ 𝐹𝐹,定义 

𝑓𝑓 + 𝑔𝑔: 𝑆𝑆 → 𝐹𝐹, 𝑠𝑠 ↦ 𝑓𝑓(𝑠𝑠) + 𝑔𝑔(𝑠𝑠) 

设 𝛼𝛼 ∈ 𝐹𝐹,𝛼𝛼𝛼𝛼: 𝑆𝑆 → 𝐹𝐹, 𝑠𝑠 ↦ 𝛼𝛼𝛼𝛼(𝑠𝑠) 

则 𝑓𝑓 + 𝑔𝑔,𝛼𝛼𝛼𝛼 ∈ Func(𝑆𝑆,𝐹𝐹) 

0∗:𝑆𝑆 → 𝐹𝐹, 𝑠𝑠 ↦ 0 
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则(Func(𝑆𝑆,𝐹𝐹) , +, 0∗)是交换群 

Func(𝑆𝑆,𝐹𝐹)关于上述定义的数乘构成 𝐹𝐹 上的线性空间 

 

【例 1.1.6】F-代数空间 

𝐹𝐹 −代数构成的线性空间 

设 (ℝ, +, 0,⋅, 1)是环,𝐹𝐹是 ℝ的子域 

即 𝐹𝐹 ⊂ ℝ, (𝐹𝐹, +, 0,⋅, 1)是域 

∀𝑎𝑎,𝑏𝑏 ∈ ℝ,𝑎𝑎 + 𝑏𝑏按环中加法 

∀𝛼𝛼 ∈ 𝐹𝐹,𝛼𝛼𝛼𝛼 按环中乘法 

则 ℝ 是 𝐹𝐹 上的线性空间 

 

【例 1.1.7】F-代数空间例 1 

𝐹𝐹[𝑥𝑥],𝐹𝐹[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛] 

 

【例 1.1.8】F-代数空间例 2 

ℂ 是 ℝ 上的线性空间， ℂ 和 ℝ 都是 ℚ 上的线性空间 

 

【例 1.1.9】笛卡尔积 

设 �𝑉𝑉, +, 0𝑉𝑉����⃗ ,⋅�, �𝑊𝑊, +, 0𝑊𝑊�����⃗ ,⋅�是两个域 𝐹𝐹 上的线性空间 

则 𝑉𝑉 × 𝑊𝑊 = ��𝑣⃗𝑣
𝑤𝑤��⃗
� │𝑣⃗𝑣 ∈ 𝑉𝑉,𝑤𝑤��⃗ ∈ 𝑊𝑊� 

可以如下方式定义成𝐹𝐹上的线性空间 

设 𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ∈ 𝑉𝑉,𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ∈ 𝑊𝑊 

�𝑣𝑣1����⃗𝑤𝑤1����⃗
� + �𝑣𝑣2����⃗𝑤𝑤2�����⃗

� = � 𝑣𝑣1����⃗ + 𝑣𝑣2����⃗
𝑤𝑤1����⃗ + 𝑤𝑤2�����⃗

� 
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∀𝛼𝛼 ∈ 𝐹𝐹,𝛼𝛼 �𝑣𝑣1����⃗𝑤𝑤1����⃗
� = �𝛼𝛼𝑣𝑣1����⃗𝛼𝛼𝑤𝑤1����⃗

� 

此时 𝑉𝑉 × 𝑊𝑊 中的零向量是 �0𝑉𝑉����⃗

0𝑊𝑊�����⃗
� 

【命题 1.1】向量空间基本性质 

(𝑖𝑖)∀𝜆𝜆 ∈ 𝐹𝐹, 𝑣⃗𝑣 ∈ 𝑉𝑉, 𝜆𝜆𝑣⃗𝑣 = 0�⃗ ⇔ 𝜆𝜆 = 0 ∨ 𝑣⃗𝑣 = 0�⃗

(𝑖𝑖𝑖𝑖)∀𝑣⃗𝑣 ∈ 𝑉𝑉, (−1)𝑣⃗𝑣 = −𝑣⃗𝑣 

证：(𝑖𝑖) ⇐:先设 𝜆𝜆 = 0,在𝐹𝐹中有 

1 + 0 = 1 ⇒ (1 + 0)𝑣⃗𝑣 = 1 ⋅ 𝑣⃗𝑣 ⇒ 1 ⋅ 𝑣⃗𝑣 + 0 ⋅ 𝑣⃗𝑣 = 1 ⋅ 𝑣⃗𝑣 

⇒ 0 ⋅ 𝑣⃗𝑣 = 0�⃗  

再设 𝑣⃗𝑣 = 0�⃗ ,∵  0�⃗ + 0�⃗ = 0�⃗

∴ 𝜆𝜆�0�⃗ + 0�⃗ � = 𝜆𝜆0�⃗    ∴ 𝜆𝜆0�⃗ + 𝜆𝜆0�⃗ = 𝜆𝜆0�⃗   ∴  𝜆𝜆0�⃗ = 0�⃗ ⇒ 𝜆𝜆𝑣⃗𝑣 = 0�⃗  

⇒:设𝜆𝜆𝑣⃗𝑣 = 0�⃗ ∧ 𝜆𝜆 ≠ 0

则 𝜆𝜆−1(𝜆𝜆𝑣⃗𝑣) =  𝜆𝜆−10�⃗ = 0�⃗  

(𝜆𝜆−1𝜆𝜆)𝑣⃗𝑣 = 0�⃗  

1 ⋅ 𝑣⃗𝑣 = 0�⃗ ⇒ 𝑣⃗𝑣 = 0

注：下面内容讲义中缺失，此处补证，仅供参考。 

再设 𝜆𝜆𝑣⃗𝑣 = 0�⃗ ∧  𝑣⃗𝑣 ≠ 0�⃗  

∴ 𝜆𝜆𝑣⃗𝑣 + 𝜆𝜆𝑣⃗𝑣 = 2𝜆𝜆𝑣⃗𝑣 = 0�⃗ + 0�⃗ = 0�⃗

∴ 2𝜆𝜆𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣     ∵ 𝑣⃗𝑣 ≠ 0   ∴ 2𝜆𝜆 = 𝜆𝜆   ∴ 𝜆𝜆 = 0 

(𝑖𝑖𝑖𝑖):由 (𝑖𝑖)得 0 ⋅ 𝑣⃗𝑣 = 0�⃗  

∵ 0�⃗ − 𝑣⃗𝑣 = 0�⃗ − 𝑣⃗𝑣   

∴ −𝑣⃗𝑣 = 0 ⋅ 𝑣⃗𝑣 − 1 ⋅ 𝑣⃗𝑣 = (0− 1)𝑣⃗𝑣 = (−1)𝑣⃗𝑣      ∎ 
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【思考题】无法成为线性空间的整数环 

(ℤ, +,0)不可能是任何域上的线性空间 

反证法：假设 ℤ  是域 𝐹𝐹 上的向量空间 �𝐹𝐹, +, 0� ,⋅ , 1�� 

数乘 𝐹𝐹 × ℤ → ℤ 

若 char𝐹𝐹 = 𝑝𝑝 ≠ 0,则  

∵ 1� ⋅ 1 = 1 

∴ �1� + 1� + ⋯+ 1�������������
𝑝𝑝个

⋅ 1 = 1� ⋅ 1 + ⋯+ 1� ⋅ 1�����������
𝑝𝑝个

 

而 �1� + 1� + ⋯+ 1�������������
𝑝𝑝个

= 0, 1� ⋅ 1 + ⋯+ 1� ⋅ 1�����������
𝑝𝑝个

= 𝑝𝑝 

∴ 𝑝𝑝 = 0 矛盾   ∴ char𝐹𝐹 = 0 

设 �1� + 1��−1 ⋅ 1 = 𝑘𝑘 ∈ ℤ 

已知 ��1� + 1�� ⋅ �1� + 1��−1� ⋅ 1 = �1� + 1�� ⋅ 𝑘𝑘 = 1� ⋅ 𝑘𝑘 + 1� ⋅ 𝑘𝑘 

= �1� ⋅ 1 + 1� ⋅ 1 +⋯+ 1� ⋅ 1 = 1����������������������
𝑘𝑘个

⋅ 2 = 2𝑘𝑘 

而 ��1� + 1�� ⋅ �1� + 1��−1� ⋅ 1 =  1� ⋅ 1 = 1 

∴ 2𝑘𝑘 = 1 ⇒ 𝑘𝑘 =
1
2
∉ ℤ 矛盾 

综上,ℤ 不是线性空间  
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§2 子空间 

【定义 2.1.1】子空间 

设𝑉𝑉 是域 𝐹𝐹 上的线性空间，定义 𝑊𝑊 ⊂ 𝑉𝑉  

且 𝑊𝑊 关于𝑉𝑉中的加法和数乘也构成线性空间 

则称 𝑊𝑊是 𝑉𝑉的子空间 

 

【命题 2.1】子空间的充要条件 

设𝑊𝑊 ⊂ 𝑉𝑉,则𝑊𝑊是𝑉𝑉的子空间 

⇔ ∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹,𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝑊𝑊,𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣 ∈ 𝑊𝑊 

证： ⇒显然 

⇐:∵ 𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣 ∈ 𝑊𝑊   ∴ 𝑢𝑢�⃗ + 𝑣⃗𝑣 ∈ 𝑊𝑊,𝛼𝛼𝑢𝑢�⃗ ∈ 𝑊𝑊 

于是𝑊𝑊关于加法和数乘都封闭 

由此可知𝑊𝑊是𝑉𝑉的子空间       ∎ 

 

【例 2.1.1】平凡子空间 

平凡子空间   �0�⃗ �,𝑉𝑉 

 

【例 2.1.2】坐标空间子空间 

𝐹𝐹𝑛𝑛 中的子空间举例 

设 𝐴𝐴 ∈ 𝐹𝐹𝑚𝑚×𝑛𝑛, 𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

则 𝐴𝐴𝑥⃗𝑥 = 0�⃗  的解的集合是 𝐹𝐹𝑛𝑛 中的子空间 

7／363



§2 子空间 

 

【例 2.1.3】矩阵空间子空间 

𝐹𝐹𝑚𝑚×𝑛𝑛中的子空间举例 

(𝑖𝑖) 𝑅𝑅 = �𝐴𝐴 ∈ 𝐹𝐹𝑚𝑚×𝑛𝑛�𝐴𝐴(1) = 0𝑛𝑛����⃗ � 

(𝑖𝑖𝑖𝑖)𝑛𝑛 = 𝑚𝑚,𝑀𝑀𝑛𝑛(𝐹𝐹)中所有对称矩阵的集合记为 𝑆𝑆𝑀𝑀𝑛𝑛(𝐹𝐹), 

𝑆𝑆𝑀𝑀𝑛𝑛(𝐹𝐹)是子空间 

验证:∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹,𝐴𝐴,𝐵𝐵 ∈ 𝑆𝑆𝑀𝑀𝑛𝑛(𝐹𝐹) 

(𝛼𝛼𝛼𝛼+ 𝛽𝛽𝛽𝛽)𝑡𝑡 = (𝛼𝛼𝛼𝛼)𝑡𝑡 + (𝛽𝛽𝛽𝛽)𝑡𝑡 = 𝛼𝛼𝐴𝐴𝑡𝑡 + 𝛽𝛽𝐵𝐵𝑡𝑡 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 

∴ 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 ∈ 𝑆𝑆𝑀𝑀𝑛𝑛(𝐹𝐹) 

 

【例 2.1.4】多项式空间子空间 

𝐹𝐹[𝑥𝑥]中子空间举例 

设 𝐹𝐹𝑛𝑛[𝑥𝑥] = {𝑓𝑓 ∈ 𝐹𝐹[𝑥𝑥]| deg𝑓𝑓 < 𝑛𝑛} 

𝐹𝐹𝑛𝑛[𝑥𝑥]是子空间 

设 𝑝𝑝 ∈ 𝐹𝐹[𝑥𝑥] ∖ {0} 

𝐼𝐼𝑝𝑝 = {𝑓𝑓 ∈ 𝐹𝐹[𝑥𝑥]│ 𝑝𝑝|𝑓𝑓} 是子空间 

验证:∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹,𝑓𝑓,𝑔𝑔 ∈ 𝐼𝐼𝑝𝑝 

∃𝑓𝑓1,𝑔𝑔1 ∈ 𝐹𝐹[𝑥𝑥] 使得 

𝑓𝑓 = 𝑓𝑓1𝑝𝑝, 𝑔𝑔 = 𝑔𝑔1𝑝𝑝 

𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 = 𝛼𝛼𝑓𝑓1𝑝𝑝 + 𝛽𝛽𝑔𝑔1𝑝𝑝 = (𝛼𝛼𝑓𝑓1 + 𝛽𝛽𝑔𝑔1)𝑝𝑝 

⇒ 𝑝𝑝|𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 ⇒ 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 ∈ 𝐼𝐼𝑝𝑝        ∎ 

 

【例 2.1.5】函数空间子空间 

𝐶𝐶[𝑎𝑎, 𝑏𝑏] = �𝑓𝑓(𝑥𝑥)�𝑓𝑓: [𝑎𝑎,𝑏𝑏] → ℝ,连续� 

𝐶𝐶[𝑎𝑎, 𝑏𝑏]是Func([𝑎𝑎, 𝑏𝑏] → ℝ)的子空间 
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【例 2.1.6】笛卡尔积子空间 

设 𝑉𝑉,𝑊𝑊 是 𝐹𝐹 上的线性子空间 

𝑉𝑉1 ⊂ 𝑉𝑉,𝑊𝑊1 ⊂ 𝑊𝑊 是子空间 

则 𝑉𝑉1 × 𝑊𝑊1 是 𝑉𝑉 × 𝑊𝑊 的子空间 

 

【定义 2.1】子空间的和 

设𝑉𝑉1,𝑉𝑉2是𝑉𝑉的子空间 

𝑉𝑉1 + 𝑉𝑉2 ≔ {𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ |𝑣𝑣1����⃗ ∈ 𝑉𝑉1,𝑣𝑣2����⃗ ∈ 𝑉𝑉2} 

称 𝑉𝑉1 + 𝑉𝑉2 是 𝑉𝑉1 与 𝑉𝑉2 的和 

 

【命题 2.2】子空间的交与和 

(𝑖𝑖)𝑉𝑉中任何多个子空间的交仍是子空间 

(𝑖𝑖𝑖𝑖)𝑉𝑉中有限多个子空间的和也是子空间 

证：设𝐼𝐼是一个下标集  

∀𝑖𝑖 ∈ 𝐼𝐼,𝑉𝑉𝑖𝑖是 𝑉𝑉 的子空间 

设 𝑊𝑊 = �𝑉𝑉𝑖𝑖
𝑖𝑖∈𝐼𝐼

 

∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹,𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝑊𝑊  则 𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝑉𝑉𝑖𝑖 

于是 𝛼𝛼𝑢𝑢�⃗ +  𝛽𝛽𝑣⃗𝑣 ∈ 𝑉𝑉𝑖𝑖 ⇒ 𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣 ∈ 𝑊𝑊 

由此可知 𝑊𝑊是子空间 

设𝐼𝐼 = {1,2, . . ,𝑘𝑘} 

∀𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝑉𝑉1 + 𝑉𝑉2 +⋯+ 𝑉𝑉𝑘𝑘 

∃𝑢𝑢𝚤𝚤���⃗ ∈ 𝑉𝑉𝑖𝑖 ,𝑣𝑣𝚤𝚤���⃗ ∈ 𝑉𝑉𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑘𝑘 

使得 𝑢𝑢�⃗ = 𝑢𝑢1����⃗ + ⋯+ 𝑢𝑢𝑘𝑘����⃗ , 𝑣⃗𝑣 = 𝑣𝑣1����⃗ + ⋯+ 𝑣𝑣𝑘𝑘����⃗  

𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣 = (𝛼𝛼𝑢𝑢1����⃗ + 𝛽𝛽𝑣𝑣1����⃗ ) + ⋯+ (𝛼𝛼𝑢𝑢𝑘𝑘����⃗ + 𝛽𝛽𝑣𝑣𝑘𝑘����⃗ ) 
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∵ ∀𝑖𝑖 ∈ 𝐼𝐼,𝑢𝑢𝚤𝚤���⃗ + 𝑣𝑣𝚤𝚤���⃗ ∈ 𝑉𝑉𝑖𝑖 

∴ 𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣 ∈ 𝑉𝑉1 + ⋯+ 𝑉𝑉𝑘𝑘        ∎ 

 

【定义 2.2】线性组合 

设 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ∈ 𝑉𝑉,𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝐹𝐹 

𝛼𝛼1𝑣𝑣1����⃗ + ⋯+ 𝛼𝛼𝑘𝑘𝑣𝑣𝑘𝑘����⃗  称为 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗  在 𝐹𝐹 上的线性组合 

设 𝑆𝑆 ⊂ 𝑉𝑉 非空     记⟨𝑆𝑆⟩是𝑆𝑆中元素所有可能的线性组合的集合 

即⟨𝑆𝑆⟩ = {𝛼𝛼1𝑣𝑣1����⃗ + ⋯+ 𝛼𝛼𝑘𝑘𝑣𝑣𝑘𝑘����⃗ |∀𝑘𝑘 ∈ ℤ+,𝑣𝑣1����⃗ , … ,𝑣𝑣𝑘𝑘����⃗ ∈ 𝑆𝑆,𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝐹𝐹} 

称 ⟨𝑆𝑆⟩为 𝑆𝑆 在 𝐹𝐹上生成的子空间 

注: (𝑖𝑖)验证⟨𝑆𝑆⟩的确是子空间， 

见上学期讲义 2.矩阵 →线性相关性 𝑃𝑃13 

(𝑖𝑖𝑖𝑖)设𝑈𝑈是包含𝑆𝑆的子空间，则 ⟨𝑆𝑆⟩ ⊂ 𝑈𝑈    

 

【例 2.1.7】生成多项式空间 

𝐹𝐹[𝑥𝑥] = ⟨{1,𝑥𝑥,𝑥𝑥2, … }⟩ = ⟨1,𝑥𝑥, 𝑥𝑥2, … ⟩ 
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§3 线性相关性 

𝑉𝑉 是 𝐹𝐹上线性空间 

【定义 3.1】线性相关 线性无关 

设 𝑣𝑣1����⃗  , … , 𝑣𝑣𝑘𝑘����⃗ ∈ 𝑉𝑉,如果存在 𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝐹𝐹不全为零 

使得 𝛼𝛼1𝑣𝑣1����⃗ + ⋯+ 𝛼𝛼𝑘𝑘𝑣𝑣𝑘𝑘����⃗ = 0�⃗  

则称 𝑣𝑣1����⃗ , … ,𝑣𝑣𝑘𝑘����⃗  线性相关 

否则称 𝑣𝑣1����⃗  , … , 𝑣𝑣𝑘𝑘����⃗线性无关 

 

设 𝑆𝑆 ⊂ 𝑉𝑉非空    如果 𝑆𝑆 中有一个非空有限子集 

使得该子集中的元素线性相关 

则称 𝑆𝑆 线性相关，否则称 𝑆𝑆 线性无关 

 

【例 3.1.1】简单三角函数线性相关性 

{1, cos2 𝑥𝑥} ⊂ 𝐶𝐶(−∞, +∞) 线性无关 

𝛼𝛼1 + 𝛼𝛼2 cos2 𝑥𝑥 = 0, 

令 𝑥𝑥 =
𝜋𝜋
2
⇒ 𝛼𝛼1 = 0 

令 𝑥𝑥 = 0 ⇒ 𝛼𝛼2 = 0 

{1, cos2 𝑥𝑥 , sin2 𝑥𝑥}  线性相关 

cos2 𝑥𝑥 + sin2 𝑥𝑥 − 1 = 0 

 

【例 3.1.2】指数函数线性无关 

{𝑒𝑒𝑥𝑥, 𝑒𝑒2𝑥𝑥, … , 𝑒𝑒𝑛𝑛𝑛𝑛} ⊂ 𝐶𝐶(−∞, +∞)线性无关 
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§3 线性相关性 

 

设 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ ℝ 使得  

𝛼𝛼1𝑒𝑒𝑥𝑥 + 𝛼𝛼2𝑒𝑒2𝑥𝑥 + ⋯+ 𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛 = 0   [∗] 

对[∗]不断求导，得到 

𝛼𝛼1𝑒𝑒𝑥𝑥 + 2𝛼𝛼2𝑒𝑒2𝑥𝑥 + ⋯+ 𝑛𝑛𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛 = 0 

𝛼𝛼1𝑒𝑒𝑥𝑥 + 22𝛼𝛼2𝑒𝑒2𝑥𝑥 + ⋯+ 𝑛𝑛2𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛 = 0 

⋯ 

𝛼𝛼1𝑒𝑒𝑥𝑥 + 2𝑛𝑛−1𝛼𝛼2𝑒𝑒2𝑥𝑥 + ⋯+ 𝑛𝑛𝑛𝑛−1𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛 = 0 

�

1 1 ⋯ 1
1 2 ⋯ 𝑛𝑛
⋮ ⋮ ⋱ ⋮

1𝑛𝑛−1 2𝑛𝑛−1 ⋯ 𝑛𝑛𝑛𝑛−1
�

�������������������
𝐴𝐴

�

𝛼𝛼1𝑒𝑒𝑥𝑥

𝛼𝛼2𝑒𝑒2𝑥𝑥
⋮

𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛
� = �

0
0
⋮
0

� 

由范德蒙德行列式可知 |𝐴𝐴| ≠ 0 

⇒ 𝛼𝛼1𝑒𝑒𝑥𝑥 = 𝛼𝛼2𝑒𝑒2𝑥𝑥 = ⋯ = 𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛 = 0,∀𝑥𝑥 ∈ ℝ 

⇒ 𝛼𝛼1 = 𝛼𝛼2 = ⋯ = 𝛼𝛼𝑛𝑛 = 0 

 

【定义 3.2】极大线性无关集 

设 𝑆𝑆 ⊂ 𝑉𝑉,如果 

(𝑖𝑖)𝑆𝑆 线性无关 

(𝑖𝑖𝑖𝑖)∀𝑣⃗𝑣 ∈ 𝑉𝑉 ∖ 𝑆𝑆, 𝑆𝑆 ∪ {𝑣⃗𝑣}是线性相关,即 𝑣⃗𝑣 ∈ ⟨𝑆𝑆⟩ 

则称 𝑆𝑆是 𝑉𝑉 中一个极大线性无关集 

 

【引理 3.1】线性无关集可扩展为极大集 

设 𝑆𝑆 ⊂ 𝑉𝑉 是一个线性无关集， 则 ∃𝑇𝑇 ⊂ 𝑉𝑉,使得 

(𝑖𝑖)𝑆𝑆 ⊂ 𝑇𝑇    (𝑖𝑖𝑖𝑖)𝑇𝑇是极大线性无关集 

证明需要超限归纳法. 
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【引理 3.2】线性空间中的引理 3.1 

设 𝑚𝑚 ∈ ℤ+,𝑉𝑉 中线性无关集至多含有 𝑚𝑚个元素

设 𝑆𝑆 是 𝑉𝑉 中的线性无关集 

则存在 𝑉𝑉 中的极大线性无关集 𝑇𝑇 包含 𝑆𝑆 

证：如果 𝑆𝑆本身是极大线性无关集，则引理成立。 

否则 ∃𝑣𝑣1����⃗ ∈ 𝑉𝑉,使得 𝑆𝑆1 = 𝑆𝑆 ∪ {𝑣𝑣1����⃗ } 是线性无关集

如果 𝑆𝑆1 是极大线性无关集，则引理成立

否则 ∃𝑣𝑣2����⃗ ∈ 𝑉𝑉,使得 𝑆𝑆2 = 𝑆𝑆 ∪ {𝑣𝑣1����⃗ } ∪ {𝑣𝑣2����⃗ }是线性无关集

注意到 card𝑆𝑆 < card𝑆𝑆1 < card 𝑆𝑆2

该步骤最多重复 𝑛𝑛 − card𝑆𝑆  次 

于是引理成立    ∎ 

【引理 3.3】线性无关集中极大集基数最大 

设 𝑆𝑆 ⊂ 𝑉𝑉 是极大线性无关集 

𝑇𝑇 ⊂ 𝑉𝑉是线性无关集 

如果 card 𝑆𝑆 < ∞ 

则 card𝑇𝑇 ≤ card 𝑆𝑆 

证：设 𝑆𝑆 = {𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ },𝑇𝑇 = {𝑤𝑤1����⃗ , … ,𝑤𝑤𝑙𝑙����⃗ }

假设 𝑙𝑙 > 𝑘𝑘 

因为 𝑆𝑆 是极大线性无关集 

∴ ∀𝑗𝑗 ∈ {1, … , 𝑙𝑙},∃𝑎𝑎1𝑗𝑗 , … , 𝑎𝑎𝑘𝑘𝑘𝑘 ∈ 𝐹𝐹

使得 𝑤𝑤𝚥𝚥����⃗ = 𝑎𝑎1𝑗𝑗𝑣𝑣1����⃗ +⋯+ 𝑎𝑎𝑘𝑘𝑘𝑘𝑣𝑣𝑘𝑘����⃗ = (𝑣𝑣1����⃗  , … , 𝑣𝑣𝑘𝑘����⃗ )�
𝑎𝑎1𝑗𝑗
⋮
𝑎𝑎𝑘𝑘𝑘𝑘

� 
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§3 线性相关性 

 

令 𝐴𝐴 = �

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑙𝑙
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑙𝑙
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑘𝑘1 𝑎𝑎𝑘𝑘2 ⋯ 𝑎𝑎𝑘𝑘𝑘𝑘

�  则 

(𝑤𝑤1����⃗ , … ,𝑤𝑤𝑙𝑙����⃗ ) = (𝑣𝑣1����⃗ , … ,𝑣𝑣𝑘𝑘����⃗ )𝐴𝐴      [∗] 

∵ 𝑙𝑙 > 𝑘𝑘  ∃𝛼𝛼1, … ,𝛼𝛼𝑙𝑙 ∈ 𝐹𝐹不全为零 

使得𝐴𝐴 �
𝛼𝛼1
⋮
𝛼𝛼𝑙𝑙
� = �

0
⋮
0
� 

𝛼𝛼1𝑤𝑤1����⃗ + ⋯+ 𝛼𝛼𝑙𝑙𝑤𝑤𝑙𝑙����⃗ = (𝑤𝑤1����⃗ , . . ,𝑤𝑤𝑙𝑙����⃗ )�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� 

= (𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ )𝐴𝐴�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� = 0�⃗    矛盾  

于是 𝑙𝑙 ≤ 𝑘𝑘    ∎ 

 

【推论 3.1】极大线性无关集基数唯一 

设 𝑆𝑆,𝑇𝑇 ⊂ 𝑉𝑉 是极大线性无关集，如果 𝑆𝑆,𝑇𝑇都是有限集，则 

card𝑆𝑆 = card𝑇𝑇 

证：由引理 3.3 card𝑆𝑆 ≥ card𝑇𝑇 

且 card𝑇𝑇 ≥ card 𝑆𝑆  

 

【定义 3.3】维数 

设 𝑆𝑆 ⊂ 𝑉𝑉 是极大线性无关集，如果 𝑆𝑆 有限， 

则 card𝑆𝑆称为 𝑉𝑉在 𝐹𝐹 上的维数 

记为dim𝐹𝐹 𝑉𝑉或dim𝑉𝑉 

特别地   dim�0�⃗ � = 0 
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李子明老师的线性代数讲义 

 

【例 3.1.3】多项式空间的维数 

dim𝐹𝐹𝑛𝑛[𝑥𝑥] = 𝑛𝑛 

{1,𝑥𝑥, … ,𝑥𝑥𝑛𝑛−1}是极大线性无关组 

注：若 𝑉𝑉没有有限的极大线性无关集，则 

dim𝐹𝐹 𝑉𝑉 ≔ ∞ 

 

【定义 3.4】线性空间的基 

设 𝐵𝐵 ⊂ 𝑉𝑉 是线性无关集 

如果∀𝑣⃗𝑣 ∈ 𝑉𝑉, 𝑣⃗𝑣 是 𝐵𝐵中某些向量的线性组合 

即 𝑉𝑉 = ⟨𝐵𝐵⟩ 

则称 𝐵𝐵 是 𝑉𝑉 的一组基 

注: (𝑖𝑖) 𝐵𝐵是 𝑉𝑉的一组基⇔ 𝐵𝐵是极大线性无关集 

(𝑖𝑖𝑖𝑖)任何线性空间都有基，当dim𝑉𝑉 < ∞,这是引理 3.1 的直接推论 

 

引理 3.1 还直接导致 

【定理 3.1】基扩充定理 

设dim𝑉𝑉 < ∞, 𝑆𝑆 ⊂ 𝑉𝑉是线性无关集 

则存在 𝑉𝑉 的基底 𝐵𝐵 使得 𝑆𝑆 ⊂ 𝐵𝐵 

注：设 𝐵𝐵 是 𝑉𝑉 的一组基，则dim𝑉𝑉 = card𝐵𝐵 

 

【例 3.1.4】复数和实数域的维数 

dimℂ ℂ = 1, �1,√−1�是 ℂ 在 ℝ 上的一组基 

于是dimℝ ℂ = 2 
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§3 线性相关性 

 

【例 3.1.5】实数域在有理域上无穷维 

证明dimℚ ℝ = ∞ 

由 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 判别法 

∀𝑛𝑛 ∈ ℤ+,𝑥𝑥𝑛𝑛 − 2 在 ℚ𝑛𝑛 中不可约 

设 𝜃𝜃𝑛𝑛 = √2𝑛𝑛 ∈ ℝ 

𝑈𝑈 = ⟨𝜃𝜃𝑛𝑛0,𝜃𝜃𝑛𝑛, … , 𝜃𝜃𝑛𝑛𝑛𝑛−1⟩ 

先证𝜃𝜃𝑛𝑛0,𝜃𝜃𝑛𝑛, … , 𝜃𝜃𝑛𝑛𝑛𝑛−1 在 ℚ 上线性无关 

假设 ∃𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛−1 ∈ ℚ不全为零，使得 

𝛼𝛼0 + 𝛼𝛼1𝜃𝜃𝑛𝑛 +⋯+ 𝛼𝛼𝑛𝑛−1𝜃𝜃𝑛𝑛𝑛𝑛−1 = 0 

令 𝑝𝑝(𝑥𝑥) = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥 + ⋯+ 𝛼𝛼𝑛𝑛−1𝑥𝑥𝑛𝑛−1 

则 𝑝𝑝 ∈ ℚ[𝑥𝑥]且 𝑝𝑝 ≠ 0,则 𝑝𝑝(𝜃𝜃𝑛𝑛) = 0 

因为 𝑥𝑥𝑛𝑛 − 2 不可约且deg𝑝𝑝 < 𝑛𝑛 

所以gcd(𝑝𝑝, 𝑥𝑥𝑛𝑛 − 2) = 1 

于是 ∃𝑢𝑢,𝑣𝑣 ∈ ℚ[𝑥𝑥] 

𝑢𝑢(𝑥𝑥)𝑝𝑝(𝑥𝑥) + 𝑣𝑣(𝑥𝑥)(𝑥𝑥𝑛𝑛 − 2) = 1 

代入 𝜃𝜃𝑛𝑛 得到 0 = 1     矛盾 

由此可知 1,𝜃𝜃𝑛𝑛, … , 𝜃𝜃𝑛𝑛𝑛𝑛−1 在 ℚ 上线性无关 

⇒ dimℚ 𝑈𝑈 = 𝑛𝑛 

⇒ dimℚ ℝ ≥ 𝑛𝑛,∀𝑛𝑛 ∈ ℤ+ 

⇒ dimℚ ℝ = ∞        ∎ 
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李子明老师的线性代数讲义 

 

【命题 3.1】有限维子空间基本特征 

设 𝑈𝑈1,𝑈𝑈2 ⊂ 𝑉𝑉 是两个子空间，如果dim𝑈𝑈2 < ∞ 

如果 𝑈𝑈1 ⊂ 𝑈𝑈2且 dim𝑈𝑈1 = dim𝑈𝑈2 

则 𝑈𝑈1 = 𝑈𝑈2 

 

【命题 3.2】子空间交和维数公式 

设 𝑈𝑈1,𝑈𝑈2 ⊂ 𝑉𝑉 是有限维子空间 

则dim(𝑈𝑈1 + 𝑈𝑈2) + dim(𝑈𝑈1 ∩ 𝑈𝑈2) = dim𝑈𝑈1 + dim𝑈𝑈2 
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李子明老师的线性代数讲义 

 

§4 子空间的直和 

设 𝑈𝑈1, … ,𝑈𝑈𝑘𝑘 ⊂ 𝑉𝑉 是子空间 

【定义 4.1】子空间的直和 

设 𝑈𝑈 = 𝑈𝑈1 + ⋯+ 𝑈𝑈𝑘𝑘 

如果 ∀𝑢𝑢�⃗ ∈ 𝑈𝑈,∃!𝑢𝑢𝚤𝚤���⃗ ∈ 𝑈𝑈𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑘𝑘 

使得 𝑢𝑢�⃗ = 𝑢𝑢1����⃗ + ⋯+ 𝑢𝑢𝑘𝑘����⃗  

则称 𝑈𝑈 是 𝑈𝑈1, … ,𝑈𝑈𝑘𝑘  的直和 

记为 𝑈𝑈 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑘𝑘 

 

【命题 4.1】直和的性质 

利用上述定义中的记号，则下列命题等价 

(𝑖𝑖)𝑈𝑈 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑘𝑘 

(𝑖𝑖𝑖𝑖)∀𝑢𝑢1����⃗ ∈ 𝑈𝑈1, … ,𝑢𝑢𝑘𝑘����⃗ ∈ 𝑈𝑈𝑘𝑘 

𝑢𝑢1����⃗ + ⋯+ 𝑢𝑢𝑘𝑘����⃗ = 0�⃗ ⇒ 𝑢𝑢1����⃗ = ⋯ = 𝑢𝑢𝑘𝑘����⃗ = 0 

(𝑖𝑖𝑖𝑖𝑖𝑖)∀𝑖𝑖 ∈ {1,2, … ,𝑘𝑘} 

𝑈𝑈𝑖𝑖 ∩ {𝑈𝑈1 + ⋯+ 𝑈𝑈𝑖𝑖−1 + 𝑈𝑈𝑖𝑖+1 + ⋯+ 𝑈𝑈𝑛𝑛} = �0�⃗ � 

证：(𝑖𝑖) ⇒ (𝑖𝑖𝑖𝑖) 

0�⃗ = 0�⃗ + ⋯+ 0�⃗ = 𝑢𝑢1����⃗ + ⋯+ 𝑢𝑢𝑘𝑘����⃗  

0�⃗ ,𝑢𝑢𝚤𝚤���⃗ ∈ 𝑈𝑈𝑖𝑖 ⇒ 𝑢𝑢𝚤𝚤���⃗ = 0�⃗    �唯一性� 

(𝑖𝑖𝑖𝑖) ⇒ (𝑖𝑖𝑖𝑖𝑖𝑖) 

设 𝑈𝑈𝚤𝚤� = 𝑈𝑈1 + ⋯+ 𝑈𝑈𝑖𝑖−1 + 𝑈𝑈𝑖𝑖+1 + ⋯+ 𝑈𝑈𝑘𝑘 

由下标的任意性，只要证  𝑈𝑈1 ∩ 𝑈𝑈1� = �0�⃗ � 即可  

设 𝑣⃗𝑣 ∈ 𝑈𝑈1 ∩ 𝑈𝑈1�   则存在 𝑢𝑢2����⃗ ∈ 𝑈𝑈2, … ,𝑢𝑢𝑘𝑘����⃗ ∈ 𝑈𝑈𝑘𝑘 
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§4 子空间的直和 

 

使得 𝑣⃗𝑣 = 𝑢𝑢2����⃗ + ⋯+ 𝑢𝑢𝑘𝑘����⃗  

即 − 𝑣⃗𝑣 + 𝑢𝑢2����⃗ + ⋯+ 𝑢𝑢𝑘𝑘����⃗ = 0�⃗  

∵ 𝑣⃗𝑣 ∈ 𝑈𝑈1    ∴ 𝑣⃗𝑣 = 0�⃗  

(𝑖𝑖𝑖𝑖𝑖𝑖) ⇒ (𝑖𝑖) 

设 𝑢𝑢�⃗ = 𝑢𝑢1����⃗ +⋯+ 𝑢𝑢𝑘𝑘����⃗ = 𝑣𝑣1����⃗ + ⋯+ 𝑣𝑣𝑘𝑘����⃗  

其中 𝑢𝑢𝚤𝚤���⃗ ,𝑣𝑣𝚤𝚤���⃗ ∈ 𝑈𝑈𝑖𝑖, 𝑖𝑖 = 1, … ,𝑘𝑘 

则 0�⃗ = (𝑢𝑢1����⃗ − 𝑣𝑣1����⃗ ) + ⋯+ (𝑢𝑢𝑘𝑘����⃗ − 𝑣𝑣𝑘𝑘����⃗ ) 

𝑣𝑣1����⃗ − 𝑢𝑢1����⃗ = (𝑢𝑢2����⃗ − 𝑣𝑣2����⃗ ) +⋯+ (𝑢𝑢𝑘𝑘����⃗ − 𝑣𝑣𝑘𝑘����⃗ ) 

于是 𝑣𝑣1����⃗ − 𝑢𝑢1����⃗ ∈ 𝑈𝑈1 ∩ 𝑈𝑈1� ⇒ 𝑣𝑣1����⃗ = 𝑢𝑢1����⃗  

同理  𝑢𝑢𝚤𝚤���⃗ = 𝑣𝑣𝚤𝚤���⃗ , 𝑖𝑖 = 2,3, … ,𝑘𝑘    

注：如果 𝑈𝑈1 + ⋯+ 𝑈𝑈𝑘𝑘  是直和 

∀𝑖𝑖1, … , 𝑖𝑖𝑆𝑆 ∈ {1, … ,𝑘𝑘}, 𝑖𝑖1 < ⋯ < 𝑖𝑖𝑠𝑠 

则 𝑈𝑈𝑖𝑖1 + ⋯+ 𝑈𝑈𝑖𝑖𝑠𝑠也是直和         ∎ 

 

【命题 4.2】直和维数相加 

设 𝑈𝑈1, … ,𝑈𝑈𝑘𝑘 ⊂ 𝑉𝑉 是子空间 

dim𝑈𝑈𝑖𝑖 < ∞, 𝑖𝑖 = 1, … ,𝑛𝑛.  令 𝑈𝑈 = 𝑈𝑈1 + ⋯+ 𝑈𝑈𝑘𝑘   

则 𝑈𝑈 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑘𝑘 ⇔ dim𝑈𝑈 = dim𝑈𝑈1 + ⋯+ dim𝑈𝑈𝑘𝑘 

证：对 𝑘𝑘归纳 

⇒当 𝑘𝑘 = 1 时 命题显然成立 

设 𝑘𝑘 − 1 时命题成立  当 𝑘𝑘时 

dim𝑈𝑈 = dim𝑈𝑈1 + dim𝑈𝑈1�     �𝑈𝑈1� = 𝑈𝑈2 + ⋯+ 𝑈𝑈𝑘𝑘� 

�维数公式且  𝑈𝑈1 ∩ 𝑈𝑈1� = �0�⃗ �� 

⇐对 𝑈𝑈1�用归纳假设 
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李子明老师的线性代数讲义 

 

�dim𝑈𝑈𝑖𝑖

𝑘𝑘

𝑖𝑖=1

= dim𝑈𝑈 = dim𝑈𝑈1 + dim𝑈𝑈1� − dim�𝑈𝑈1 ∩ 𝑈𝑈1�� 

≤ dim𝑈𝑈1 + dim𝑈𝑈1� ≤ dim𝑈𝑈1 +⋯+ dim𝑈𝑈𝑘𝑘 

∴ dim�𝑈𝑈1 ∩ 𝑈𝑈1�� = 0 ⇒ 𝑈𝑈1 ∩ 𝑈𝑈1� = �0�⃗ � 

同理dim�𝑈𝑈𝑖𝑖 ∩ 𝑈𝑈𝚤𝚤� � = 0,因而 𝑈𝑈 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑘𝑘         ∎ 

 

【例 4.1.1】直和补存在性 

设dim𝑉𝑉 = 𝑛𝑛,𝑈𝑈 是 𝑉𝑉 的子空间 

则存在 𝑉𝑉 的子空间 𝑊𝑊,使得 𝑉𝑉 = 𝑈𝑈⊕𝑊𝑊 

证：如果 𝑈𝑈 = �0�⃗ � ,令 𝑊𝑊 = 𝑉𝑉   则 𝑉𝑉 = 𝑈𝑈 + 𝑊𝑊 

因为 𝑈𝑈 ∩𝑊𝑊 = �0�⃗ �    由命题 4.1  𝑉𝑉 = 𝑈𝑈⊕𝑊𝑊 

如果 𝑈𝑈 = 𝑉𝑉 取 𝑊𝑊 = �0�⃗ � 同理 

设 0 < dim𝑈𝑈 < 𝑛𝑛 ,𝑢𝑢1����⃗  , … ,𝑢𝑢𝑑𝑑����⃗是 𝑈𝑈的一组基 

由基扩充定理,∃𝑤𝑤𝑑𝑑+1����������⃗ , … ,𝑤𝑤𝑛𝑛�����⃗  使得 

𝑢𝑢1����⃗ , … ,𝑢𝑢𝑑𝑑����⃗ ,𝑤𝑤𝑑𝑑+1����������⃗ , … ,𝑤𝑤𝑛𝑛�����⃗  是 𝑉𝑉 的一组基 

令 𝑊𝑊 = ⟨𝑤𝑤𝑑𝑑+1����������⃗ , … ,𝑤𝑤𝑘𝑘�����⃗ ⟩ 

则 ∀𝑣⃗𝑣 ∈ 𝑉𝑉 ∃𝛼𝛼1, … ,𝛼𝛼𝑑𝑑 ,𝛽𝛽𝑑𝑑+1, … ,𝛽𝛽𝑛𝑛 ∈ 𝐹𝐹 

使得 𝑣⃗𝑣 = 𝛼𝛼1𝑢𝑢1����⃗ + ⋯+ 𝛼𝛼𝑑𝑑𝑢𝑢𝑑𝑑����⃗�����������
𝑢𝑢��⃗

+ 𝛽𝛽𝑑𝑑+1𝑤𝑤𝑑𝑑+1����������⃗ + ⋯+ 𝛽𝛽𝑛𝑛𝑤𝑤𝑛𝑛�����⃗���������������
𝑤𝑤��⃗

 

𝑢𝑢�⃗ ∈ 𝑈𝑈,𝑤𝑤��⃗ ∈ 𝑊𝑊 ⇒ 𝑣⃗𝑣 = 𝑢𝑢�⃗ + 𝑤𝑤��⃗ ⇒ 𝑉𝑉 = 𝑈𝑈 +𝑊𝑊 

dim𝑈𝑈 = dim𝑊𝑊 = 𝑑𝑑 + 𝑛𝑛 − 𝑑𝑑 = 𝑛𝑛 = dim𝑉𝑉 

由命题 4.2  𝑉𝑉 = 𝑈𝑈⊕𝑊𝑊         ∎ 

注：称 𝑊𝑊是𝑈𝑈 的一个直和补 

由于 𝑈𝑈 的基底的选取和扩充不唯一,𝑈𝑈的直和补也不唯一 
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§4 子空间的直和 

 

【例 4.1.2】构造直和补例 

设 𝑈𝑈 = ��1
0��   构造 𝑈𝑈 关于 ℝ2的两个直和补 

ℝ2 = 𝑈𝑈⊕ ��0
1�� = 𝑈𝑈⊕ ��1

1�� 

 

【例 4.1.3】奇偶函数空间直和 

设 𝑉𝑉 = Func(ℝ,ℝ) 

𝐸𝐸� = �𝑓𝑓 ∈ 𝑉𝑉� 𝑓𝑓是偶函数� 

𝑂𝑂� = �𝑓𝑓 ∈ 𝑉𝑉�𝑓𝑓是奇函数� 

证：𝐸𝐸� ,𝑂𝑂�  是 𝑉𝑉的子空间且 𝑉𝑉 = 𝐸𝐸� ⊕ 𝑂𝑂�  

∀𝑓𝑓,𝑔𝑔 ∈ 𝑂𝑂� ,𝛼𝛼,𝛽𝛽 ∈ ℝ  ∀𝑥𝑥 ∈ ℝ 

(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)(−𝑥𝑥) = 𝛼𝛼𝛼𝛼(−𝑥𝑥) + 𝛽𝛽𝛽𝛽(−𝑥𝑥) 

= −𝛼𝛼𝛼𝛼(𝑥𝑥)− 𝛽𝛽𝛽𝛽(𝑥𝑥) = −(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)(𝑥𝑥) 

于是  𝑂𝑂�  是子空间，同理  𝐸𝐸�  是子空间 

∀𝑓𝑓 ∈ 𝑉𝑉 

𝑓𝑓(𝑥𝑥) =
1
2
�𝑓𝑓(𝑥𝑥) + 𝑓𝑓(−𝑥𝑥)��������������

∈𝐸𝐸�

+
1
2
�𝑓𝑓(𝑥𝑥)− 𝑓𝑓(−𝑥𝑥)��������������

∈𝑂𝑂�

 

⇒ 𝑉𝑉 = 𝐸𝐸� + 𝑂𝑂�  

取 𝑓𝑓 = 𝐸𝐸� ∩ 𝑂𝑂� , 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(−𝑥𝑥) ∧ 𝑓𝑓(𝑥𝑥) = −𝑓𝑓(−𝑥𝑥) 

⇒ 𝑓𝑓(𝑥𝑥) = −𝑓𝑓(𝑥𝑥) ⇒ 2𝑓𝑓(𝑥𝑥) = 0 ⇒ 𝑓𝑓(𝑥𝑥) = 0 

⇒ 𝐸𝐸� ∩ 𝑂𝑂� = {0} 

⇒ 𝑉𝑉 = 𝐸𝐸� ⊕𝑂𝑂�        ∎ 
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【例 4.1.4】常值与奇偶函数空间直和 

设 𝐶̃𝐶 = {𝑓𝑓𝑐𝑐 ∈ 𝑉𝑉|∀𝑥𝑥 ∈ ℝ,𝑓𝑓(𝑥𝑥) = 𝑐𝑐, 𝑐𝑐 ∈ ℝ} 

𝐶̃𝐶是 ℝ上常值函数的集合 

𝐸𝐸0� = {𝑓𝑓 ∈ 𝐸𝐸��𝑓𝑓(0) = 0} 

证明：𝐸𝐸� = 𝐶̃𝐶 ⊕ 𝐸𝐸0�   从而 𝑉𝑉 = 𝐶̃𝐶 ⊕ 𝐸𝐸0�⊕𝑂𝑂�  

证：𝐶̃𝐶 ⊂ 𝐸𝐸�  可直接验证  𝐶̃𝐶,𝐸𝐸0� 是子空间 

设 𝑓𝑓 ∈ 𝐸𝐸,𝑓𝑓(0) = 𝑐𝑐 则 

𝑓𝑓 = 𝑐𝑐 + (𝑓𝑓 − 𝑐𝑐), 𝑐𝑐 ∈ 𝐶̃𝐶,𝑓𝑓 − 𝑐𝑐 ∈ 𝐸𝐸0� 

于是 𝐸𝐸� = 𝐶̃𝐶 + 𝐸𝐸0� 

设 𝑔𝑔 ∈ 𝐶̃𝐶 ∩ 𝐸𝐸0�,则 𝑔𝑔(0) = 0 ⇒ ∀𝑥𝑥 ∈ ℝ,𝑔𝑔(𝑥𝑥) = 0  �∵ 𝑔𝑔 ∈ 𝐶̃𝐶� 

⇒ 𝑔𝑔 = 0 ⇒ 𝐸𝐸� = 𝐶̃𝐶 ⊕ 𝐸𝐸0� 

⇒ 𝑉𝑉 = �𝐶̃𝐶 ⊕ 𝐸𝐸0��⊕ 𝑂𝑂�  

⇒ 𝑉𝑉 = 𝐶̃𝐶 ⊕ 𝐸𝐸0� ⊕𝑂𝑂�         ∎ 

 

【例 4.1.5】前两例矩阵版 

上述两个例子的矩阵版 

设 𝑉𝑉 = 𝑀𝑀𝑛𝑛(ℝ)是 𝑛𝑛 阶实方阵的线性空间 

𝐸𝐸� = {𝐴𝐴 ∈ 𝑉𝑉|𝐴𝐴𝑡𝑡 = 𝐴𝐴} 

𝑂𝑂� = {𝐴𝐴 ∈ 𝑉𝑉|𝐴𝐴𝑡𝑡 = −𝐴𝐴} 

则 𝑉𝑉 = 𝐸𝐸� ⊕𝑂𝑂�  

令：𝐷𝐷� = �𝐴𝐴 ∈ 𝑉𝑉�𝐴𝐴 对角阵� 

𝐸𝐸0 = �𝐴𝐴 ∈ 𝐸𝐸��𝐴𝐴对角线元素都为零的矩阵� 

则 𝑉𝑉 = 𝐸𝐸� ⊕𝑂𝑂�  且 𝐸𝐸� = 𝐷𝐷� ⊕ 𝐸𝐸0� 

令 𝑀𝑀𝑖𝑖𝑖𝑖为在 𝑖𝑖行𝑗𝑗列处为 1，其他处都是 0 的 𝑛𝑛 阶方阵, 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 
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§4 子空间的直和 

 

则 𝐵𝐵 = �𝑀𝑀𝑖𝑖𝑖𝑖�𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛}�是线性无关集 

∀𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
   𝐴𝐴 = ��𝑎𝑎𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

∴ 𝑉𝑉 = ⟨𝐵𝐵⟩ ⇒ dim𝑉𝑉 = 𝑛𝑛2 

𝐷𝐷� = ⟨𝑀𝑀11, … ,𝑀𝑀𝑛𝑛𝑛𝑛⟩ ⇒ dim𝐷𝐷� = 𝑛𝑛 

𝑂𝑂� = ��𝑀𝑀𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑗𝑗𝑗𝑗�1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑛𝑛�� 

𝐸𝐸0� = ��𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑗𝑗𝑗𝑗�1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑛𝑛�� 

�𝑀𝑀𝑖𝑖𝑖𝑖 −𝑀𝑀𝑗𝑗𝑗𝑗�1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑛𝑛� 和 �𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑗𝑗𝑗𝑗�1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑛𝑛� 

是线性无关集 

dim𝑂𝑂� = dim𝐸𝐸0� =
𝑛𝑛(𝑛𝑛 − 1)

2
 

dim𝐷𝐷� + dim𝑂𝑂� + dim𝐸𝐸0� = 𝑛𝑛 +
𝑛𝑛(𝑛𝑛 − 1)

2
+
𝑛𝑛(𝑛𝑛 − 1)

2
= 𝑛𝑛2 = dim𝑉𝑉 

⇒ 𝑉𝑉 = 𝐷𝐷� ⊕ 𝐸𝐸0������
𝐸𝐸�

⊕𝑂𝑂�             ∎ 
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李子明老师的线性代数讲义 

 

§5 商空间 

【定义 5.1.1】空间等价关系 

设 𝑈𝑈 ⊂ 𝑉𝑉 是子空间  

在 𝑉𝑉中定义二元关系 ~𝑈𝑈 如下： 

∀𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ∈ 𝑉𝑉, 𝑣𝑣1����⃗ ~𝑈𝑈𝑣𝑣2����⃗   如果 𝑣𝑣1����⃗ − 𝑣𝑣2����⃗ ∈ 𝑈𝑈 

验证  ~𝑈𝑈 是等价关系 

设 𝑣⃗𝑣 ∈ 𝑉𝑉, 𝑣⃗𝑣 − 𝑣⃗𝑣 = 0�⃗ ∈ 𝑈𝑈 ⇒ 𝑣⃗𝑣 ~𝑈𝑈𝑣⃗𝑣    �自反� 

设 𝑣𝑣1����⃗  ~𝑈𝑈𝑣𝑣2����⃗ , 𝑣𝑣1����⃗ − 𝑣𝑣2����⃗ ∈ 𝑈𝑈 ⇒ 𝑣𝑣2����⃗ − 𝑣𝑣1����⃗ ∈ 𝑈𝑈  

⇒ 𝑣𝑣2����⃗  ~𝑈𝑈𝑣𝑣1����⃗     �对称� 

设 𝑣𝑣1����⃗  ~𝑈𝑈𝑣𝑣2����⃗ ,𝑣𝑣2����⃗  ~𝑈𝑈𝑣𝑣3����⃗ ⇒ 𝑣𝑣1����⃗ − 𝑣𝑣2����⃗ ∈ 𝑈𝑈, 𝑣𝑣2����⃗ − 𝑣𝑣3����⃗ ∈ 𝑈𝑈 

⇒ (𝑣𝑣1����⃗ − 𝑣𝑣2����⃗ ) + (𝑣𝑣2����⃗ − 𝑣𝑣3����⃗ ) ∈ 𝑈𝑈 ⇒ 𝑣𝑣1����⃗ − 𝑣𝑣3����⃗ ∈ 𝑈𝑈 

⇒ 𝑣𝑣1����⃗  ~𝑈𝑈𝑣𝑣3����⃗     �传递� 

称  ~𝑈𝑈 是 𝑉𝑉 上关于 𝑈𝑈 的等价关系 

 

【引理 5.1】等价类 

设 𝑣⃗𝑣 ∈ 𝑉𝑉,则 𝑣⃗𝑣 关于  ~𝑈𝑈 的等价类是 𝑣⃗𝑣 + 𝑈𝑈 = {𝑣⃗𝑣 + 𝑢𝑢�⃗ |𝑢𝑢�⃗ ∈ 𝑈𝑈} 

证：∀𝑤𝑤��⃗ ∈ 𝑣⃗𝑣 + 𝑈𝑈,∃𝑢𝑢�⃗ ∈ 𝑈𝑈,使得 𝑤𝑤��⃗ = 𝑣⃗𝑣 + 𝑢𝑢�⃗  

⇒ 𝑤𝑤��⃗ − 𝑣⃗𝑣 = 𝑢𝑢�⃗ ∈ 𝑈𝑈 ⇒ 𝑤𝑤��⃗  ~𝑈𝑈𝑣⃗𝑣 

设 𝑤𝑤��⃗  ~𝑈𝑈𝑣⃗𝑣  则 𝑤𝑤��⃗ − 𝑣⃗𝑣 ∈ 𝑈𝑈 

⇒ ∃𝑢𝑢�⃗ ∈ 𝑈𝑈,𝑤𝑤��⃗ − 𝑣⃗𝑣 = 𝑢𝑢�⃗ ⇒ 𝑤𝑤��⃗ = 𝑣⃗𝑣 + 𝑢𝑢�⃗  

⇒ 𝑤𝑤��⃗ ∈ 𝑣⃗𝑣 + 𝑈𝑈         ∎ 

由此可知  𝑉𝑉/~𝑈𝑈= {𝑣⃗𝑣 + 𝑈𝑈|𝑣⃗𝑣 ∈ 𝑉𝑉} 

注：𝑣⃗𝑣 + 𝑈𝑈 = 𝑤𝑤��⃗ + 𝑈𝑈 ⇔ 𝑣⃗𝑣 ~𝑈𝑈𝑤𝑤��⃗ ⇔ 𝑣⃗𝑣 − 𝑤𝑤��⃗ ∈ 𝑈𝑈 
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§5 商空间 

 

【定义 5.1.2】商空间 

记  𝑉𝑉/~𝑈𝑈  为 𝑉𝑉/𝑈𝑈 ,我们将在 𝑉𝑉/𝑈𝑈中定义加法， 𝐹𝐹 × 𝑉𝑉/𝑈𝑈中定义数乘 

使得𝑉𝑉/𝑈𝑈  是 𝐹𝐹 上的线性空间 

+：𝑉𝑉/𝑈𝑈× 𝑉𝑉/𝑈𝑈→ 𝑉𝑉/𝑈𝑈 , (𝑣𝑣1����⃗ + 𝑈𝑈,𝑣𝑣2����⃗ + 𝑈𝑈) ↦ (𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ ) + 𝑈𝑈 

验证良定义： 

设 𝑣𝑣1����⃗ + 𝑈𝑈 = 𝑤𝑤1����⃗ + 𝑈𝑈, 𝑣𝑣2����⃗ + 𝑈𝑈 = 𝑤𝑤2�����⃗ + 𝑈𝑈 

𝑣𝑣1����⃗ − 𝑤𝑤1����⃗ = 𝑢𝑢1����⃗ ∈ 𝑈𝑈, 𝑣𝑣2����⃗ − 𝑤𝑤2�����⃗ = 𝑢𝑢2����⃗ ∈ 𝑈𝑈 

(𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ )− (𝑤𝑤1����⃗ + 𝑤𝑤2�����⃗ ) ∈ 𝑈𝑈 

⇒ (𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ ) + 𝑈𝑈 = (𝑤𝑤1����⃗ + 𝑤𝑤2�����⃗ ) + 𝑈𝑈   �见上注� 

交换律，结合律由 (𝑉𝑉, +,0) 中的规律自然导出 

(𝑣⃗𝑣 + 𝑈𝑈) + �0�⃗ + 𝑈𝑈� = �𝑣⃗𝑣 + 0�⃗ �+ 𝑈𝑈 = 𝑣⃗𝑣 + 𝑈𝑈 

(𝑣⃗𝑣 + 𝑈𝑈) + (−𝑣⃗𝑣 + 𝑈𝑈) = (𝑣⃗𝑣 − 𝑣⃗𝑣) + 𝑈𝑈 = 0�⃗ + 𝑈𝑈 

于是 �𝑉𝑉/𝑈𝑈 , +, 0�⃗ + 𝑈𝑈�是交换群 

数乘：𝐹𝐹 × 𝑉𝑉/𝑈𝑈→ 𝑉𝑉/𝑈𝑈 , (𝜆𝜆, 𝑣⃗𝑣 + 𝑈𝑈) → (𝜆𝜆𝑣⃗𝑣 + 𝑈𝑈) 

验证良定义：设 𝑣⃗𝑣 + 𝑈𝑈 = 𝑤𝑤��⃗ + 𝑈𝑈 

则 𝑣⃗𝑣 − 𝑤𝑤��⃗ ∈ 𝑈𝑈 ⇒ 𝜆𝜆(𝑣⃗𝑣 − 𝑤𝑤��⃗ ) ∈ 𝑈𝑈 ⇒ 𝜆𝜆𝑣⃗𝑣 − 𝜆𝜆𝑤𝑤��⃗ ∈ 𝑈𝑈 

⇒ 𝜆𝜆𝑣⃗𝑣 + 𝑈𝑈 = 𝜆𝜆𝑤𝑤��⃗ + 𝑈𝑈 

结合律和酉性自然满足，验证分配律 

设 𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, (𝛼𝛼 + 𝛽𝛽)(𝑣⃗𝑣 + 𝑈𝑈) = (𝛼𝛼 + 𝛽𝛽)𝑣⃗𝑣 + 𝑈𝑈 

= (𝛼𝛼𝑣⃗𝑣 + 𝛽𝛽𝑣⃗𝑣) + 𝑈𝑈 = (𝛼𝛼𝑣⃗𝑣 + 𝑈𝑈) + (𝛽𝛽𝑣⃗𝑣 + 𝑈𝑈) 

称 �𝑉𝑉/𝑈𝑈 , +, 0�⃗ + 𝑈𝑈,数乘� 是 𝑉𝑉关于子空间 𝑈𝑈的商空间 
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【例 5.1.1】商空间例 

设 𝑉𝑉 = ℝ2,𝑈𝑈 = ��1
1�� 

𝑉𝑉/𝑈𝑈= {𝑣⃗𝑣 + 𝑈𝑈|𝑣⃗𝑣 ∈ 𝑉𝑉} 

𝑣⃗𝑣 + 𝑈𝑈 = ��
𝑣𝑣1
𝑣𝑣2� + 𝛼𝛼 �1

1� �𝛼𝛼 ∈ ℝ� 

= ��
𝑣𝑣1
𝑣𝑣2� − ��

𝑣𝑣2
𝑣𝑣2� + 𝑈𝑈��𝑣𝑣1 ,𝑣𝑣2 ∈ ℝ� 

= ��𝑣𝑣1 − 𝑣𝑣2
0 � + 𝑈𝑈�𝑣𝑣1,𝑣𝑣2 ∈ ℝ� 

= ��𝛼𝛼0�+ 𝑈𝑈�𝛼𝛼 ∈ ℝ� 

 

【例 5.1.2】复数商实数空间 

𝑉𝑉 = ℂ 看作 ℝ 的线性空间 

𝑉𝑉/ℝ= ��𝑎𝑎 + 𝑏𝑏√−1�+ℝ�𝑎𝑎, 𝑏𝑏 ∈ ℝ� 

= �𝑏𝑏√−1 + ℝ�𝑏𝑏 ∈ ℝ� 

 

【例 5.1.3】多项式商空间 

设 𝑉𝑉 = 𝐹𝐹[𝑥𝑥]   𝑈𝑈 = 𝐹𝐹2[𝑥𝑥] = {𝑓𝑓 ∈ 𝐹𝐹[𝑥𝑥]| deg𝑓𝑓 < 2} 

𝑉𝑉/𝑈𝑈= ��𝑓𝑓𝑖𝑖𝑥𝑥𝑖𝑖
𝑑𝑑

𝑖𝑖=0

+ 𝐹𝐹2[𝑥𝑥]│𝑓𝑓0, … ,𝑓𝑓𝑑𝑑 ∈ 𝐹𝐹� 

= ��𝑓𝑓𝑖𝑖𝑥𝑥𝑖𝑖
𝑑𝑑

𝑖𝑖=2

+ 𝐹𝐹2[𝑥𝑥]│𝑓𝑓2, … ,𝑓𝑓𝑑𝑑 ∈ 𝐹𝐹� 
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§5 商空间 

 

【例 5.1.4】多项式商空间 2 

设 𝑉𝑉 = 𝐹𝐹[𝑥𝑥],𝑈𝑈 = {𝑓𝑓 ∈ 𝐹𝐹[𝑥𝑥]│𝑥𝑥2|𝑓𝑓} 

𝑉𝑉/𝑈𝑈= ��𝑓𝑓𝑖𝑖𝑥𝑥𝑖𝑖
𝑑𝑑

𝑖𝑖=0

+ 𝑈𝑈│𝑓𝑓0, … ,𝑓𝑓𝑑𝑑 ∈ 𝐹𝐹� = �(𝑓𝑓0 + 𝑓𝑓1𝑥𝑥) + 𝑈𝑈│𝑓𝑓0,𝑓𝑓1 ∈ 𝐹𝐹� 

= ⟨1 + 𝑈𝑈,𝑥𝑥 + 𝑈𝑈⟩ 

 

【命题 5.1】商空间维数公式 

设dim𝑉𝑉 = 𝑛𝑛 < ∞,𝑈𝑈 ⊂ 𝑉𝑉 是子空间 

则dim𝑉𝑉/𝑈𝑈 = dim𝑉𝑉 − dim𝑈𝑈 

证：设dim𝑈𝑈 = 𝑑𝑑 

𝑢𝑢1����⃗ , … ,𝑢𝑢𝑑𝑑����⃗  是 𝑈𝑈 的一组基， 

把它扩充为 𝑉𝑉的一组基 𝑢𝑢1����⃗ , … ,𝑢𝑢𝑑𝑑����⃗ ,𝑢𝑢𝑑𝑑+1���������⃗ , … ,𝑢𝑢𝑛𝑛����⃗  

下证：𝑢𝑢𝑑𝑑+1���������⃗ + 𝑈𝑈, … ,𝑢𝑢𝑛𝑛����⃗ + 𝑈𝑈 是 𝑉𝑉/𝑈𝑈 的一组基 

∀𝑣⃗𝑣 ∈ 𝑉𝑉,∃𝛼𝛼1, … ,𝛼𝛼𝑑𝑑 ,𝛼𝛼𝑑𝑑+1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐹𝐹, 

使得 𝑣⃗𝑣 = 𝛼𝛼1𝑢𝑢1����⃗ + ⋯+ 𝛼𝛼𝑑𝑑𝑢𝑢𝑑𝑑����⃗�����������
𝑢𝑢��⃗

+ 𝛼𝛼𝑑𝑑+1𝑢𝑢𝑑𝑑+1���������⃗ + ⋯+ 𝛼𝛼𝑛𝑛𝑢𝑢𝑛𝑛����⃗���������������
𝑤𝑤��⃗

 

𝑣⃗𝑣 − 𝑤𝑤��⃗ = 𝑢𝑢�⃗ ∈ 𝑈𝑈 ⇒ 𝑣⃗𝑣 + 𝑈𝑈 = 𝑤𝑤��⃗ + 𝑈𝑈 

⇒ 𝑣⃗𝑣 + 𝑈𝑈 = 𝛼𝛼𝑑𝑑+1𝑢𝑢𝑑𝑑+1���������⃗ + ⋯+ 𝛼𝛼𝑛𝑛𝑢𝑢𝑛𝑛����⃗ + 𝑈𝑈 

= 𝛼𝛼𝑑𝑑+1(𝑢𝑢𝑑𝑑+1���������⃗ + 𝑈𝑈) + ⋯+ 𝛼𝛼𝑛𝑛(𝑢𝑢𝑛𝑛����⃗ + 𝑈𝑈) 

即𝑉𝑉/𝑈𝑈= ⟨𝑢𝑢𝑑𝑑+1���������⃗ + 𝑈𝑈, … ,𝑢𝑢𝑛𝑛����⃗ + 𝑈𝑈⟩ 

设 𝛽𝛽𝑑𝑑+1, … ,𝛽𝛽𝑛𝑛 ∈ 𝐹𝐹 使得 

𝛽𝛽𝑑𝑑+1(𝑢𝑢𝑑𝑑+1���������⃗ + 𝑈𝑈) + ⋯+ 𝛽𝛽𝑛𝑛(𝑢𝑢𝑛𝑛����⃗ + 𝑈𝑈) = 0�⃗ + 𝑈𝑈 

⇒ 𝛽𝛽𝑑𝑑+1𝑢𝑢𝑑𝑑+1���������⃗ + ⋯+ 𝛽𝛽𝑛𝑛𝑢𝑢𝑛𝑛����⃗ ∈ 𝑈𝑈 

⇒ ∃𝛽𝛽1, … ,𝛽𝛽𝑑𝑑 ∈ 𝐹𝐹 使得 

𝛽𝛽𝑑𝑑+1𝑢𝑢𝑑𝑑+1���������⃗ + ⋯+ 𝛽𝛽𝑛𝑛𝑢𝑢𝑛𝑛����⃗ = 𝛽𝛽1𝑢𝑢1����⃗ +⋯+ 𝛽𝛽𝑑𝑑𝑢𝑢𝑑𝑑����⃗  
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⇒ (−𝛽𝛽1)𝑢𝑢1����⃗ + ⋯+ (−𝛽𝛽𝑑𝑑)𝑢𝑢𝑑𝑑����⃗ + 𝛽𝛽𝑑𝑑+1𝑢𝑢𝑑𝑑+1���������⃗ + ⋯+ 𝛽𝛽𝑛𝑛𝑢𝑢𝑛𝑛����⃗ = 0�⃗  

⇒ 𝛽𝛽𝑑𝑑+1 = ⋯ = 𝛽𝛽𝑛𝑛 = 0         ∎ 

 

【推论 5.1】子空间满维数还原定理 

设𝑈𝑈 ⊂ 𝑉𝑉 是子空间   

如果dim𝑈𝑈 < ∞ 且dim𝑈𝑈 = dim𝑉𝑉 ,则𝑈𝑈 = 𝑉𝑉 

证：dim𝑉𝑉/𝑈𝑈 = dim𝑉𝑉 − dim𝑈𝑈 = 0      �命题 5.1� 

于是 𝑉𝑉/𝑈𝑈= �0�⃗ + 𝑈𝑈� 

∀𝑣⃗𝑣 ∈ 𝑉𝑉, 𝑣⃗𝑣 ∈ 0�⃗ + 𝑈𝑈 ⇒ 𝑣⃗𝑣 − 0�⃗ ∈ 𝑈𝑈 

⇒ 𝑣⃗𝑣 ∈ 𝑈𝑈 ⇒ 𝑉𝑉 ⊂ 𝑈𝑈            ∎ 
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§6 线性映射 

 

约定�𝑉𝑉, +, 0𝑉𝑉����⃗ ,⋅�和�𝑊𝑊, +, 0𝑊𝑊�����⃗ ,⋅�是域𝐹𝐹上的两个线性空间 

 

【定义 6.1.1】线性映射 

设映射𝜑𝜑:𝑉𝑉 → 𝑊𝑊,如果∀𝛼𝛼1,𝛼𝛼2 ∈ 𝐹𝐹,∀𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ∈ 𝑉𝑉 

𝜑𝜑(𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ) = 𝛼𝛼1𝜑𝜑(𝑣𝑣1����⃗ ) + 𝛼𝛼2𝜑𝜑(𝑣𝑣2����⃗ ) 

则称𝜑𝜑是从𝑉𝑉到𝑊𝑊的线性映射 

注 1:设𝜑𝜑:𝑉𝑉 → 𝑊𝑊是线性映射 

𝜑𝜑�0𝑉𝑉����⃗ � = 0𝑊𝑊�����⃗      �令定义中 𝛼𝛼1 = 𝛼𝛼2 = 0� 

注 2:设𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝐹𝐹, 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ∈ 𝑉𝑉 

𝜑𝜑��𝛼𝛼𝑖𝑖𝑣𝑣𝚤𝚤���⃗
𝑘𝑘

𝑖𝑖=1

� = �𝛼𝛼𝑖𝑖𝜑𝜑(𝑣𝑣𝚤𝚤���⃗ )
𝑘𝑘

𝑖𝑖=1

    �利用定义对𝑘𝑘归纳� 

用矩阵表示为 

𝜑𝜑�(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ )�
𝛼𝛼1
⋮
𝛼𝛼𝑘𝑘
�� = �𝜑𝜑(𝑣𝑣1����⃗ ), … ,𝜑𝜑(𝑣𝑣𝑘𝑘����⃗ )��

𝛼𝛼1
⋮
𝛼𝛼𝑘𝑘
� 

 

【命题 6.1】线性映射保相关性 

设𝜑𝜑:𝑉𝑉 → 𝑊𝑊是线性映射,𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ∈ 𝑉𝑉 

𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗线性相关 ⇒ 𝜑𝜑(𝑣𝑣1����⃗ ), … ,𝜑𝜑(𝑣𝑣𝑘𝑘����⃗ )线性相关 

证:设𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝐹𝐹不全为零使得(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ )�
𝛼𝛼1
⋮
𝛼𝛼𝑘𝑘
� = 0𝑉𝑉����⃗  
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则�𝜑𝜑(𝑣𝑣1����⃗ ), … ,𝜑𝜑(𝑣𝑣𝑘𝑘����⃗ )��
𝛼𝛼1
⋮
𝛼𝛼𝑘𝑘
� = 𝜑𝜑�0𝑉𝑉����⃗ � = 0𝑊𝑊�����⃗  

⇒ 𝜑𝜑(𝑣𝑣1����⃗ ), … ,𝜑𝜑(𝑣𝑣𝑘𝑘����⃗ )线性相关       ∎ 

 

【命题 6.2】线性映射保子空间 

设𝜑𝜑:𝑉𝑉 → 𝑊𝑊是线性映射 

(𝑖𝑖)𝑈𝑈是𝑉𝑉的子空间 ⇒ 𝜑𝜑(𝑈𝑈)是𝑊𝑊的子空间 

(𝑖𝑖𝑖𝑖)𝑍𝑍是𝑊𝑊的子空间 ⇒ 𝜑𝜑−1(𝑍𝑍)是𝑉𝑉的子空间 

证: (𝑖𝑖)子集显然,下证∀𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ∈ 𝜑𝜑(𝑈𝑈),𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹 ⇒ 𝛼𝛼𝑤𝑤1����⃗ + 𝛽𝛽𝑤𝑤2�����⃗ ∈ 𝜑𝜑(𝑈𝑈) 

设𝑤𝑤1����⃗ = 𝜑𝜑(𝑢𝑢1����⃗ ),𝑤𝑤2�����⃗ ∈ 𝜑𝜑(𝑢𝑢2����⃗ ),𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ∈ 𝑈𝑈 

𝛼𝛼𝑤𝑤1����⃗ + 𝛽𝛽𝑤𝑤2�����⃗ = 𝛼𝛼𝛼𝛼(𝑢𝑢1����⃗ ) + 𝛽𝛽𝛽𝛽(𝑢𝑢2����⃗ ) = 𝜑𝜑(𝛼𝛼𝑢𝑢1����⃗ + 𝛽𝛽𝑢𝑢2����⃗ ) 

𝑈𝑈为子空间 ⇒ 𝛼𝛼𝑢𝑢1����⃗ + 𝛽𝛽𝑢𝑢2����⃗ ∈ 𝑈𝑈 ⇒ 𝜑𝜑(𝛼𝛼𝑢𝑢1����⃗ + 𝛽𝛽𝑢𝑢2����⃗ ) ∈ 𝜑𝜑(𝑈𝑈) 

∴ 𝛼𝛼𝑤𝑤1����⃗ + 𝛽𝛽𝑤𝑤2�����⃗ ∈ 𝜑𝜑(𝑈𝑈) ⇒ 𝜑𝜑(𝑈𝑈)是𝑊𝑊的子空间 

(𝑖𝑖𝑖𝑖)类似 

 

【定义 6.1.2】线性映射的核与像 

设𝜑𝜑:𝑉𝑉 → 𝑊𝑊是线性映射 

𝜑𝜑的核是�𝑣⃗𝑣 ∈ 𝑉𝑉�𝜑𝜑(𝑣⃗𝑣) = 0𝑊𝑊�����⃗ �   记为 ker𝜑𝜑 

𝜑𝜑的像是{𝑤𝑤��⃗ ∈ 𝑊𝑊|∃𝑣⃗𝑣 ∈ 𝑉𝑉,𝜑𝜑(𝑣⃗𝑣) = 𝑊𝑊}    记为 im𝜑𝜑 

注:因为 ker𝜑𝜑 = 𝜑𝜑−1��0𝑊𝑊�����⃗ ��和 im𝜑𝜑 = 𝜑𝜑(𝑉𝑉) 

所以核与像都是子空间 
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【定理 6.1】单射的判定 

设𝜑𝜑:𝑉𝑉 → 𝑊𝑊是线性映射,则 

𝜑𝜑是单射⇔ ker𝜑𝜑 = �0𝑉𝑉����⃗ � 

证:⇒:∵ 𝜑𝜑�0𝑉𝑉����⃗ � = 0𝑊𝑊�����⃗且𝜑𝜑是单射  ∴ ker𝜑𝜑 = �0𝑉𝑉����⃗ � 

⇐:设𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ∈ 𝑉𝑉使得𝜑𝜑(𝑣𝑣1����⃗ ) = 𝜑𝜑(𝑣𝑣2����⃗ ) 

则𝜑𝜑(𝑣𝑣1����⃗ )− 𝜑𝜑(𝑣𝑣2����⃗ ) = 0𝑊𝑊�����⃗  

∵ 𝜑𝜑是线性映射   ∴ 𝜑𝜑(𝑣𝑣1����⃗ − 𝑣𝑣2����⃗ ) = 0𝑊𝑊�����⃗  

于是𝑣𝑣1����⃗ − 𝑣𝑣2����⃗ ∈ ker𝜑𝜑 

∵ ker𝜑𝜑 = �0𝑉𝑉����⃗ �     ∴ 𝑣𝑣1����⃗ − 𝑣𝑣2����⃗ = 0𝑉𝑉����⃗ ⇒ 𝑣𝑣1����⃗ = 𝑣𝑣2����⃗  

∴ 𝜑𝜑是单射       ∎ 

 

【例 6.1.1】求线性映射的核与像 

验证下列映射是线性映射,确定他们的核与像. 

(𝑖𝑖)𝜑𝜑:𝐹𝐹𝑛𝑛 → 𝐹𝐹𝑚𝑚, 𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦ 𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,𝐴𝐴 ∈ 𝐹𝐹𝑚𝑚×𝑛𝑛 

ker𝜑𝜑是𝐴𝐴𝑥⃗𝑥 = 0𝑚𝑚�����⃗的解空间, im𝜑𝜑 = �𝐴𝐴(1)�������⃗ , … ,𝐴𝐴(𝑛𝑛)��������⃗ � 

(𝑖𝑖𝑖𝑖)𝜑𝜑:ℝ[𝑥𝑥] → ℝ[𝑥𝑥],𝑓𝑓(𝑥𝑥) ↦ 𝑓𝑓′(𝑥𝑥) 

ker𝜑𝜑 = ℝ, im𝜑𝜑 = ℝ[𝑥𝑥] 

(𝑖𝑖𝑖𝑖𝑖𝑖)𝜑𝜑:𝐶𝐶[𝑎𝑎,𝑏𝑏] → 𝐶𝐶[𝑎𝑎,𝑏𝑏],𝑓𝑓(𝑥𝑥) ↦ � 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

𝑎𝑎
 

ker𝜑𝜑 = �0�⃗ �, im𝜑𝜑 ⊂ 𝐶𝐶[𝑎𝑎, 𝑏𝑏] 

(𝑖𝑖𝑖𝑖)设𝑉𝑉 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑘𝑘是子空间直和分解 

则∀𝑣⃗𝑣 ∈ 𝑉𝑉,∃!𝑢𝑢1����⃗ ∈ 𝑈𝑈1, … ,𝑢𝑢𝑘𝑘����⃗ ∈ 𝑈𝑈𝑘𝑘使得𝑣⃗𝑣 = 𝑢𝑢1����⃗ + ⋯+ 𝑢𝑢𝑘𝑘����⃗  

定义𝑃𝑃𝑖𝑖:𝑉𝑉 → 𝑉𝑉, 𝑣⃗𝑣 ↦ 𝑢𝑢𝚤𝚤���⃗  称为𝑉𝑉在𝑈𝑈𝑖𝑖上的投影, 𝑖𝑖 = 1, … ,𝑘𝑘 

验证𝑃𝑃𝑖𝑖是线性映射, 𝑖𝑖 = 1, … , 𝑘𝑘,只要验证𝑃𝑃1即可. 
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设𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹 

则∃!𝑥𝑥1���⃗ ∈ 𝑈𝑈1, … ,𝑥𝑥𝑘𝑘����⃗ ∈ 𝑈𝑈𝑘𝑘 ,𝑦𝑦1����⃗ ∈ 𝑈𝑈1, … , 𝑦𝑦𝑘𝑘����⃗ ∈ 𝑈𝑈𝑘𝑘 

使得𝑥⃗𝑥 = 𝑥𝑥1���⃗ + ⋯+ 𝑥𝑥𝑘𝑘����⃗ , 𝑦⃗𝑦 = 𝑦𝑦1����⃗ + ⋯ . +𝑦𝑦𝑘𝑘����⃗  

𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦 = (𝛼𝛼𝑥𝑥1���⃗ + 𝛽𝛽𝑦𝑦1����⃗ )���������
∈𝑈𝑈1

+ (𝛼𝛼𝑥𝑥2����⃗ + 𝛽𝛽𝑦𝑦2����⃗ )���������
∈𝑈𝑈2

+ ⋯+ (𝛼𝛼𝑥𝑥𝑘𝑘����⃗ + 𝛽𝛽𝑦𝑦𝑘𝑘����⃗ )���������
∈𝑈𝑈𝑘𝑘

 

𝑃𝑃1(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦) = 𝛼𝛼𝑥𝑥1���⃗ + 𝛽𝛽𝑦𝑦1����⃗ = 𝛼𝛼𝑃𝑃1(𝑥⃗𝑥) + 𝛽𝛽𝑃𝑃1(𝑦⃗𝑦) 

∴ 𝑃𝑃1是线性的 

𝑃𝑃1(𝑥⃗𝑥) = 0�⃗ ⇔ 𝑥𝑥1���⃗ = 0 ⇔ 𝑥⃗𝑥 = 0�⃗ + 𝑥𝑥2����⃗ + ⋯+ 𝑥𝑥𝑛𝑛����⃗ ⇔ 𝑥⃗𝑥 ∈ 𝑈𝑈2 + ⋯+ 𝑈𝑈𝑘𝑘 

于是ker𝑃𝑃1 = 𝑈𝑈2 + ⋯+ 𝑈𝑈𝑘𝑘 , im𝑃𝑃1 = 𝑈𝑈1是显然的 

(𝑣𝑣)设𝑈𝑈是𝑉𝑉的子空间,𝜋𝜋:𝑉𝑉 → 𝑉𝑉/𝑈𝑈, 𝑣⃗𝑣 ↦ 𝑣⃗𝑣 + 𝑈𝑈 

∀𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ∈ 𝑉𝑉,𝛼𝛼1����⃗ ,𝛼𝛼2����⃗ ∈ 𝐹𝐹 

𝜋𝜋(𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ) = (𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ) + 𝑈𝑈 

= 𝛼𝛼1(𝑣𝑣1����⃗ + 𝑈𝑈) + 𝛼𝛼2(𝑣𝑣2����⃗ + 𝑈𝑈) = 𝛼𝛼1𝜋𝜋(𝑣𝑣1����⃗ ) + 𝛼𝛼2𝜋𝜋(𝑣𝑣2����⃗ ) 

𝜋𝜋(𝑣⃗𝑣) = 0𝑉𝑉����⃗ + 𝑈𝑈 ⇔ 𝑣⃗𝑣 + 𝑈𝑈 = 0𝑉𝑉����⃗ + 𝑈𝑈 ⇔ 𝑣⃗𝑣~𝑈𝑈0𝑉𝑉����⃗  

⇔ 𝑣⃗𝑣 − 0�⃗ ∈ 𝑈𝑈 ⇔ 𝑣⃗𝑣 ∈ 𝑈𝑈 

于是ker𝜋𝜋 = 𝑈𝑈, im𝜋𝜋 = 𝑉𝑉/𝑈𝑈 

 

【例 6.1.2】映射空间 

Map(𝑆𝑆,𝑊𝑊) = {𝜑𝜑|𝜑𝜑: 𝑆𝑆 → 𝑊𝑊} 

其中𝑆𝑆是非空集合,𝜑𝜑是任意映射 

∀𝜑𝜑1,𝜑𝜑2 ∈ Map(𝑆𝑆,𝑊𝑊), 𝜑𝜑1 + 𝜑𝜑2:𝑆𝑆 → 𝑊𝑊, 𝑠𝑠 ↦ 𝜑𝜑1(𝑠𝑠) + 𝜑𝜑2(𝑠𝑠) 

∀𝛼𝛼 ∈ 𝐹𝐹,𝜑𝜑 ∈ Map(𝑆𝑆,𝑊𝑊), 𝛼𝛼𝛼𝛼:𝑆𝑆 → 𝑊𝑊, 𝑠𝑠 → 𝛼𝛼𝛼𝛼(𝑠𝑠) 

𝒪𝒪𝑆𝑆:𝑆𝑆 → 𝑊𝑊, 𝑠𝑠 ↦ 0𝑊𝑊�����⃗  

则�𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆,𝑊𝑊), +,𝒪𝒪𝑆𝑆,数乘�是𝐹𝐹上的线性空间 

其验证过程与Func(𝑆𝑆,𝐹𝐹)相同 
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【定理 6.2】线性映射空间 

令Hom(𝑉𝑉,𝑊𝑊)是从𝑉𝑉到𝑊𝑊的所有线性映射的集合 

则Hom(𝑉𝑉,𝑊𝑊)是 Map(𝑉𝑉,𝑊𝑊)的子空间 

证:设 𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹,𝜑𝜑,𝜓𝜓 ∈ Hom(𝑉𝑉,𝑊𝑊) 

令𝜃𝜃 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽,只要验证𝜃𝜃 ∈ Hom(𝑉𝑉,𝑊𝑊) 

即只要验证∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉, 𝜆𝜆 ∈ 𝐹𝐹,   

𝜃𝜃(𝑥⃗𝑥 + 𝑦⃗𝑦) = 𝜃𝜃(𝑥⃗𝑥) + 𝜃𝜃(𝑦⃗𝑦), 𝜃𝜃(𝜆𝜆𝑥⃗𝑥) = 𝜆𝜆𝜆𝜆(𝑥⃗𝑥)  即可 

𝜃𝜃(𝑥⃗𝑥 + 𝑦⃗𝑦) = (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)(𝑥⃗𝑥 + 𝑦⃗𝑦)       �𝜃𝜃的定义� 

= (𝛼𝛼𝛼𝛼)(𝑥⃗𝑥 + 𝑦⃗𝑦) + (𝛽𝛽𝛽𝛽)(𝑥⃗𝑥 + 𝑦⃗𝑦)       �映射相加的定义� 

= 𝛼𝛼𝛼𝛼(𝑥⃗𝑥 + 𝑦⃗𝑦) + 𝛽𝛽𝛽𝛽(𝑥⃗𝑥 + 𝑦⃗𝑦)              �映射数乘的定义� 

= 𝛼𝛼�𝜑𝜑(𝑥⃗𝑥) + 𝜑𝜑(𝑦⃗𝑦)�+ 𝛽𝛽�𝜓𝜓(𝑥⃗𝑥) + 𝜓𝜓(𝑦⃗𝑦)�       �𝜑𝜑,𝜓𝜓线性� 

= [𝛼𝛼𝛼𝛼(𝑥⃗𝑥) + 𝛽𝛽𝛽𝛽(𝑥⃗𝑥)] + [𝛼𝛼𝛼𝛼(𝑦⃗𝑦) + 𝛽𝛽𝛽𝛽(𝑦⃗𝑦)]    �交换结合分配律� 

= (𝛼𝛼𝛼𝛼)(𝑥⃗𝑥) + (𝛽𝛽𝛽𝛽)(𝑥⃗𝑥) + (𝛼𝛼𝛼𝛼)(𝑦⃗𝑦) + �𝛽𝛽𝛽𝛽(𝑦⃗𝑦)�     �数乘定义� 

= (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)(𝑥⃗𝑥) + (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)(𝑦⃗𝑦)            �加法定义� 

= 𝜃𝜃(𝑥⃗𝑥) + 𝜃𝜃(𝑦⃗𝑦)       �𝜃𝜃的定义�  

类似可证𝜃𝜃(𝜆𝜆𝑥⃗𝑥) = 𝜆𝜆𝜆𝜆(𝑥⃗𝑥) 

于是𝜃𝜃 ∈ Hom(𝑉𝑉,𝑊𝑊) 

 

【定理 6.3】线性映射复合性 

设𝑉𝑉1,𝑉𝑉2,𝑉𝑉3是𝐹𝐹上的三个线性空间 

𝜑𝜑1 ∈ Hom(𝑉𝑉1,𝑉𝑉2) ,𝜑𝜑2 ∈ Hom(𝑉𝑉2,𝑉𝑉3) ,则𝜑𝜑2 ∘ 𝜑𝜑1 ∈ Hom(𝑉𝑉1,𝑉𝑉3) 

证:设𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉 

𝜑𝜑2 ∘ 𝜑𝜑1(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦) = 𝜑𝜑2�𝜑𝜑1(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦)� 

= 𝜑𝜑2(𝛼𝛼𝜑𝜑1(𝑥⃗𝑥) + 𝛽𝛽𝜑𝜑1(𝑦⃗𝑦) = 𝛼𝛼𝜑𝜑2�𝜑𝜑1(𝑥⃗𝑥)�+ 𝛽𝛽𝜑𝜑2(𝜑𝜑1(𝑦⃗𝑦)) 

= 𝛼𝛼(𝜑𝜑2 ∘ 𝜑𝜑1)(𝑥⃗𝑥) + 𝛽𝛽(𝜑𝜑2 ∘ 𝜑𝜑1)(𝑦⃗𝑦)     ∎ 
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【例 6.1.3】零映射与恒同映射 

𝒪𝒪𝑉𝑉,𝑊𝑊:𝑉𝑉 → 𝑊𝑊, 𝑣⃗𝑣 ↦ 0𝑊𝑊�����⃗     称为零映射 

ℰ𝑉𝑉:𝑉𝑉 → 𝑉𝑉, 𝑣⃗𝑣 ↦ 𝑣⃗𝑣    称为恒同映射 

𝒪𝒪𝑉𝑉 ∈ Hom(𝑉𝑉,𝑊𝑊) ,ℰ𝑉𝑉 ∈ Hom(𝑉𝑉,𝑉𝑉) 

当定义域与值域已经说明,可以将它们分别简记为𝒪𝒪,ℰ 

 

【例 6.1.4】求导与积分映射 

设𝒟𝒟:ℝ[𝑥𝑥] → ℝ[𝑥𝑥],𝑓𝑓 ↦ 𝑓𝑓′ 

𝑎𝑎 ∈ ℝ, ℐ:ℝ[𝑥𝑥] → ℝ[𝑥𝑥],𝑓𝑓(𝑥𝑥) ↦ � 𝑓𝑓(𝑥𝑥)
𝑥𝑥

𝑎𝑎
d𝑥𝑥 

计算𝒟𝒟 ∘ ℐ和 ℐ ∘ 𝒟𝒟 

𝒟𝒟 ∘ ℐ�𝑓𝑓(𝑥𝑥)� = 𝒟𝒟�� 𝑓𝑓(𝑥𝑥)
𝑥𝑥

𝑎𝑎
d𝑥𝑥� = 𝑓𝑓(𝑥𝑥) 

∴ 𝒟𝒟 ∘ ℐ = ℰ 

ℐ ∘ 𝒟𝒟�𝑓𝑓(𝑥𝑥)� = � 𝑓𝑓′(𝑡𝑡)
𝑥𝑥

𝑎𝑎
d𝑡𝑡 = 𝑓𝑓(𝑥𝑥)− 𝑓𝑓(𝑎𝑎) 

 

【例 6.1.5】投影映射 

设𝑉𝑉 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑘𝑘是子空间直和分解 

𝑃𝑃𝑖𝑖 ∈ Hom(𝑉𝑉,𝑉𝑉)是𝑉𝑉到𝑈𝑈𝑖𝑖的投影, 𝑖𝑖 = 1, … ,𝑛𝑛 

证明: (𝑖𝑖)∀𝑖𝑖 ∈ {1, … ,𝑛𝑛},𝑃𝑃𝑖𝑖 ∘ 𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖 

(𝑖𝑖𝑖𝑖)∀𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛}, 𝑖𝑖 ≠ 𝑗𝑗, 𝑃𝑃𝑖𝑖 ∘ 𝑃𝑃𝑗𝑗 = 𝒪𝒪𝑉𝑉 

(𝑖𝑖𝑖𝑖𝑖𝑖)𝑃𝑃1 +⋯+ 𝑃𝑃𝑘𝑘 = ℰ𝑉𝑉 

证: (𝑖𝑖)设𝑣⃗𝑣 ∈ 𝑉𝑉,∃!𝑢𝑢1����⃗ ∈ 𝑈𝑈1, … ,𝑢𝑢𝑘𝑘����⃗ ∈ 𝑈𝑈𝑘𝑘,使得𝑣⃗𝑣 = 𝑢𝑢1����⃗ + ⋯+ 𝑢𝑢𝑘𝑘����⃗  

𝑃𝑃𝑖𝑖(𝑣⃗𝑣) = 𝑢𝑢𝚤𝚤���⃗ ,𝑃𝑃𝑖𝑖 ∘ 𝑃𝑃𝑖𝑖(𝑣⃗𝑣) = 𝑃𝑃𝑖𝑖(𝑢𝑢𝚤𝚤���⃗ ) 

∵ 𝑢𝑢𝚤𝚤���⃗ = 0�⃗ + ⋯+ 0�⃗ + 𝑢𝑢𝚤𝚤���⃗ + 0�⃗ + ⋯+ 0�⃗  
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∴ 𝑃𝑃𝑖𝑖(𝑢𝑢𝚤𝚤���⃗ ) = 𝑢𝑢𝚤𝚤���⃗ ⇒ 𝑃𝑃𝑖𝑖(𝑣⃗𝑣) = 𝑃𝑃𝑖𝑖 ∘ 𝑃𝑃𝑖𝑖(𝑣⃗𝑣) ⇒ 𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖 ∘ 𝑃𝑃𝑖𝑖 

(𝑖𝑖𝑖𝑖)设𝑖𝑖 ≠ 𝑗𝑗,𝑃𝑃𝑗𝑗(𝑣⃗𝑣) = 𝑢𝑢𝚥𝚥���⃗ ,𝑃𝑃i ∘ 𝑃𝑃𝑗𝑗(𝑣⃗𝑣) = 𝑃𝑃𝑖𝑖�𝑢𝑢𝚥𝚥���⃗ � 

∵ 𝑢𝑢𝚥𝚥���⃗ = 0�⃗ + ⋯+ 0𝚤𝚤���⃗ + ⋯ 0�⃗ + 𝑢𝑢𝚥𝚥���⃗ + 0�⃗ + ⋯+ 0�⃗  

∴ 𝑃𝑃𝑖𝑖�𝑢𝑢𝚥𝚥���⃗ � = 0�⃗ ⇒ 𝑃𝑃𝑖𝑖 ∘ 𝑃𝑃𝑗𝑗(𝑣⃗𝑣) = 0�⃗  

∴ 𝑃𝑃𝑖𝑖 ∘ 𝑃𝑃𝑗𝑗 = 𝒪𝒪 

(𝑖𝑖𝑖𝑖𝑖𝑖)(𝑃𝑃1 + ⋯+ 𝑃𝑃𝑘𝑘)(𝑣⃗𝑣) = 𝑃𝑃1(𝑣⃗𝑣) + ⋯+ 𝑃𝑃𝑘𝑘(𝑣⃗𝑣) 

= 𝑢𝑢1����⃗ + ⋯+ 𝑢𝑢𝑘𝑘����⃗ = 𝑣⃗𝑣 ⇒ 𝑃𝑃1 + ⋯+ 𝑃𝑃𝑘𝑘 = ℰ       ∎ 

 

【定理 6.4】线性映射分解定理 

设𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) ,𝜋𝜋:𝑉𝑉 → 𝑉𝑉/ker𝜑𝜑是商映射 

则∃!线性映射𝜑𝜑�:𝑉𝑉/ker𝜑𝜑→ 𝑊𝑊,使得𝜑𝜑 = 𝜑𝜑� ∘ 𝜋𝜋 

证:设𝑈𝑈 = ker𝜑𝜑 , 𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉 

𝑥⃗𝑥~𝜑𝜑𝑦⃗𝑦 ⇔ 𝜑𝜑(𝑥⃗𝑥) = 𝜑𝜑(𝑦⃗𝑦) ⇔ 𝜑𝜑(𝑥⃗𝑥 − 𝑦⃗𝑦) = 0𝑊𝑊�����⃗ ⇒ 𝑥⃗𝑥 − 𝑦⃗𝑦 ∈ ker𝜑𝜑 = 𝑈𝑈 

⇔ 𝑥⃗𝑥~𝑈𝑈𝑦⃗𝑦 

于是𝑥̅⃗𝑥 = 𝑥⃗𝑥 + 𝑈𝑈且𝑉𝑉/~𝜑𝜑= 𝑉𝑉/𝑈𝑈 

由映射分解定理,∃单射𝜑𝜑�:𝑉𝑉/𝑈𝑈→ 𝑊𝑊,使得𝜑𝜑 = 𝜑𝜑� ∘ 𝜋𝜋 

可知𝜋𝜋 ∈ Hom(𝑉𝑉,𝑉𝑉/𝑈𝑈) 

只要验证 𝜑𝜑� ∈ Hom(𝑉𝑉/𝑈𝑈 ,𝑊𝑊)即可 

∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉 

𝜑𝜑��(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦) + 𝑈𝑈� = 𝜑𝜑(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦) = 𝛼𝛼𝛼𝛼(𝑥⃗𝑥) + 𝛽𝛽𝛽𝛽(𝑦⃗𝑦) 

= 𝛼𝛼𝜑𝜑�(𝑥⃗𝑥 + 𝑈𝑈) + 𝛽𝛽𝜑𝜑�(𝑦⃗𝑦 + 𝑈𝑈) 

⇒ 𝜑𝜑�是线性映射     ∎ 

由此可知,任何线性映射是线性满射和线性单射的复合 
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【例 6.1.6】迹映射 

tr:𝐹𝐹𝑛𝑛×𝑛𝑛 → 𝐹𝐹,𝑋𝑋 ↦ tr𝑋𝑋 

设𝑋𝑋 = �𝑥𝑥𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
,𝑌𝑌 = �𝑦𝑦𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛

,𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹 

tr(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽) = tr ��𝛼𝛼𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑦𝑦𝑖𝑖𝑖𝑖�� 

= �(𝛼𝛼𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑦𝑦𝑖𝑖𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= 𝛼𝛼�𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝛽𝛽�𝑦𝑦𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

= 𝛼𝛼 tr𝑋𝑋 + 𝛽𝛽 tr𝑌𝑌 

于是 tr 是线性映射 

𝑋𝑋 ∈ ker tr ⇔ 𝑥𝑥11 +⋯+ 𝑥𝑥𝑛𝑛𝑛𝑛 = 0 

⇒ dim ker tr = 𝑛𝑛2 − 1 

证法 1:  𝑥𝑥11 + ⋯+ 𝑥𝑥𝑛𝑛𝑛𝑛 = 0 是𝑋𝑋 = �𝑥𝑥𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
唯一的限制 

于是𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛}满足一个系数矩阵秩为 1 的线性齐次方程 

证法 2: im tr = 𝐹𝐹, dim im tr = 1 

∵ dim ker tr + dim im tr = 𝑛𝑛2 

∴ dim ker tr = 𝑛𝑛2 − 1 
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§7 有限维线性空间的坐标 

约定:在本节中𝑉𝑉是域𝐹𝐹上的线性空间, dim𝑉𝑉 < ∞ 

【命题 7.1】向量的基底线性表示 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的一组基,则∃!𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐹𝐹 

使得 𝑣⃗𝑣 = 𝛼𝛼1𝑒𝑒1���⃗ + ⋯+ 𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛����⃗        [∗] 

证:存在性即基底的定义 

唯一性:再设𝑣⃗𝑣 = 𝛽𝛽1𝑒𝑒1���⃗ +⋯+ 𝛽𝛽𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ,𝛽𝛽𝑖𝑖 ∈ 𝐹𝐹 

由[∗], (𝛼𝛼1 − 𝛽𝛽1)𝑒𝑒1���⃗ + ⋯+ (𝛼𝛼𝑛𝑛 − 𝛽𝛽𝑛𝑛)𝑒𝑒𝑛𝑛����⃗ = 0�⃗  

∵ 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗线性无关  ∴ 𝛼𝛼1 = 𝛽𝛽1, … ,𝛼𝛼𝑛𝑛 = 𝛽𝛽𝑛𝑛     ∎ 

 

【定义 7.1.1】坐标 

称�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
�为𝑣⃗𝑣在基底𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的坐标 

 

【例 7.1.1】在标准基下的坐标 

𝑉𝑉 = 𝐹𝐹𝑛𝑛, 𝑒𝑒1���⃗ = �

1
0
⋮
0

� , 𝑒𝑒2���⃗ = �

0
1
⋮
0

� , … , 𝑒𝑒𝑛𝑛����⃗ = �

0
0
⋮
1

� 

设𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,则𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗  

即�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�是𝑥⃗𝑥在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的坐标 
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【例 7.1.2】多项式空间的坐标 

设𝑉𝑉 = 𝐹𝐹𝑛𝑛[𝑥𝑥], 𝑒𝑒𝚤𝚤��⃗ = 𝑥𝑥𝑖𝑖−1, 𝑖𝑖 = 1, . . ,𝑛𝑛 

𝑓𝑓(𝑥𝑥) = 𝑓𝑓0 + 𝑓𝑓1𝑥𝑥 + ⋯+ 𝑓𝑓𝑛𝑛−1𝑥𝑥𝑛𝑛−1, 𝑓𝑓0, … ,𝑓𝑓𝑛𝑛−1 ∈ 𝐹𝐹 

= 𝑓𝑓0𝑒𝑒1���⃗ + ⋯+ 𝑓𝑓𝑛𝑛−1𝑒𝑒𝑛𝑛����⃗  

∴ �
𝑓𝑓0
⋮

𝑓𝑓𝑛𝑛−1
�是𝑓𝑓在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的坐标 

 

【例 7.1.3】矩阵空间的坐标 

设𝑉𝑉 = 𝐹𝐹𝑛𝑛×𝑛𝑛, 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖 ,𝑀𝑀𝑖𝑖𝑖𝑖在𝑖𝑖行𝑗𝑗列处为 1,其它处为 0 

设𝑋𝑋 = �𝑥𝑥𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
∈ 𝑉𝑉,则𝑋𝑋 = ��𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝚤𝚤𝚤𝚤����⃗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

于是(𝑥𝑥11 ⋯ 𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥1𝑛𝑛 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛)𝑡𝑡 

是𝑋𝑋在𝑒𝑒11�����⃗ , … , 𝑒𝑒𝑛𝑛1������⃗ , … , 𝑒𝑒𝑛𝑛1������⃗ , … , 𝑒𝑒𝑛𝑛𝑛𝑛������⃗下的坐标 

 

【引理 7.1】向量组的矩阵表示 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的一组基,𝑣𝑣1����⃗ , … , 𝑣𝑣𝑚𝑚�����⃗ ∈ 𝑉𝑉, 

则∃!𝐴𝐴 ∈ 𝐹𝐹𝑛𝑛×𝑚𝑚,使得(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑛𝑛����⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴 

证:设�
𝑎𝑎1𝑗𝑗
⋮
𝑎𝑎𝑛𝑛𝑛𝑛

�是𝑣𝑣𝚥𝚥���⃗在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的坐标, 𝑗𝑗 = 1, … ,𝑚𝑚 

则𝑣𝑣𝚥𝚥���⃗ = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )�
𝑎𝑎1𝑗𝑗
⋮
𝑎𝑎𝑛𝑛𝑛𝑛

� 

(𝑣𝑣1����⃗ , . . , 𝑣𝑣𝑚𝑚�����⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )�
𝑎𝑎11 ⋯ 𝑎𝑎1𝑚𝑚
⋮ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

�
�����������

𝐴𝐴

 

设𝐵𝐵 ∈ 𝐹𝐹𝑛𝑛×𝑚𝑚,使得(𝑣𝑣1����⃗ , … ,𝑣𝑣𝑚𝑚�����⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐵𝐵 
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则𝑣𝑣𝚥𝚥���⃗ = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐵𝐵(𝚥𝚥)�������⃗  

于是𝐵𝐵(𝚥𝚥)�������⃗是𝑣𝑣𝚥𝚥���⃗在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的坐标 

由坐标的唯一性得𝐴𝐴(𝚥𝚥)�������⃗ = 𝐵𝐵(𝚥𝚥)�������⃗ , 𝑗𝑗 = 1, … ,𝑚𝑚 

∴ 𝐴𝐴 = 𝐵𝐵     ∎ 

 

【定理 7.1】基变换 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的一组基, 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ∈ 𝑉𝑉 

则𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是𝑉𝑉的一组基⇔ ∃!𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹) 使得 

(𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴               [∗∗] 

证: ⇒ :  由引理 7.1,∃!𝐴𝐴 ∈ 𝐹𝐹𝑛𝑛×𝑛𝑛 

使得(𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴 

∵ 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗也是基   ∴ ∃!𝐵𝐵 ∈ 𝐹𝐹𝑛𝑛×𝑚𝑚 

使得(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ) = (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ )𝐵𝐵 

于是(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴𝐴𝐴 

由引理 7.1 中唯一性,𝐴𝐴𝐴𝐴 = 𝐸𝐸 

即𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹) 

⇐:只要证𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗线性无关即可 

设𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐹𝐹使得(𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ )�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� = 0�⃗  

则由[∗∗], (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� = 0�⃗  

∵ 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是线性无关的   ∴ 𝐴𝐴�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� = 0�⃗   

∵ 𝐴𝐴可逆  ∴ 𝛼𝛼1, . . ,𝛼𝛼𝑛𝑛 = 0 
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即𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗线性无关     ∎ 

注:称[∗∗]为从基底𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗到𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗的转换矩阵 

 

【例 7.1.4】三维线性空间例 

在ℝ3中𝑒𝑒1���⃗ = �
1
0
0
� , 𝑒𝑒2���⃗ = �

0
1
0
� , 𝑒𝑒3���⃗ = �

0
0
1
� 

设𝑣𝑣1����⃗ = �
1
1
1
� ,𝑣𝑣2����⃗ = �

1
2
1
� , 𝑣𝑣3����⃗ = �

0
0
1
� 

𝑤𝑤1����⃗ = �
2
1
1
� ,𝑤𝑤2�����⃗ = �

4
1
3
� ,𝑤𝑤3�����⃗ = �

1
0
1
� 

问 𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ,𝑣𝑣3����⃗和𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ,𝑤𝑤3�����⃗是不是ℝ3的基底 

如果是,求从𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗到新基底的转换矩阵 

解: (𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ , 𝑣𝑣3����⃗ ) = (𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ )�
1 1 0
1 2 0
1 1 1

�
�������

𝐴𝐴

 

∵ det𝐴𝐴 ≠ 0   ∴ 𝐴𝐴可逆 

∴ 𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ , 𝑣𝑣3����⃗是基,对应的转换矩阵为𝐴𝐴 

(𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ,𝑤𝑤3�����⃗ ) = (𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ )�
2 4 1
1 1 0
1 3 1

�
�������

 

𝐵𝐵

 

𝐵𝐵 → �
2 4 1
1 1 0
−1 −1 0

� ⇒ rank𝐵𝐵 = 2 

⇒ 𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ,𝑤𝑤3�����⃗不是ℝ3的基底 
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【推论 7.1】坐标变换 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ; 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是𝑉𝑉的两组基 

𝐴𝐴是由𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗到𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗的转换矩阵 

设𝑣⃗𝑣 ∈ 𝑉𝑉在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗和𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗下的坐标分别是�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� ,�

𝛽𝛽1
⋮
𝛽𝛽𝑛𝑛
� 

则�
𝛽𝛽1
⋮
𝛽𝛽𝑛𝑛
� = 𝐴𝐴−1 �

𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� 

证:设𝑣⃗𝑣 = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� = (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ )�

𝛽𝛽1
⋮
𝛽𝛽𝑛𝑛
� 

∵ (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴 

∴ 𝑣⃗𝑣 = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴�
𝛽𝛽1
⋮
𝛽𝛽𝑛𝑛
� 

由坐标的唯一性得�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� = 𝐴𝐴�

𝛽𝛽1
⋮
𝛽𝛽𝑛𝑛
� 

∴ �
𝛽𝛽1
⋮
𝛽𝛽𝑛𝑛
� = 𝐴𝐴−1 �

𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
�       ∎ 

 

【例 7.1.5】平面上的旋转 

𝑉𝑉 = ℝ2 

𝑒𝑒1���⃗
′ = cos𝜃𝜃 𝑒𝑒1���⃗ + sin𝜃𝜃 𝑒𝑒2���⃗ , 𝑒𝑒2���⃗

′ = − sin𝜃𝜃 𝑒𝑒1���⃗ + cos𝜃𝜃 𝑒𝑒2���⃗  

�𝑒𝑒1���⃗
′,𝑒𝑒2���⃗

′� = (𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ) �cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 ������������

𝐴𝐴

 

𝐴𝐴−1 = � cos𝜃𝜃 sin𝜃𝜃
− sin𝜃𝜃 cos𝜃𝜃� 

设𝑣⃗𝑣 = 𝑥𝑥𝑒𝑒1���⃗ + 𝑦𝑦𝑒𝑒2���⃗ = 𝑥𝑥′𝑒𝑒1���⃗
′ + 𝑦𝑦′𝑒𝑒2���⃗

′
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则 �𝑥𝑥
′

𝑦𝑦′� = � cos𝜃𝜃 sin𝜃𝜃
− sin 𝜃𝜃 cos𝜃𝜃� �

𝑥𝑥
𝑦𝑦�

求方程
3
2
𝑥𝑥2 − 𝑥𝑥𝑥𝑥 +

3
2
𝑦𝑦2 = 1 在坐标变换

�𝑥𝑥
′

𝑦𝑦′� =

⎝

⎜
⎛
√2
2

√2
2

−
√2
2

√2
2 ⎠

⎟
⎞
�
𝑥𝑥
𝑦𝑦�下的形式  �𝜃𝜃 =

𝜋𝜋
4
� 

�
𝑥𝑥
𝑦𝑦� =

⎝

⎜
⎛
√2
2

−
√2
2

√2
2

√2
2 ⎠

⎟
⎞
�𝑥𝑥

′

𝑦𝑦′�

⇒ 𝑥𝑥 =
√2
2

(𝑥𝑥′ − 𝑦𝑦′), 𝑦𝑦 =
√2
2

(𝑥𝑥′ + 𝑦𝑦′)

在新的坐标系下的方程为 

3
2
�
√2
2

(𝑥𝑥′ − 𝑦𝑦′)�
2

− �
√2
2

(𝑥𝑥′ − 𝑦𝑦′)� �
√2
2

(𝑥𝑥′ + 𝑦𝑦′)�+
3
2
�
√2
2

(𝑥𝑥′ + 𝑦𝑦′)�
2

= 1 

化简得到𝑥𝑥′2 + 2𝑦𝑦′2 = 1

【例 7.1.6】拉格朗日插值多项式 

𝑉𝑉 = 𝐹𝐹𝑛𝑛[𝑥𝑥],𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛 ∈ 𝐹𝐹 两两不同

令𝐿𝐿𝑖𝑖(𝑥𝑥) =
(𝑥𝑥 − 𝛼𝛼1)⋯ (𝑥𝑥 − 𝛼𝛼𝑖𝑖−1)(𝑥𝑥 − 𝛼𝛼𝑖𝑖+1)⋯ (𝑥𝑥 − 𝛼𝛼𝑛𝑛)

(𝛼𝛼𝑖𝑖 − 𝛼𝛼1)⋯ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖−1)(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖+1)⋯ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑛𝑛) , 𝑖𝑖 = 1, … ,𝑛𝑛 

证明:𝐿𝐿1, … ,𝐿𝐿𝑛𝑛是𝐹𝐹𝑛𝑛[𝑥𝑥]的一组基

并求从 1,𝑥𝑥, … , 𝑥𝑥𝑛𝑛−1到𝐿𝐿1, … ,𝐿𝐿𝑛𝑛的基变换矩阵和相应的坐标变换公式

证:∵ dim𝐹𝐹𝑛𝑛[𝑥𝑥] = 𝑛𝑛  ∴只需证明𝐿𝐿1, … , 𝐿𝐿𝑛𝑛线性无关

注意到𝐿𝐿𝑖𝑖�𝛼𝛼𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛}

设 𝛽𝛽1, … ,𝛽𝛽𝑛𝑛使得�𝛽𝛽𝑖𝑖𝐿𝐿𝑖𝑖(𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

= 0 
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则∀𝑗𝑗 ∈ {1, … ,𝑛𝑛},�𝛽𝛽𝑖𝑖𝐿𝐿𝑖𝑖�𝛼𝛼𝑗𝑗�
𝑛𝑛

𝑖𝑖=1

= 0 

于是�𝛽𝛽𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0 ⇒ 𝛽𝛽𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖 = 0 ⇒ 𝛽𝛽𝑖𝑖 = 0, 𝑖𝑖 = 1, . . ,𝑛𝑛 

∴ 𝐿𝐿1, … ,𝐿𝐿𝑛𝑛线性无关 

断言:设𝑝𝑝 ∈ 𝐹𝐹𝑛𝑛[𝑥𝑥],则𝑝𝑝(𝑥𝑥) = 𝑝𝑝(𝛼𝛼1)𝐿𝐿1(𝑥𝑥) + ⋯+ 𝑝𝑝(𝛼𝛼𝑛𝑛)𝐿𝐿𝑛𝑛(𝑥𝑥), deg𝑝𝑝 < 𝑛𝑛 

断言的证明:设𝑞𝑞(𝑥𝑥) = 𝑝𝑝(𝛼𝛼1)𝐿𝐿1(𝑥𝑥) +⋯+ 𝑝𝑝(𝛼𝛼𝑛𝑛)𝐿𝐿𝑛𝑛(𝑥𝑥), deg𝑞𝑞 < 𝑛𝑛 

𝑞𝑞�𝛼𝛼𝑗𝑗� = �𝑝𝑝(𝛼𝛼𝑖𝑖)𝐿𝐿𝑖𝑖�𝛼𝛼𝑗𝑗�
𝑛𝑛

𝑖𝑖=1

= �𝑝𝑝(𝛼𝛼𝑖𝑖)𝛿𝛿𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝑝𝑝�𝛼𝛼𝑗𝑗�, 𝑗𝑗 = 1, … ,𝑛𝑛 

⇒ 𝑝𝑝(𝑥𝑥)− 𝑞𝑞(𝑥𝑥)的根为𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 

∵ deg(𝑝𝑝 − 𝑞𝑞) ≤ max{ deg𝑝𝑝 , deg𝑞𝑞} < 𝑛𝑛    ∴ 𝑝𝑝 = 𝑞𝑞   断言成立 

由断言可知 𝑥𝑥𝑗𝑗 = 𝛼𝛼1
𝑗𝑗𝐿𝐿1(𝑥𝑥) +⋯+ 𝛼𝛼𝑛𝑛

𝑗𝑗𝐿𝐿𝑛𝑛(𝑥𝑥), 𝑗𝑗 = 0, … ,𝑛𝑛 − 1 

即(1 𝑥𝑥 ⋯ 𝑥𝑥𝑛𝑛−1) = (𝐿𝐿1 𝐿𝐿2 ⋯ 𝐿𝐿𝑛𝑛)

⎝

⎛
1 𝛼𝛼1 ⋯ 𝛼𝛼1𝑛𝑛−1

1 𝛼𝛼2 ⋯ 𝛼𝛼2𝑛𝑛−1
⋮ ⋮ ⋱ ⋮
1 𝛼𝛼𝑛𝑛 ⋯ 𝛼𝛼𝑛𝑛𝑛𝑛−1⎠

⎞

���������������
𝐴𝐴

 

(𝐿𝐿1 𝐿𝐿2 ⋯ 𝐿𝐿𝑛𝑛) = (1 𝑥𝑥 ⋯ 𝑥𝑥𝑛𝑛−1)𝐴𝐴−1 

设𝑝𝑝 = (1 𝑥𝑥 ⋯ 𝑥𝑥𝑛𝑛−1)�
𝑝𝑝0
⋮

𝑝𝑝𝑛𝑛−1
� = (𝐿𝐿1 𝐿𝐿2 ⋯ 𝐿𝐿𝑛𝑛)�

𝛽𝛽1
⋮
𝛽𝛽𝑛𝑛
� 

则�
𝛽𝛽1
⋮
𝛽𝛽𝑛𝑛
� = 𝐴𝐴�

𝑝𝑝0
⋮

𝑝𝑝𝑛𝑛−1
� 

𝛽𝛽𝑖𝑖 = 𝑝𝑝0 + 𝑝𝑝1𝛼𝛼𝑖𝑖 +⋯+ 𝑝𝑝𝑛𝑛−1𝛼𝛼𝑖𝑖𝑛𝑛−1 = 𝑝𝑝(𝛼𝛼𝑖𝑖), 𝑖𝑖 = 1, …𝑛𝑛       ∎ 

 

应用:求多项式𝑞𝑞使得𝑞𝑞(𝛼𝛼𝑖𝑖) = 𝛽𝛽𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 

则𝑞𝑞(𝑥𝑥) = 𝛽𝛽1𝐿𝐿1(𝑥𝑥) + ⋯+ 𝛽𝛽𝑛𝑛𝐿𝐿𝑛𝑛(𝑥𝑥) 
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§8 线性同构

本节中,𝑉𝑉,𝑊𝑊是𝐹𝐹上的线性空间 

【定义 8.1.1】线性同构 

如果存在𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊)是双射,则称𝑉𝑉和𝑊𝑊是线性同构的 

记为𝑉𝑉 ≃ 𝑊𝑊 

【命题 8.1】双射的逆是线性映射 

设𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊)是双射,则𝜑𝜑−1 ∈ Hom(𝑊𝑊,𝑉𝑉)

证:设𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ∈ 𝑊𝑊   

∵ 𝜑𝜑是双射,∴ ∃!𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ∈ 𝑉𝑉  使得 𝜑𝜑(𝑣𝑣1����⃗ ) = 𝑤𝑤1����⃗ ,𝜑𝜑(𝑣𝑣2����⃗ ) = 𝑤𝑤2�����⃗

由𝜑𝜑−1的定义,𝜑𝜑−1(𝑤𝑤1����⃗ ) = 𝑣𝑣1����⃗ ,𝜑𝜑−1(𝑤𝑤2�����⃗ ) = 𝑣𝑣2����⃗

设𝛼𝛼1,𝛼𝛼2 ∈ 𝐹𝐹

𝜑𝜑(𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ) = 𝛼𝛼1𝜑𝜑(𝑣𝑣1����⃗ ) + 𝛼𝛼2𝜑𝜑(𝑣𝑣2����⃗ ) = 𝛼𝛼1𝑤𝑤1����⃗ + 𝛼𝛼2𝑤𝑤2�����⃗

由𝜑𝜑−1的定义

𝜑𝜑−1(𝛼𝛼1𝑤𝑤1����⃗ + 𝛼𝛼2𝑤𝑤2�����⃗ ) = 𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ = 𝛼𝛼1𝜑𝜑−1(𝑤𝑤1����⃗ ) + 𝛼𝛼2𝜑𝜑−1(𝑤𝑤2�����⃗ )

∴ 𝜑𝜑−1 ∈ Hom(𝑊𝑊,𝑉𝑉)      ∎

【推论 8.1】线性同构是等价关系 

证:ℰ:𝑉𝑉 → 𝑉𝑉是恒同映射,线性双射 ⇒ 𝑉𝑉 ≃ 𝑉𝑉,自反性成立 

设𝑉𝑉 ≃ 𝑊𝑊,则∃双射𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) 

由命题 8.1,𝜑𝜑−1 ∈ Hom(𝑊𝑊,𝑉𝑉)

于是𝑊𝑊 ≃ 𝑉𝑉,对称性成立 
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§8 线性同构 

 

设𝑈𝑈是𝐹𝐹上的线性空间,且𝑈𝑈 ≃ 𝑉𝑉,𝑉𝑉 ≃ 𝑊𝑊 

则∃𝜑𝜑 ∈ Hom(𝑈𝑈,𝑉𝑉) ,𝜓𝜓 ∈ Hom(𝑉𝑉,𝑊𝑊)都是双射 

于是𝜓𝜓 ∘ 𝜑𝜑 ∈ Hom(𝑈𝑈,𝑊𝑊)也是双射 

由此𝑈𝑈 ≃ 𝑊𝑊,传递性成立      ∎ 

 

【命题 8.2】商核空间与像同构 

设𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊)则𝑉𝑉/ker𝜑𝜑≃ im𝜑𝜑 

特别地,当𝜑𝜑是满射时,𝑉𝑉/ker𝜑𝜑≃ 𝑊𝑊 

证:由线性映射分解定理 

∃𝜑𝜑� ∈ Hom�𝑉𝑉/ker𝜑𝜑 ,𝑊𝑊�是单射,𝜋𝜋是从𝑉𝑉到𝑉𝑉/ker𝜑𝜑的商映射 

使得𝜑𝜑 = 𝜑𝜑� ∘ 𝜋𝜋 

断言 im𝜑𝜑 = im𝜑𝜑� 

断言证明:设𝑤𝑤��⃗ ∈ im𝜑𝜑则∃𝑣⃗𝑣 ∈ 𝑉𝑉,使得𝜑𝜑(𝑣⃗𝑣) = 𝑤𝑤��⃗  

𝑤𝑤��⃗ = 𝜑𝜑(𝑣⃗𝑣) = 𝜑𝜑� ∘ 𝜋𝜋(𝑣⃗𝑣) = 𝜑𝜑�(𝑣⃗𝑣 + ker𝜑𝜑) ⇒ 𝑤𝑤��⃗ ∈ im𝜑𝜑�   

设𝑤𝑤��⃗ ∈ im𝜑𝜑� ,∃𝑣⃗𝑣 + ker𝜑𝜑 ∈ 𝑉𝑉/ker𝜑𝜑 

使得𝜑𝜑�(𝑣⃗𝑣 + ker𝜑𝜑) = 𝑤𝑤��⃗ ⇒ 𝜑𝜑� ∘ 𝜋𝜋(𝑣⃗𝑣) = 𝑤𝑤��⃗ ⇒ 𝜑𝜑(𝑣⃗𝑣) = 𝑤𝑤��⃗  

∴ 𝑤𝑤��⃗ ∈ im𝜑𝜑      ∴ im𝜑𝜑 = im𝜑𝜑� ,断言成立 

∵ 𝜑𝜑�是单射   ∴ 𝜑𝜑�是从𝑉𝑉/ker𝜑𝜑到 im𝜑𝜑�的线性双射 

于是𝑉𝑉/ker𝜑𝜑≃ im𝜑𝜑� ⇒ 𝑉𝑉/ker𝜑𝜑≃ im𝜑𝜑     ∎ 

 

 

 

45／363



李子明老师的线性代数讲义 

 

【推论 8.2】子空间商交和商同构 

设𝑉𝑉1,𝑉𝑉2是𝑉𝑉的子空间,则𝑉𝑉1/𝑉𝑉1∩𝑉𝑉2≃ (𝑉𝑉1 + 𝑉𝑉2)/𝑉𝑉2 

证:设𝜑𝜑1:𝑉𝑉1 → 𝑉𝑉1 + 𝑉𝑉2, 𝑣𝑣1����⃗ ↦ 𝑣𝑣1����⃗  是线性的 

𝜋𝜋1:𝑉𝑉1 + 𝑉𝑉2 → (𝑉𝑉1 + 𝑉𝑉2)/𝑉𝑉2是商映射 

则𝜓𝜓1 = 𝜋𝜋1 ∘ 𝜑𝜑1是从𝑉𝑉1到(𝑉𝑉1 + 𝑉𝑉2)/𝑉𝑉2的线性映射 

∀𝑤𝑤��⃗ ∈ 𝑉𝑉1 + 𝑉𝑉2,∃𝑣𝑣1����⃗ ∈ 𝑉𝑉1,𝑣𝑣2����⃗ ∈ 𝑉𝑉2使得𝑤𝑤��⃗ = 𝑣𝑣1����⃗ + 𝑣𝑣2����⃗  

于是𝑤𝑤��⃗ + 𝑉𝑉2 = (𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ ) + 𝑉𝑉2 = (𝑣𝑣1����⃗ + 𝑉𝑉2) + (𝑣𝑣2����⃗ + 𝑉𝑉2) 

= (𝑣𝑣1����⃗ + 𝑉𝑉2) + �0�⃗ + 𝑉𝑉2� = 𝑣𝑣1����⃗ + 𝑉𝑉2 

𝜓𝜓1(𝑣𝑣1����⃗ ) = 𝜋𝜋1 ∘ 𝜑𝜑1(𝑣𝑣1����⃗ ) = 𝜋𝜋1(𝑣𝑣1����⃗ ) = 𝑣𝑣1����⃗ + 𝑉𝑉2 = 𝑤𝑤��⃗ + 𝑉𝑉2 

于是𝜓𝜓1是满射 

断言:  ker𝜓𝜓1 = 𝑉𝑉1 ∩ 𝑉𝑉2 

断言的证明: 𝑣⃗𝑣 ∈ 𝑉𝑉1 ∩ 𝑉𝑉2 

𝜓𝜓1(𝑣⃗𝑣) = 𝜋𝜋1 ∘ 𝜑𝜑1(𝑣⃗𝑣) = 𝜋𝜋1(𝑣⃗𝑣) = 𝑣⃗𝑣 + 𝑉𝑉2 = 0�⃗ + 𝑉𝑉2 

⇒ 𝑉𝑉�⃗ ∈ ker𝜓𝜓1 

𝑤𝑤��⃗ ∈ ker𝜓𝜓1 ⊂ 𝑉𝑉1, 0�⃗ + 𝑉𝑉2 = 𝜓𝜓1(𝑤𝑤��⃗ ) = 𝜋𝜋1 ∘ 𝜑𝜑1(𝑤𝑤1����⃗ ) = 𝑤𝑤��⃗ + 𝑉𝑉2 

⇒ 𝑤𝑤��⃗ ∈ 𝑉𝑉2 ⇒ 𝑤𝑤��⃗ ∈ 𝑉𝑉1 ∩ 𝑉𝑉2      

∴ ker𝜓𝜓1 = 𝑉𝑉1 ∩ 𝑉𝑉2,断言成立 

由命题 8.2,𝑉𝑉1/𝑉𝑉1∩𝑉𝑉2≃ (𝑉𝑉1 + 𝑉𝑉2)/𝑉𝑉2        ∎ 

注:如果𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊)的定义不依赖于基底的选择 

𝜑𝜑就称为是“自然的”  

 

【例 8.1.1】自然同构 

𝒪𝒪𝑉𝑉,𝑊𝑊:𝑉𝑉 → 𝑊𝑊, 𝑣⃗𝑣 ↦ 0𝑊𝑊�����⃗ , ℰ:𝑉𝑉 → 𝑉𝑉, 𝑣⃗𝑣 ↦ 𝑣⃗𝑣 
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§8 线性同构 

 

设𝑈𝑈是𝑉𝑉的子空间, 𝜋𝜋:𝑉𝑉 → 𝑉𝑉/𝑈𝑈 , 𝑣⃗𝑣 ↦ 𝑣⃗𝑣 + 𝑈𝑈 

如果∃𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) ,使得𝜑𝜑是双射而且“自然” 

则称𝑉𝑉,𝑊𝑊自然同构 

 

【例 8.1.2】推论 8.2 自然同构 

由推论 8.2,𝑉𝑉1/𝑉𝑉1∩𝑉𝑉2自然同构于(𝑉𝑉1 + 𝑉𝑉2)/𝑉𝑉2 

 

【定理 8.1】等量基映射唯一性 

设dim𝑉𝑉 < ∞, 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的一组基,𝑤𝑤1����⃗ , … ,𝑤𝑤𝑛𝑛�����⃗是𝑊𝑊中任意向量 

则∃!𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊)使得𝜑𝜑(𝑒𝑒𝚤𝚤��⃗ ) = 𝑤𝑤𝚤𝚤����⃗ , 𝑖𝑖 = 1, … ,𝑛𝑛 

证:∀𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ , 𝜑𝜑:𝑉𝑉 → 𝑊𝑊, 𝑥⃗𝑥 ↦ 𝑥𝑥1𝑤𝑤1����⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑤𝑤𝑛𝑛�����⃗  

由坐标的唯一性,𝜑𝜑是良定义的,且𝜑𝜑(𝑒𝑒𝚤𝚤��⃗ ) = 𝑤𝑤𝚤𝚤����⃗ , 𝑖𝑖 = 1, … ,𝑛𝑛 

再设𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ +⋯+ 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ,𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹 

𝜑𝜑(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦) = 𝜑𝜑�𝛼𝛼�𝑥𝑥𝑖𝑖𝑒𝑒𝚤𝚤��⃗
𝑛𝑛

𝑖𝑖=1

+ 𝛽𝛽�𝑦𝑦𝑖𝑖𝑒𝑒𝚤𝚤��⃗
𝑛𝑛

𝑖𝑖=1

� 

= 𝜑𝜑��(𝛼𝛼𝑥𝑥𝑖𝑖 + 𝛽𝛽𝑦𝑦𝑖𝑖)𝑒𝑒𝚤𝚤��⃗
𝑛𝑛

𝑖𝑖=1

� = ��(𝛼𝛼𝑥𝑥𝑖𝑖 + 𝛽𝛽𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝚤𝚤����⃗  

= 𝛼𝛼�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑤𝑤𝚤𝚤����⃗ + 𝛽𝛽�𝑦𝑦𝑖𝑖𝑤𝑤𝚤𝚤����⃗
𝑛𝑛

𝑖𝑖=1

= 𝛼𝛼𝛼𝛼(𝑥⃗𝑥) + 𝛽𝛽𝛽𝛽(𝑦⃗𝑦) 

于是𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) ,存在性得证 

再设𝜓𝜓 ∈ Hom(𝑉𝑉,𝑊𝑊)满足𝜓𝜓(𝑒𝑒𝚤𝚤��⃗ ) = 𝑤𝑤𝚤𝚤����⃗ , 𝑖𝑖 = 1, … ,𝑛𝑛 

于是𝜓𝜓(𝑥⃗𝑥) = 𝜓𝜓��𝑥𝑥𝑖𝑖𝑒𝑒𝚤𝚤��⃗
𝑛𝑛

𝑖𝑖=1

� = �𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝜓𝜓(𝑒𝑒𝚤𝚤��⃗ ) = �𝑥𝑥𝑖𝑖𝑤𝑤𝚤𝚤����⃗
𝑛𝑛

𝑖𝑖=1

 

= 𝜑𝜑(𝑥⃗𝑥)  ⇒ 𝜓𝜓 = 𝜑𝜑       ∎ 
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【例 8.1.3】等量基映射至基域例 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的基,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐹𝐹,则∃!线性函数𝑓𝑓 ∈ Hom(𝑉𝑉,𝐹𝐹) 

使得𝑓𝑓(𝑒𝑒𝚤𝚤��⃗ ) = 𝛼𝛼𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 

设𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗  

𝑓𝑓(𝑥⃗𝑥) = 𝑥𝑥1𝑓𝑓(𝑒𝑒1���⃗ ) + ⋯+ 𝑥𝑥𝑛𝑛𝑓𝑓(𝑒𝑒𝑛𝑛����⃗ ) = 𝛼𝛼1𝑥𝑥1 + ⋯+ 𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛 

即Hom(𝑉𝑉,𝐹𝐹)可以看成𝐹𝐹[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]中齐一次多项式的集合 

 

【定理 8.2】同构空间维数相等 

设𝑉𝑉是𝐹𝐹上的有限维向量空间,则𝑉𝑉 ≃ 𝑊𝑊 ⇔ dim𝑉𝑉 = dim𝑊𝑊 

证: ⇒设𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊)是双射, 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的基 

令𝜀𝜀𝚤𝚤��⃗ = 𝜑𝜑(𝑒𝑒𝚤𝚤��⃗ ), 𝑖𝑖 = 1, … ,𝑛𝑛 

若∃𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐹𝐹使得𝛼𝛼1𝜀𝜀1���⃗ +⋯+ 𝛼𝛼𝑛𝑛𝜀𝜀𝑛𝑛���⃗ = 0𝑊𝑊�����⃗  

则𝛼𝛼1𝜑𝜑(𝑒𝑒1���⃗ ) +⋯+ 𝛼𝛼𝑛𝑛𝜑𝜑(𝑒𝑒𝑛𝑛����⃗ ) = 0𝑊𝑊�����⃗  

于是𝜑𝜑�𝛼𝛼1𝑒𝑒1���⃗ + ⋯+ 𝛼𝛼𝑛𝑛𝜑𝜑(𝑒𝑒𝑛𝑛����⃗ )� = 0𝑊𝑊�����⃗  

∵ 𝜑𝜑是单射     ∴ 𝛼𝛼1𝑒𝑒1���⃗ +⋯+ 𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛����⃗ = 0𝑉𝑉����⃗ ⇒ 𝛼𝛼1 = ⋯ = 𝛼𝛼𝑛𝑛 = 0 

∀𝑤𝑤��⃗ ∈ 𝑊𝑊,∃𝑣⃗𝑣 ∈ 𝑉𝑉,使得𝜑𝜑(𝑣⃗𝑣) = 𝑤𝑤��⃗  

设𝑣⃗𝑣 = 𝛽𝛽1𝑒𝑒1���⃗ + ⋯+ 𝛽𝛽𝑛𝑛𝑒𝑒𝑛𝑛����⃗ , 

则𝑤𝑤��⃗ = 𝜑𝜑(𝑣⃗𝑣) = 𝛽𝛽1𝜑𝜑(𝑒𝑒1���⃗ ) +⋯+ 𝛽𝛽𝑛𝑛𝜑𝜑(𝑒𝑒𝑛𝑛����⃗ ) = 𝛽𝛽1𝜀𝜀1���⃗ + ⋯+ 𝛽𝛽𝑛𝑛𝜀𝜀𝑛𝑛���⃗  

于是𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是𝑊𝑊的基 ⇒ dim𝑊𝑊 = dim𝑉𝑉 

⇐:设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的基, 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是𝑊𝑊的基 

由定理 8.1,∃𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) ,使得𝜑𝜑(𝑒𝑒𝚤𝚤��⃗ ) = 𝜀𝜀𝚤𝚤��⃗ , 𝑖𝑖 = 1, … ,𝑛𝑛 

同理∃𝜓𝜓 ∈ Hom(𝑊𝑊,𝑉𝑉) ,使得𝜓𝜓(𝜀𝜀𝚤𝚤��⃗ ) = 𝑒𝑒𝚤𝚤��⃗ , 𝑖𝑖 = 1, … ,𝑛𝑛 

∴ 𝜓𝜓 ∘ 𝜑𝜑(𝑒𝑒𝚤𝚤��⃗ ) = 𝑒𝑒𝚤𝚤��⃗ , 𝑖𝑖 = 1, … ,𝑛𝑛 

由唯一性,𝜓𝜓 ∘ 𝜑𝜑 = ℰ𝑉𝑉 

同理,𝜑𝜑 ∘ 𝜓𝜓 = ℰ𝑊𝑊,于是𝜓𝜓 = 𝜑𝜑−1,𝜑𝜑是双射 
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§8 线性同构 

 

⇒ 𝑉𝑉 ≃ 𝑊𝑊      ∎ 

注:𝐹𝐹上任何𝑛𝑛维线性空间都同构于𝐹𝐹𝑛𝑛 

 

【推论 8.3】像核维数定理 

设𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) ,且dim𝑉𝑉 < ∞ 

则dim ker𝜑𝜑 + dim im𝜑𝜑 = dim𝑉𝑉 

证:由命题 8.2,𝑉𝑉/ker𝜑𝜑≃ im𝜑𝜑 

由定理 8.2, dim𝑉𝑉/ker𝜑𝜑 = dim im𝜑𝜑 

由命题 5.1, dim𝑉𝑉 − dim ker𝜑𝜑 = dim im𝜑𝜑       ∎ 

 

【例 8.1.4】迹映射像核维数 

tr:𝐹𝐹𝑛𝑛×𝑛𝑛 → 𝐹𝐹, �𝑥𝑥𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
↦ 𝑥𝑥11 + 𝑥𝑥22 + ⋯+ 𝑥𝑥𝑛𝑛𝑛𝑛 

im tr = 𝐹𝐹 

dim ker tr = dim𝐹𝐹𝑛𝑛×𝑛𝑛 − dim im tr = 𝑛𝑛2 − 1 

 

【例 8.1.5】子空间维数公式证明 

重新证明维数公式: 

设𝑉𝑉是有限维线性空间,𝑉𝑉1,𝑉𝑉2 ⊂ 𝑉𝑉是子空间 

则dim(𝑉𝑉1 + 𝑉𝑉2) + dim(𝑉𝑉1 ∩ 𝑉𝑉2) = dim𝑉𝑉1 + dim𝑉𝑉2 

证:由推论 8.2,𝑉𝑉1/𝑉𝑉1∩𝑉𝑉2≃ (𝑉𝑉1 + 𝑉𝑉2)/𝑉𝑉2 

由定理 8.2, dim𝑉𝑉1/𝑉𝑉1∩𝑉𝑉2 = dim(𝑉𝑉1 + 𝑉𝑉2)/𝑉𝑉2 

由命题 5.1, dim𝑉𝑉1 − dim(𝑉𝑉1 ∩ 𝑉𝑉2) = dim(𝑉𝑉1 + 𝑉𝑉2)− dim𝑉𝑉2      ∎ 
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§1-8节小结 

设𝑉𝑉是域𝐹𝐹上的线性空间 

线性空间𝑉𝑉

⎩
⎪⎪
⎨

⎪⎪
⎧坐标空间 𝐹𝐹𝑛𝑛�如果dim𝑉𝑉 = 𝑛𝑛,𝑉𝑉 ≃ 𝐹𝐹𝑛𝑛�
矩阵空间 𝐹𝐹𝑚𝑚×𝑛𝑛

多项式空间 𝐹𝐹[𝑥𝑥],𝐹𝐹𝑛𝑛[𝑥𝑥]
函数空间 Func(𝑆𝑆,𝐹𝐹) , Map(𝑆𝑆,𝑉𝑉), Hom(𝑉𝑉,𝑊𝑊)
扩域 ℂ是 ℝ上和 ℚ上的线性空间

 

子空间,商空间,直和分解 

维数:设dim𝑉𝑉 < ∞,𝑉𝑉1,𝑉𝑉2𝑈𝑈是𝑉𝑉的子空间 

关于子空间的维数公式 

dim(𝑉𝑉1 + 𝑉𝑉2) + dim(𝑉𝑉1 ∩ 𝑉𝑉2) = dim𝑉𝑉1 + 𝑉𝑉2 

关于商空间的维数公式 

dim𝑉𝑉/𝑈𝑈 = dim𝑉𝑉 − dim𝑈𝑈 

关于直和分解的维数公式 

𝑉𝑉 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑘𝑘 ⇒ dim𝑉𝑉 = dim𝑈𝑈1 + ⋯+ dim𝑈𝑈𝑘𝑘 

基底与坐标 

dim𝑉𝑉 < ∞, 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的基底 

𝑥⃗𝑥 = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )�������
基底

�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�

���
坐标

,坐标关于基底是唯一的 

设𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是𝑉𝑉的另一组基 

∃!转换矩阵𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),使得(𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴 

坐标变换   设𝑥⃗𝑥 = (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ )�
𝑥𝑥1′
⋮
𝑥𝑥𝑛𝑛′
� ,则�

𝑥𝑥1′
⋮
𝑥𝑥𝑛𝑛′
� = 𝐴𝐴−1 �

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

线性映射 𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) 
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𝜑𝜑的实例�
零映射,恒同映射

商映射,关于直和分解的投影

加法，数乘，复合

 

𝜑𝜑的分解:𝜑𝜑 = 线性单射 ∘线性满射 

𝜑𝜑的维数公式   设dim𝑉𝑉 < ∞ 

dim ker𝜑𝜑 + dim im𝜑𝜑 = dim𝑉𝑉 

𝜑𝜑是单射
无穷维也成立
��������� ker𝜑𝜑 = �0�⃗ � ⇔ dim im𝜑𝜑 = dim𝑉𝑉 

当dim𝑊𝑊 < ∞       

𝜑𝜑是满射⇔ dim im𝜑𝜑 = 𝑊𝑊 ⇔ dim𝑉𝑉 − dim ker𝜑𝜑 = dim𝑊𝑊 
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§9 对偶空间 

本节中 𝑉𝑉 是域 𝐹𝐹 上有限维向量空间 

【定义 9.1.1】对偶空间 

Hom(𝑉𝑉,𝐹𝐹)  称为 𝑉𝑉 的对偶空间，记为 𝑉𝑉∗ 

 

§9.1 基底的对偶 

【定理 9.1】对偶基等量唯一性 

设 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  是 𝑉𝑉 的一组基， 

则  𝑉𝑉∗ 有唯一的一组基 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  满足 

𝑒𝑒𝑖𝑖∗�𝑒𝑒𝚥𝚥��⃗ � = 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 

特别地，𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉∗ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉 

称 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  为 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  的对偶基 

证：由定理 8.1, ∀𝑖𝑖 ∈ {1, … ,𝑛𝑛},∃! 𝑒𝑒𝑖𝑖∗ ∈ 𝑉𝑉∗ 

使得  𝑒𝑒𝑖𝑖∗�𝑒𝑒𝚥𝚥��⃗ � = 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑗𝑗 = 1, … ,𝑛𝑛 

只需验证 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗是 𝑉𝑉∗的基 

设 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐹𝐹 使得  𝛼𝛼1𝑒𝑒1∗ +⋯+ 𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛∗ = 0∗ 

其中 0∗:𝑉𝑉 → 𝐹𝐹, 𝑣⃗𝑣 ↦ 0,即 𝑉𝑉∗ 中的零元素 

则 ∀𝑗𝑗 ∈ {1, … ,𝑛𝑛}  

0 = 0∗�𝑒𝑒𝚥𝚥��⃗ � = ��𝛼𝛼𝑖𝑖𝑒𝑒𝚥𝚥��⃗
𝑛𝑛

𝑖𝑖=1

 ��𝑒𝑒𝚥𝚥��⃗ � = �𝛼𝛼𝑖𝑖𝑒𝑒𝑖𝑖∗�𝑒𝑒𝚥𝚥��⃗ �
𝑛𝑛

𝑖𝑖=1

= �𝛼𝛼𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝛼𝛼𝑗𝑗 

于是 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  线性无关 
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设 𝑓𝑓 ∈ 𝑉𝑉∗,𝛽𝛽𝑖𝑖 = 𝑓𝑓(𝑒𝑒𝚤𝚤��⃗ ), 𝑖𝑖 = 1, … ,𝑛𝑛, 令 𝑔𝑔 = �𝛽𝛽𝑖𝑖𝑒𝑒𝑖𝑖∗
𝑛𝑛

𝑖𝑖=1

, 

∀𝑗𝑗 ∈ {1, … ,𝑛𝑛},𝑔𝑔�𝑒𝑒𝚥𝚥��⃗ � = �𝛽𝛽𝑖𝑖𝑒𝑒𝑖𝑖∗�𝑒𝑒𝚥𝚥��⃗ �
𝑛𝑛

𝑖𝑖=1

= �𝛽𝛽𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝛽𝛽𝑗𝑗 = 𝑓𝑓(𝑒𝑒𝚥𝚥��⃗ ) 

由定理 8.1 可知 𝑓𝑓 = 𝑔𝑔 

于是 𝑉𝑉∗ = ⟨𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗⟩,即  𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  是 𝑉𝑉∗的一组基 

𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗的唯一性由定理 8.1 中的唯一性直接给出。      ∎ 

 

【例 9.1.1】坐标空间的对偶基 

𝑉𝑉 = 𝐹𝐹𝑛𝑛, 𝑒𝑒1���⃗ = �

1
0
⋮
0

� , … , 𝑒𝑒𝑛𝑛����⃗ = �

0
⋮
0
1

� 

令 𝑋𝑋𝑖𝑖:𝐹𝐹𝑛𝑛 → 𝐹𝐹, �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦ 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 

可直接验证 𝑋𝑋𝑖𝑖 ∈ 𝑉𝑉∗ 且 𝑋𝑋𝑖𝑖�𝑒𝑒𝚥𝚥��⃗ � = 𝛿𝛿𝑖𝑖𝑖𝑖 

于是  𝑒𝑒1���⃗  , . . . , 𝑒𝑒𝑛𝑛����⃗  的对偶基是 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 

 

【例 9.1.2】多项式取某项系数 

𝑉𝑉 = 𝐹𝐹𝑛𝑛[𝑥𝑥], 基底 1,𝑥𝑥, … ,𝑥𝑥𝑛𝑛−1 

𝐶𝐶𝑖𝑖:𝐹𝐹𝑛𝑛[𝑥𝑥] → 𝐹𝐹, 𝑃𝑃 = �𝑝𝑝𝑘𝑘𝑥𝑥𝑘𝑘
𝑛𝑛−1

𝑘𝑘=0

↦ 𝑝𝑝𝑖𝑖 

可直接验证 𝐶𝐶𝑖𝑖 ∈ 𝑉𝑉∗ 且 𝐶𝐶𝑖𝑖�𝑥𝑥𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑖𝑖 

𝑖𝑖, 𝑗𝑗 ∈ {0,1, … ,𝑛𝑛 − 1} 

设 𝐷𝐷𝑖𝑖:𝐹𝐹𝑛𝑛[𝑥𝑥] → 𝐹𝐹𝑛𝑛[𝑥𝑥], 𝑃𝑃 ↦
1
𝑖𝑖!
𝑑𝑑𝑖𝑖𝑝𝑝
𝑑𝑑𝑥𝑥𝑖𝑖

, 𝑖𝑖 = 0,1, … ,𝑛𝑛 − 1 
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𝜑𝜑0:𝐹𝐹𝑛𝑛[𝑥𝑥] → 𝐹𝐹, 𝑃𝑃 ↦ 𝑝𝑝(0) 

下证𝐶𝐶𝑖𝑖 = 𝜑𝜑0 ∘ 𝐷𝐷𝑖𝑖 

由定理 8.1，只要验证 𝜑𝜑0 ∘ 𝐷𝐷𝑖𝑖�𝑥𝑥𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {0,1, … ,𝑛𝑛 − 1} 

当𝑗𝑗 < 𝑖𝑖,𝐷𝐷𝑖𝑖�𝑥𝑥𝑗𝑗� = 0 ⇒ 𝜑𝜑0 ∘ 𝐷𝐷𝑖𝑖�𝑥𝑥𝑗𝑗� = 0 

当𝑗𝑗 = 𝑖𝑖,𝐷𝐷𝑖𝑖�𝑥𝑥𝑗𝑗� = 1 ⇒ 𝜑𝜑0 ∘ 𝐷𝐷𝑖𝑖�𝑥𝑥𝑗𝑗� = 1 

当𝑗𝑗 > 𝑖𝑖,𝐷𝐷𝑖𝑖�𝑥𝑥𝑗𝑗� = 𝑗𝑗(𝑗𝑗 − 1)⋯ (𝑗𝑗 − 𝑖𝑖 + 1)𝑥𝑥𝑗𝑗−𝑖𝑖 ⇒ 𝜑𝜑0 ∘ 𝐷𝐷𝑖𝑖�𝑥𝑥𝑗𝑗� = 0 

于是 𝐶𝐶𝑖𝑖 = 𝜑𝜑0 ∘ 𝐷𝐷𝑖𝑖 

设 𝑝𝑝 = (𝑥𝑥 − 1)(𝑥𝑥2 + 2) ∈ 𝐹𝐹4[𝑥𝑥],求 𝑝𝑝 中关于 𝑥𝑥 的系数。 

方法 1：𝐶𝐶1(𝑝𝑝) = 𝐶𝐶1(𝑥𝑥3 − 𝑥𝑥2 + 2𝑥𝑥 − 2) = 2 

方法 2：𝜑𝜑0 ∘ 𝐷𝐷1(𝑝𝑝) = 𝜑𝜑0�(𝑥𝑥2 + 2) + 2𝑥𝑥(𝑥𝑥 − 1)� = 2  

 

【命题 9.1】任意基的对偶基的矩阵表示 

设𝑎𝑎1����⃗ , … ,𝑎𝑎𝑛𝑛����⃗  是 𝐹𝐹𝑛𝑛的一组基，令 𝐴𝐴 = (𝑎𝑎1����⃗ , … ,𝑎𝑎𝑛𝑛����⃗ ), 

则 𝑎𝑎1����⃗ … . ,𝑎𝑎𝑛𝑛����⃗的对偶基是 

(𝑎𝑎1∗ , … ,𝑎𝑎𝑛𝑛∗ ) = (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛)(𝐴𝐴𝑡𝑡)−1 

证：设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
, (𝑎𝑎1∗ , … ,𝑎𝑎𝑛𝑛∗ ) = (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛)𝐵𝐵 

且 𝐵𝐵 = (𝑏𝑏𝑘𝑘𝑘𝑘)𝑛𝑛×𝑛𝑛,则𝑎𝑎𝑙𝑙∗ = �𝑏𝑏𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘

𝑛𝑛

𝑘𝑘=1

, 

𝛿𝛿𝑙𝑙𝑙𝑙 = 𝑎𝑎𝑙𝑙∗�𝑎𝑎𝚥𝚥���⃗ � = �𝑏𝑏𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�𝑎𝑎𝚥𝚥���⃗ � = �𝑏𝑏𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘𝑘𝑘

𝑛𝑛

𝑘𝑘=1

, 𝑙𝑙, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 

即 𝐵𝐵𝑡𝑡𝐴𝐴 = 𝐸𝐸 ⇒ 𝐴𝐴𝑡𝑡𝐵𝐵 = 𝐸𝐸 ⇒ 𝐵𝐵 = (𝐴𝐴𝑡𝑡)−1     ∎ 
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【例 9.1.3】求三个向量的对偶基例 

在 𝐹𝐹3 中 求 𝑎𝑎1����⃗ = �
1
0
1
� , 𝑎𝑎2����⃗ = �

0
1
0
� , 𝑎𝑎3����⃗ = �

2
0
−1

�  的对偶基 𝑎𝑎1∗ ,𝑎𝑎2∗ ,𝑎𝑎3∗  

并求𝑎𝑎1∗ �
4
2
1
� 

解：𝐴𝐴 = (𝑎𝑎1����⃗ ,𝑎𝑎2����⃗ ,𝑎𝑎3����⃗ ) = �
1 0 2
0 1 0
1 0 −1

� ,𝐴𝐴𝑡𝑡 = �
1 0 1
0 1 0
2 0 −1

� 

�
1 0 1 │ 1 0 0
0 1 0 │ 0 1 0
2 0 −1 │ 0 0 1

� → �
1 0 1 │ 1 0 0
0 1 0 │ 0 1 0
0 0 −3 │ −2 0 1

� 

→

⎝

⎜
⎛

1 0 0 │
1
3

0 −
1
3

0 1 0 │ 0 1 0
0 0 −3 │ −2 0 1 ⎠

⎟
⎞

→

⎝

⎜⎜
⎛

1 0 0 │
1
3

0 −
1
3

0 1 0 │ 0 1 0

0 0 1 │
2
3

0 −
1
3⎠

⎟⎟
⎞

 

(𝑎𝑎1∗ ,𝑎𝑎2∗ ,𝑎𝑎3∗) = (𝑋𝑋1,𝑋𝑋2,𝑋𝑋3)

⎝

⎜
⎛

1
3

0 −
1
3

0 1 0
2
3

0 −
1
3⎠

⎟
⎞

𝑎𝑎1∗ =
1
3
𝑋𝑋1 +

2
3
𝑋𝑋3, 𝑎𝑎2∗ = 𝑋𝑋2, 𝑎𝑎3∗ =

1
3
𝑋𝑋1 −

1
3
𝑋𝑋3

𝑎𝑎1∗ �
4
2
1
� =

1
3
𝑋𝑋1 �

4
2
1
� +

2
3
𝑋𝑋3 �

4
2
1
� =

4
3

+
2
3

= 2 
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§9.2 线性关系的对偶描述 

【引理 9.1】零向量的对偶性质 

设 𝑣⃗𝑣 ∈ 𝑉𝑉,则以下断言等价 

(𝑖𝑖)𝑣⃗𝑣 = 0�⃗  

(𝑖𝑖𝑖𝑖)∀𝑓𝑓 ∈ 𝑉𝑉∗,𝑓𝑓(𝑣⃗𝑣) = 0�⃗  

(𝑖𝑖𝑖𝑖𝑖𝑖)设 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  是 𝑉𝑉∗ 的一组基， 𝑒𝑒1∗(𝑣⃗𝑣) = ⋯ = 𝑒𝑒𝑛𝑛∗(𝑣⃗𝑣) = 0 

证：(𝑖𝑖) ⇒ (𝑖𝑖𝑖𝑖) ⇒ (𝑖𝑖𝑖𝑖𝑖𝑖)显然 

(𝑖𝑖𝑖𝑖𝑖𝑖) ⇒ (𝑖𝑖) 假设𝑣⃗𝑣 ≠ 0,则由 𝑣⃗𝑣 可扩充 𝑉𝑉 的一组基 𝑣⃗𝑣 = 𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ , … ,𝑣𝑣𝑛𝑛����⃗  

设 𝑣𝑣1∗, v2∗ , … ,𝑣𝑣𝑛𝑛∗ 是其对偶基，且 

𝑣𝑣1∗ = 𝛼𝛼1𝑒𝑒1∗ + 𝛼𝛼2𝑒𝑒2∗ +⋯𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛∗  

则 1 = 𝑣𝑣1∗(𝑣⃗𝑣) = 𝛼𝛼1𝑒𝑒1∗(𝑣⃗𝑣) + 𝛼𝛼2𝑒𝑒2∗(𝑣⃗𝑣) + ⋯+ 𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛∗(𝑣⃗𝑣) = 0,矛盾       ∎ 

 

【推论 9.1】相等向量的对偶性质 

设 𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝑉𝑉,则下列断言等价 

(𝑖𝑖) 𝑢𝑢�⃗ = 𝑣⃗𝑣 

(𝑖𝑖𝑖𝑖)∀𝑓𝑓 ∈ 𝑉𝑉∗,𝑓𝑓(𝑢𝑢�⃗ ) = 𝑓𝑓(𝑣⃗𝑣) 

(𝑖𝑖𝑖𝑖𝑖𝑖)设 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  是 𝑉𝑉∗ 的一组基，使得 𝑒𝑒𝑖𝑖∗(𝑢𝑢�⃗ ) = 𝑒𝑒𝑖𝑖∗(𝑣⃗𝑣), 𝑖𝑖 = 1, … ,𝑛𝑛 

证： ∵ 𝑢𝑢�⃗ = 𝑣⃗𝑣 ⇔ 𝑢𝑢�⃗ − 𝑣⃗𝑣 = 0  

∴推论 9.1 可由引理 9.1 直接得出。      ∎  
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【引理 9.2】向量对偶矩阵求对偶的作用 

设 𝑓𝑓1, … ,𝑓𝑓𝑚𝑚 ∈ 𝑉𝑉∗,𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ∈ 𝑉𝑉,   

𝐴𝐴 = �𝑓𝑓𝑖𝑖�𝑣𝑣𝚥𝚥���⃗ ��
𝑚𝑚×𝑘𝑘

, 𝑣⃗𝑣 = 𝛼𝛼1𝑣𝑣1����⃗ + ⋯+ 𝛼𝛼𝑘𝑘𝑣𝑣𝑘𝑘����⃗ , 𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝐹𝐹 

则 �
𝑓𝑓1(𝑣⃗𝑣)
⋮

𝑓𝑓𝑚𝑚(𝑣⃗𝑣)
� = 𝐴𝐴�

𝛼𝛼1
⋮
𝛼𝛼𝑘𝑘
� 

证：∀𝑖𝑖 ∈ {1, … ,𝑚𝑚} 

𝐴𝐴𝚤𝚤���⃗ �
𝛼𝛼1
⋮
𝛼𝛼𝑘𝑘
� = �𝑓𝑓𝑖𝑖(𝑣𝑣1����⃗ ), … , 𝑓𝑓𝑖𝑖(𝑣𝑣𝑘𝑘����⃗ )��

𝛼𝛼1
⋮
𝛼𝛼𝑘𝑘
�

= 𝛼𝛼1𝑓𝑓𝑖𝑖(𝑥𝑥1���⃗ ) + ⋯+ 𝛼𝛼𝑘𝑘𝑓𝑓𝑖𝑖(𝑥𝑥𝑘𝑘����⃗ )

= 𝑓𝑓𝑖𝑖(𝛼𝛼1𝑥𝑥1���⃗ + ⋯+ 𝛼𝛼𝑘𝑘𝑥𝑥𝑘𝑘����⃗ )

= 𝑓𝑓𝑖𝑖(𝑥⃗𝑥)        ∎

 

 

【引理 9.3】向量对偶矩阵判断线性相关性 

设 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ∈ 𝑉𝑉,则下列断言等价 

(𝑖𝑖)𝑣𝑣1����⃗ , … ,𝑣𝑣𝑘𝑘����⃗  线性相关 

(𝑖𝑖𝑖𝑖) ∀𝑓𝑓1, … , 𝑓𝑓𝑘𝑘 ∈ 𝑉𝑉∗,矩阵 �𝑓𝑓𝑖𝑖�𝑣𝑣𝚥𝚥���⃗ ��
𝑘𝑘×𝑘𝑘

不满秩 

(𝑖𝑖𝑖𝑖𝑖𝑖) 设 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  是 𝑉𝑉∗的一组基，矩阵 �𝑒𝑒𝑖𝑖∗�𝑣𝑣𝚥𝚥���⃗ ��𝑛𝑛×𝑘𝑘
的秩小于 𝑘𝑘 

证：(𝑖𝑖) ⇒ (𝑖𝑖𝑖𝑖) 令 𝐵𝐵 = �𝑓𝑓𝑖𝑖�𝑣𝑣𝚥𝚥���⃗ ��
𝑘𝑘×𝑘𝑘

 

∵ 𝑣𝑣1����⃗ , … ,𝑣𝑣𝑘𝑘����⃗  线性相关  

∴ ∃𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝐹𝐹 不全为零，使得 𝛼𝛼1𝑣𝑣1����⃗ + ⋯+ 𝛼𝛼𝑘𝑘𝑣𝑣𝑘𝑘����⃗ = 0�⃗  

由引理 9.2， �
0
0
0
� = �

𝑓𝑓1�0�⃗ �
⋮

𝑓𝑓𝑘𝑘�0�⃗ �
� = 𝐵𝐵�

𝛼𝛼1
⋮
𝛼𝛼𝑘𝑘
� ⇒ rank𝐵𝐵 < 𝑘𝑘 

(𝑖𝑖𝑖𝑖) ⇒ (𝑖𝑖𝑖𝑖𝑖𝑖)  设 𝐵𝐵 = �𝑒𝑒𝑖𝑖∗�𝑣𝑣𝚥𝚥���⃗ ��𝑛𝑛×𝑘𝑘
 

由(𝑖𝑖𝑖𝑖)可知 𝐵𝐵 的任何 𝑘𝑘 × 𝑘𝑘 阶行列式都为零，于是 rank𝐵𝐵 < 𝑘𝑘 
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(𝑖𝑖𝑖𝑖𝑖𝑖) ⇒ (𝑖𝑖)  ∵ rank𝐵𝐵 < 𝑘𝑘  

∴ ∃𝛽𝛽1, … ,𝛽𝛽𝑘𝑘 ∈ 𝐹𝐹 不全为零，使得 𝐵𝐵�
𝛽𝛽1
⋮
𝛽𝛽𝑘𝑘
� = �

0
⋮
0
� 

由引理 9.2, 𝑒𝑒𝑖𝑖∗(𝛽𝛽1𝑣𝑣1����⃗ +⋯𝛽𝛽𝑘𝑘𝑣𝑣𝑘𝑘����⃗ ) = 0�⃗ , 𝑖𝑖 = 1,2, … ,𝑛𝑛 

由引理 9.1, 𝛽𝛽1𝑣𝑣1����⃗ + ⋯+ 𝛽𝛽𝑘𝑘𝑣𝑣𝑘𝑘����⃗ = 0�⃗  

⇒ 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗  线性相关       ∎ 

 

【推论 9.2】向量对偶矩阵判定基 

设dim𝑉𝑉 = 𝑛𝑛, 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑛𝑛����⃗ ∈ 𝑉𝑉, 

则 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑛𝑛����⃗  是 𝑉𝑉 的基⇔矩阵 �𝑒𝑒𝑖𝑖∗�vȷ���⃗ ��
𝑛𝑛×𝑛𝑛

 满秩 

其中 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  是 𝑉𝑉∗的一组基 

证：在引理 9.3 中取 𝑘𝑘 = 𝑛𝑛,再用 (𝑖𝑖)和 (𝑖𝑖𝑖𝑖𝑖𝑖)的等价性。 

 

【定理 9.2】向量对偶基矩阵求生成空间维数 

设 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ∈ 𝑉𝑉, 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗ ∈ 𝑉𝑉∗是 𝑉𝑉∗ 的一组基 

令𝐴𝐴 = �𝑒𝑒𝑖𝑖∗�𝑣𝑣𝚥𝚥���⃗ ��𝑛𝑛×𝑘𝑘
,则 dim⟨𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ⟩ = rank𝐴𝐴 

证：设 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴 ,不妨设 𝐴𝐴(1)�������⃗ , … ,𝐴𝐴(𝑟𝑟)�������⃗线性无关 

令 𝐵𝐵 = �𝐴𝐴(1)�������⃗ , … ,𝐴𝐴(𝑟𝑟)�������⃗ �
𝑛𝑛×𝑘𝑘

, ∵ rank𝐵𝐵 = 𝑟𝑟  ∴ 𝑣𝑣1����⃗ , … ,𝑣𝑣𝑟𝑟���⃗  线性无关 

�引理 9.3，(i) ⇔ (iii)� 

∀𝑚𝑚 ∈ {𝑟𝑟 + 1, … ,𝑘𝑘},令 𝐵𝐵𝑚𝑚 = �𝐴𝐴(1)�������⃗ , … ,𝐴𝐴(𝑟𝑟)�������⃗ ,𝐴𝐴(𝑚𝑚)���������⃗ � 

则 rank𝐵𝐵𝑚𝑚 = 𝑟𝑟 < 𝑟𝑟 + 1,于是 𝑣𝑣1����⃗ , … ,𝑣𝑣𝑟𝑟���⃗ ,𝑣𝑣𝑚𝑚�����⃗  线性相关 

⇒ vm�����⃗ ∈ ⟨𝑣𝑣1����⃗ , … ,𝑣𝑣𝑟𝑟���⃗ ⟩ ⇒ dim⟨𝑣𝑣1����⃗ , … ,𝑣𝑣𝑟𝑟���⃗ ⟩ = 𝑟𝑟      ∎ 
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【例 9.2.1】n 个 n-2 次多项式 n 个点值矩阵退化 

设 𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛 ∈ 𝐹𝐹𝑛𝑛−1[𝑥𝑥],𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐹𝐹, 

则det �𝑃𝑃𝑖𝑖�𝛼𝛼𝑗𝑗��𝑖𝑖=1,…,𝑛𝑛
𝑗𝑗=1,…,𝑛𝑛

= 0 

证：𝑓𝑓𝛼𝛼𝑖𝑖:𝐹𝐹𝑛𝑛−1[𝑥𝑥] → 𝐹𝐹, 𝑃𝑃(𝑥𝑥) ↦ 𝑃𝑃(𝛼𝛼𝑖𝑖) 

可直接验证 𝑓𝑓𝛼𝛼𝑖𝑖 ∈ 𝐹𝐹𝑛𝑛−1[𝑥𝑥]∗ 

∵ dim𝐹𝐹𝑛𝑛−1[𝑥𝑥] = 𝑛𝑛 − 1   ∴ 𝑃𝑃1, … ,𝑃𝑃𝑛𝑛线性相关 

⇒ det �𝑃𝑃𝑖𝑖�𝛼𝛼𝑗𝑗��𝑖𝑖=1,…,𝑛𝑛
𝑗𝑗=1,…,𝑛𝑛

= 0    [引理 9.3, (i) ⇔ (iii)] 
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§9.3 自然同构 

【定义 9.3.1】重对偶 

设 𝑣⃗𝑣 ∈ 𝑉𝑉,定义  ε𝑣𝑣�⃗ : 𝑉𝑉∗ → 𝐹𝐹, 𝑓𝑓 ↦ 𝑓𝑓(𝑣⃗𝑣) 

∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑓𝑓,𝑔𝑔 ∈ 𝑉𝑉∗ 

𝜀𝜀𝑣𝑣�⃗ (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽) = (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)(𝑣⃗𝑣) = 𝛼𝛼𝛼𝛼(𝑣⃗𝑣) +  𝛽𝛽𝛽𝛽(𝑣⃗𝑣)

= 𝛼𝛼𝜀𝜀𝑣𝑣�⃗ (𝑓𝑓) + 𝛽𝛽𝜀𝜀𝑣𝑣�⃗ (𝑔𝑔)
  

于是  𝜀𝜀𝑣𝑣�⃗   是从  𝑉𝑉∗ 到 𝐹𝐹 的线性函数，即 𝜀𝜀𝑣𝑣�⃗ ∈ 𝑉𝑉∗∗ 

注：上述验证并未用到 𝑓𝑓,𝑔𝑔 是线性函数，事实上，令𝑠𝑠 ∈ 𝑆𝑆 

𝜀𝜀𝑠𝑠: Func(𝑆𝑆,𝐹𝐹) → 𝐹𝐹, 𝑓𝑓 ↦ 𝑓𝑓(𝑠𝑠)  是线性函数。 

 

【定理 9.3】重对偶空间同构原空间 

𝜑𝜑:𝑉𝑉 → 𝑉𝑉∗∗, 𝑣⃗𝑣 ↦ 𝜀𝜀𝑣𝑣�⃗   是线性同构。 

证：由 𝜀𝜀𝑣𝑣�⃗  的定义， 𝜑𝜑 是良定义的 

∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝑉𝑉, 

𝜑𝜑(𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣) = 𝜀𝜀𝛼𝛼𝑢𝑢��⃗ +𝛽𝛽𝑣𝑣�⃗  

∀𝑓𝑓 ∈ 𝑉𝑉∗, 𝜀𝜀𝛼𝛼𝑢𝑢��⃗ +𝛽𝛽𝑣𝑣�⃗ (𝑓𝑓) = 𝑓𝑓(𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣) 

∵ 𝑓𝑓 线性 ∴ 𝜀𝜀𝛼𝛼𝑢𝑢��⃗ +𝛽𝛽𝑣𝑣�⃗ (𝑓𝑓) = 𝛼𝛼𝛼𝛼(𝑢𝑢�⃗ ) + 𝛽𝛽𝛽𝛽(𝑣⃗𝑣) = 𝛼𝛼𝜀𝜀𝑢𝑢��⃗ (𝑓𝑓) + 𝛽𝛽𝜀𝜀𝑣𝑣�⃗ (𝑓𝑓) 

⇒ 𝜀𝜀𝛼𝛼𝑢𝑢��⃗ +𝛽𝛽𝑣𝑣�⃗ = α𝜀𝜀𝑢𝑢��⃗ + 𝛽𝛽𝜀𝜀𝑣𝑣�⃗   

⇒  𝜑𝜑(𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣) = 𝛼𝛼𝛼𝛼(𝑢𝑢�⃗ ) + 𝛽𝛽𝛽𝛽(𝑣⃗𝑣) 

由定理 5.1， 要证 𝜑𝜑 是单射，只要证 𝜑𝜑(𝑣⃗𝑣) = 0∗∗ ⇒ 𝑣⃗𝑣 = 0�⃗  

�其中0∗∗是𝑉𝑉∗∗中的零元� 

设 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  是 𝑉𝑉∗ 的一组基 

0 = 0∗∗(𝑒𝑒𝑖𝑖∗) = 𝜀𝜀𝑣𝑣�⃗ (𝑒𝑒𝑖𝑖∗) = 𝑒𝑒𝑖𝑖∗(𝑣𝑣), 𝑖𝑖 = 1, … ,𝑛𝑛 

由引理 9.1, 𝑣⃗𝑣 = 0�⃗ . 
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∴  𝜑𝜑 是单射 

由线性映射维数公式     dim im𝜑𝜑 = dim𝑉𝑉 

由定理 9.1      dim im𝜑𝜑 = dim𝑉𝑉∗∗ ⇒ im𝜑𝜑 = 𝑉𝑉∗∗ 

即 𝜑𝜑 是满射，于是 𝜑𝜑 是线性同构。    ∎ 

 

注：𝜑𝜑 的定义域基底选取无关，因而 𝜑𝜑 是自然同构 

即𝑉𝑉与𝑉𝑉∗∗ 自然同构。 

 

【推论 9.3】与对偶基正交原基唯一存在性 

设 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  是 𝑉𝑉∗ 的基， 

则∃!基底 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ∈ 𝑉𝑉,使得𝑒𝑒𝑖𝑖∗�𝑒𝑒𝚥𝚥��⃗ � = 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 

证：由定理 9.1， ∃!基底 𝑒𝑒1∗∗, … , 𝑒𝑒𝑛𝑛∗∗,使得𝑒𝑒𝑗𝑗∗∗(𝑒𝑒𝑖𝑖∗) = 𝛿𝛿𝑖𝑖𝑖𝑖 

又 ∀𝑗𝑗 ∈ {1, … ,𝑛𝑛}, ∃! 𝑒𝑒𝚥𝚥��⃗ ∈ 𝑉𝑉,使得𝑒𝑒𝑗𝑗∗∗ = 𝜀𝜀𝑒𝑒𝚥𝚥���⃗  

𝑒𝑒𝑗𝑗∗∗(𝑒𝑒𝑖𝑖∗) = 𝜀𝜀𝑒𝑒𝚥𝚥���⃗ (𝑒𝑒𝑖𝑖∗) = 𝑒𝑒𝑖𝑖∗�𝑒𝑒𝚥𝚥��⃗ � = 𝛿𝛿𝑖𝑖𝑖𝑖 

∵ 𝜑𝜑是线性同构 ∴ 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  线性无关  于是 𝑒𝑒1���⃗  , . . . , 𝑒𝑒𝑛𝑛����⃗  是 𝑉𝑉 的基。∎ 

 

【推论 9.4】基对偶矩阵测对偶生成空间维数 

设𝑓𝑓1, … ,𝑓𝑓𝑘𝑘 ∈ 𝑉𝑉∗, 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  是 𝑉𝑉 的基，则 

dim〈𝑓𝑓1, … , 𝑓𝑓𝑘𝑘⟩ = rank �𝑓𝑓𝑗𝑗(𝑒𝑒𝚤𝚤��⃗ )�𝑖𝑖=1,…,𝑛𝑛
𝑗𝑗=1,…𝑘𝑘

 

证： ∵ 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  是 𝑉𝑉 的基， ∴ εe1����⃗ , … , 𝜀𝜀𝑒𝑒𝑛𝑛����⃗是 𝑉𝑉∗∗ 的基 

由定理 9.2 

dim〈𝑓𝑓1, … , 𝑓𝑓𝑘𝑘⟩ = rank �𝜀𝜀𝑒𝑒𝚤𝚤���⃗ �𝑓𝑓𝑗𝑗��𝑛𝑛×𝑘𝑘
= rank �𝑓𝑓𝑗𝑗(𝑒𝑒𝚤𝚤��⃗ )�𝑖𝑖=1,…,𝑛𝑛

𝑗𝑗=1,…𝑘𝑘
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§9.4 子空间的对偶 

【定义 9.4.1】零化子空间 

设 𝑈𝑈 ⊂ 𝑉𝑉 是子空间，令 𝑈𝑈° = {𝑓𝑓 ∈ 𝑉𝑉∗|∀𝑢𝑢 ∈ 𝑈𝑈, 𝑓𝑓(𝑢𝑢�⃗ ) = 0} 

称 𝑈𝑈° 是 𝑈𝑈 的零化�子空间� 

验证：𝑈𝑈° 是 𝑉𝑉∗ 的子空间. 

∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑓𝑓,𝑔𝑔 ∈ 𝑈𝑈°, ∀𝑢𝑢�⃗ ∈ 𝑈𝑈 

𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽(𝑢𝑢�⃗ ) = 𝛼𝛼𝛼𝛼(𝑢𝑢�⃗ ) + 𝛽𝛽𝛽𝛽(𝑢𝑢�⃗ ) = 0        ∎ 

 

【例 9.4.1】三维零化子空间例 

设 𝑉𝑉 = 𝐹𝐹3,𝑢𝑢1����⃗ = �
1
1
0
� ,𝑢𝑢2����⃗ = �

1
0
1
� ,𝑈𝑈 = 〈𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ⟩ 

计算 𝑈𝑈° 的一组基。 

解：设 𝑓𝑓 = 𝛼𝛼1𝑋𝑋1 + 𝛼𝛼2𝑋𝑋2 + 𝛼𝛼3𝑋𝑋3 

则𝑓𝑓 ∈ 𝑈𝑈° ⇔ 𝑓𝑓(𝑣𝑣1����⃗ ) = 𝑓𝑓(𝑣𝑣2����⃗ ) = 0 

�𝛼𝛼1 + 𝛼𝛼2 = 0
𝛼𝛼1 + 𝛼𝛼3 = 0 ⇒ �

𝛼𝛼1 = 𝑡𝑡
𝛼𝛼2 = −𝑡𝑡
𝛼𝛼3 = −𝑡𝑡

      𝑡𝑡 ∈ 𝐹𝐹 

于是 𝑈𝑈° = 〈𝑋𝑋1 − 𝑋𝑋2 − 𝑋𝑋3⟩ 

 

【定义 9.4.2】解空间 

设 𝑊𝑊 ⊂ 𝑉𝑉∗ 是子空间，定义𝑊𝑊° = {𝑣⃗𝑣 ∈ 𝑉𝑉|∀𝑓𝑓 ∈ 𝑊𝑊,𝑓𝑓(𝑣⃗𝑣) = 0} 

称 𝑊𝑊° 是 𝑊𝑊的解空间�本质是零化子� 

验证：𝑊𝑊° 是𝑉𝑉中的子空间 
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设𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝑉𝑉, 𝑓𝑓 ∈ 𝑊𝑊 

𝑓𝑓(𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣) = 𝛼𝛼𝛼𝛼(𝑢𝑢�⃗ ) + 𝛽𝛽𝛽𝛽(𝑣⃗𝑣) = 0 ⇒ 𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣 ∈ 𝑊𝑊°       ∎ 

注：需要𝑓𝑓是线性函数 

 

【例 9.4.2】三维解空间例 

𝑊𝑊 = 〈𝑋𝑋1 − 𝑋𝑋2 − 𝑋𝑋3⟩ ∈ (𝐹𝐹3)∗,求 𝑊𝑊° 的一组基 

设 𝑥⃗𝑥 = �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� ∈ 𝐹𝐹3   则 

𝑥⃗𝑥 ∈ 𝑊𝑊° ⇔ 𝑥𝑥1 − 𝑥𝑥2 − 𝑥𝑥3 = 0 ⇔𝑊𝑊° = ��
1
1
0
� ,�

1
0
1
�� 

 

【例 9.4.3】零化子空间及解空间简单性质 

�0�⃗ �° = 𝑉𝑉∗  �显然�, {0∗}° = 𝑉𝑉  �显然� 

𝑉𝑉° = {0∗}           (𝑉𝑉∗)° = �0�⃗ ��引理 9.1� 

 

【例 9.4.4】零化子空间反包含关系 

设 𝑈𝑈1 ⊂ 𝑈𝑈2 ⊂ 𝑉𝑉 是子空间，𝑊𝑊1 ⊂ 𝑊𝑊2 ⊂ 𝑉𝑉∗是子空间 

则 𝑈𝑈1° ⊃ 𝑈𝑈2°， 𝑊𝑊1° ⊃ 𝑊𝑊2°    (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

证：𝑓𝑓 ∈ 𝑈𝑈2° ⇒ ∀𝑣⃗𝑣 ∈ 𝑈𝑈2,𝑓𝑓(𝑣⃗𝑣) = 0 

∵ 𝑈𝑈1 ⊂ 𝑈𝑈2    ∴ ∀𝑣⃗𝑣 ∈ 𝑈𝑈1,𝑓𝑓(𝑣⃗𝑣) = 0 

⇒ 𝑓𝑓 ∈ 𝑈𝑈1° ⇒ 𝑈𝑈2° ⊂ 𝑈𝑈1° 

同理 𝑊𝑊1° ⊃ 𝑊𝑊2°       ∎ 
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【定理 9.4】零化子维数公式 

(𝑖𝑖)设 𝑈𝑈 是 𝑉𝑉 的子空间，则 dim𝑈𝑈 + dim𝑈𝑈° = dim𝑉𝑉 

(𝑖𝑖𝑖𝑖)设𝑊𝑊是𝑉𝑉∗的子空间，则dim𝑊𝑊 + dim𝑊𝑊° = dim𝑉𝑉 

下证明(𝑖𝑖𝑖𝑖), (𝑖𝑖)可类似证 

设 𝑒𝑒1∗, … , 𝑒𝑒𝑑𝑑∗  是𝑊𝑊的一组基， 

把它扩充为 𝑉𝑉∗的一组基 𝑒𝑒1∗, … , 𝑒𝑒𝑑𝑑∗ , 𝑒𝑒𝑑𝑑+1∗ , … , 𝑒𝑒𝑛𝑛∗  

由推论 9.3,∃𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ∈ 𝑉𝑉是基底 

且𝑒𝑒𝑖𝑖∗�𝑒𝑒𝚥𝚥��⃗ � = 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 

于是𝑒𝑒𝑑𝑑+1 ���������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ∈ 𝑊𝑊° 

�∵ ∀𝑒𝑒𝑖𝑖 ∈ {1, … ,𝑑𝑑}, 𝑗𝑗 ∈ {𝑑𝑑 + 1, … ,𝑛𝑛}, 𝑒𝑒𝑖𝑖∗�𝑒𝑒𝚥𝚥��⃗ � = 0� 

设 𝑤𝑤��⃗ ∈ 𝑊𝑊°,则 ∃β1, … ,𝛽𝛽𝑛𝑛 ∈ 𝐹𝐹使得 

𝑤𝑤��⃗ = 𝛽𝛽1𝑒𝑒1���⃗ + ⋯+ 𝛽𝛽𝑑𝑑𝑒𝑒𝑑𝑑����⃗ + 𝛽𝛽𝑑𝑑+1𝑒𝑒𝑑𝑑+1��������⃗ + ⋯+ 𝛽𝛽𝑛𝑛𝑒𝑒𝑛𝑛����⃗  

设 𝑖𝑖 ∈ {1, … ,𝑑𝑑} 

0 = 𝑒𝑒𝑖𝑖∗(𝑤𝑤��⃗ ) = 𝛽𝛽𝑖𝑖 ⇒ 𝑤𝑤��⃗ ∈ ⟨𝑒𝑒𝑑𝑑+1 ���������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ⟩ 

⇒𝑊𝑊° = ⟨𝑒𝑒𝑑𝑑+1 ���������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ⟩ ⇒ dim𝑊𝑊° = 𝑛𝑛 − 𝑑𝑑         ∎ 

 

【定理 9.5】重零化子为自身 

(𝑖𝑖)设𝑈𝑈 ⊂ 𝑉𝑉是子空间，则 (𝑈𝑈°)° = 𝑈𝑈 

(𝑖𝑖𝑖𝑖)设 𝑊𝑊 ⊂ V∗是子空间，则(𝑊𝑊°)° = 𝑊𝑊 

证：(𝑖𝑖) ∀𝑢𝑢�⃗ ∈ 𝑈𝑈,𝑓𝑓 ∈ 𝑈𝑈°,𝑓𝑓(𝑢𝑢�⃗ ) = 0 

⇒ 𝑈𝑈 ⊂ (𝑈𝑈°)° 

由定理 9.4，dim𝑈𝑈 + dim𝑈𝑈° = dim𝑉𝑉 = dim𝑈𝑈° + dim(𝑈𝑈°)° 

⇒ dim𝑈𝑈 = dim(𝑈𝑈°)° ⇒ 𝑈𝑈 = (𝑈𝑈°)° 

(𝑖𝑖𝑖𝑖) 类似        ∎ 
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【命题 9.2】零化与交和反复合运算 

(𝑖𝑖)设 𝑈𝑈1,𝑈𝑈2 ⊂ 𝑉𝑉 是子空间 

则 (𝑈𝑈1 + 𝑈𝑈2)° = 𝑈𝑈1° ∩ 𝑈𝑈2°, (𝑈𝑈1 ∩ 𝑈𝑈2)° = 𝑈𝑈1° + 𝑈𝑈2° 

(𝑖𝑖𝑖𝑖)设 𝑊𝑊1,𝑊𝑊2 ⊂ 𝑉𝑉∗是子空间 

则 (𝑊𝑊1 + 𝑊𝑊2)° = W1° ∩𝑊𝑊2°, (𝑊𝑊1 ∩𝑊𝑊2)° = 𝑊𝑊1° + 𝑊𝑊2° 

 

【命题 9.3】零化子直和分解对偶一致性 

(𝑖𝑖)设 𝑉𝑉 = 𝑈𝑈1 ⊕𝑈𝑈2是直和分解 

则𝑉𝑉∗ = 𝑈𝑈1°⊕𝑈𝑈2° 

(𝑖𝑖𝑖𝑖)设 𝑉𝑉∗ = 𝑊𝑊1 ⊕𝑊𝑊2是直和分解 

则 𝑉𝑉 = 𝑊𝑊1° ⊕𝑊𝑊2° 

证明略 

 

【例 9.4.5】迹零空间仅是单位阵的不变空间 

①设 𝑀𝑀𝑖𝑖𝑖𝑖 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),其中 𝑖𝑖 行 𝑗𝑗 列处元素是 1，其他元素是 0， 

𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
 

则 𝐴𝐴 = ��𝑎𝑎𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

② 𝑀𝑀𝑖𝑖𝑖𝑖𝐴𝐴 =

⎝

⎜
⎜
⎜
⎜
⎛

01×𝑛𝑛
⋮

01×𝑛𝑛

                     𝐴𝐴𝚥𝚥���⃗         �第𝑖𝑖行�
01×𝑛𝑛
⋮

01×𝑛𝑛 ⎠

⎟
⎟
⎟
⎟
⎞
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𝐴𝐴𝑀𝑀𝑖𝑖𝑖𝑖 = �0�⃗ , … , 0�⃗ , 𝐴𝐴(𝑖𝑖)

�第𝑗𝑗列�
, 0�⃗ , … , 0�⃗ �        �自己验证� 

③ tr�𝑀𝑀𝑖𝑖𝑖𝑖𝐴𝐴� = 𝑎𝑎𝑖𝑖𝑖𝑖    tr�𝐴𝐴𝑀𝑀𝑖𝑖𝑖𝑖� = 𝑎𝑎𝑗𝑗𝑗𝑗 

    由②直接可得 

④设 𝑈𝑈 = {𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)| tr𝐵𝐵 = 0} 

则 𝑈𝑈 是 𝑀𝑀𝑛𝑛(𝐹𝐹) 的 𝑛𝑛2 − 1 维空间      �已证� 

⑤设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),使得 ∀𝐵𝐵 ∈ 𝑈𝑈,𝐴𝐴𝐴𝐴 ∈ 𝑈𝑈 

证明：𝐴𝐴 = 𝜆𝜆𝜆𝜆,其中𝜆𝜆 ∈ 𝐹𝐹 

法 1 

设𝑓𝑓𝐴𝐴:𝑀𝑀𝑛𝑛(𝐹𝐹) → 𝐹𝐹, 𝑥𝑥 ↦ tr𝐴𝐴𝐴𝐴 

则𝑓𝑓𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)∗ 

∀𝐵𝐵 ∈ 𝑈𝑈,𝑓𝑓𝐴𝐴(𝐵𝐵) = tr𝐴𝐴𝐴𝐴 = 0,于是 𝑓𝑓𝐴𝐴 ∈ 𝑈𝑈° 

由定理 9.4 和④，dim𝑈𝑈° = 1,而𝑓𝑓𝐸𝐸 ∈ 𝑈𝑈°且𝑓𝑓𝐸𝐸 ≠ 0∗ 

于是∃𝜆𝜆 ∈ 𝐹𝐹使得𝑓𝑓𝐴𝐴 = 𝜆𝜆𝑓𝑓𝐸𝐸 , 

𝑓𝑓𝐴𝐴�𝑀𝑀𝑖𝑖𝑖𝑖� = tr𝐴𝐴𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑗𝑗𝑗𝑗 , 𝜆𝜆𝑓𝑓𝐸𝐸�𝑀𝑀𝑖𝑖𝑖𝑖� = 𝜆𝜆 tr�𝑀𝑀𝑖𝑖𝑖𝑖� = 𝜆𝜆𝛿𝛿𝑖𝑖𝑖𝑖 

⇒ 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝜆𝜆𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 

⇒ 𝐴𝐴 = 𝜆𝜆𝜆𝜆       ∎ 

法 2 

设 𝑋𝑋 = �𝑥𝑥𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 

则 𝑋𝑋 ∈ 𝑈𝑈 ⇔ 𝑥𝑥11 + ⋯+ 𝑥𝑥𝑛𝑛𝑛𝑛 = 0 

即 𝑈𝑈 是𝑥𝑥11 +⋯+ 𝑥𝑥𝑛𝑛𝑛𝑛 = 0 的解空间 

设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
,则 𝐴𝐴𝐴𝐴 = ��𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑘𝑘𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�
𝑖𝑖=1,…,𝑛𝑛
𝑗𝑗=1,…,𝑛𝑛

 

66／363



§9 对偶空间 

 

tr𝐴𝐴𝐴𝐴 = ��𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑘𝑘𝑘𝑘

𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 

tr𝐴𝐴𝐴𝐴 = 0 ⇔��𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑘𝑘𝑘𝑘

𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

= 0 

设𝐴𝐴满足∀𝑥𝑥 ∈ 𝑈𝑈, tr𝐴𝐴𝐴𝐴 = 0 

于是方程组�

𝑥𝑥11 +⋯+ 𝑥𝑥𝑛𝑛𝑛𝑛 = 0

��𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑘𝑘𝑘𝑘

𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

= 0  

其解空间为 𝑈𝑈 且dim𝑈𝑈 = 𝑛𝑛2 − 1,于是该方程组系数矩阵𝐶𝐶的秩为 1 

从而 ∃𝜆𝜆 ∈ 𝐹𝐹 使得 𝐶𝐶2����⃗ = 𝜆𝜆𝐶𝐶1����⃗ ⇒ 𝑎𝑎𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 ≠ 𝑗𝑗,𝑎𝑎𝑖𝑖𝑖𝑖 = 𝜆𝜆, 𝑖𝑖 = 1, … ,𝑛𝑛 

即 𝐴𝐴 = 𝜆𝜆𝜆𝜆       ∎ 

 

【例 9.4.6】函数的微分 

设𝑓𝑓:ℝ𝑛𝑛 ⇒ ℝ, 𝑥𝑥0����⃗ ∈ ℝ𝑛𝑛, 𝑓𝑓在𝑥𝑥0����⃗点可微 

如果∃𝐿𝐿 ∈ (ℝ𝑛𝑛)∗ 使得 

[∗] lim
|𝑣𝑣�⃗ |→0

𝑓𝑓(𝑥𝑥0����⃗ + 𝑣⃗𝑣)− 𝑓𝑓(𝑥𝑥0����⃗ )− 𝐿𝐿(𝑣⃗𝑣)
|𝑣⃗𝑣| = 0 

如果[∗]成立，且𝑤𝑤��⃗ ∈ ℝ𝑛𝑛 ∖ �0�⃗ �, |𝑤𝑤��⃗ | = 1 

𝑓𝑓 沿 𝑤𝑤��⃗  的方向导数是𝐿𝐿(𝑤𝑤��⃗ ), 

验证： lim
𝑡𝑡→0

𝑓𝑓(𝑥𝑥0����⃗ + 𝑡𝑡𝑤𝑤��⃗ )− 𝑓𝑓(𝑥𝑥0����⃗ )− 𝐿𝐿(𝑡𝑡𝑤𝑤��⃗ )
𝑡𝑡

= 0 

⇒ lim
𝑡𝑡→0

𝑓𝑓(𝑥𝑥0����⃗ + 𝑡𝑡𝑤𝑤��⃗ )− 𝑓𝑓(𝑥𝑥0����⃗ )
𝑡𝑡

= 𝐿𝐿(𝑤𝑤��⃗ ) 

 𝐿𝐿 在标准基𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  的对偶基 𝑒𝑒1∗, … , 𝑒𝑒𝑛𝑛∗  下的坐标是 

𝐿𝐿 = �
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

(𝑥𝑥0����⃗ )𝑒𝑒𝑖𝑖∗
𝑛𝑛

𝑖𝑖=1

   称为𝑓𝑓在𝑥𝑥0����⃗处的微分. 
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§10 双线性型 

§10.1 什么是双线性函数 

【回忆】线性函数 

线性函数：给定 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛 ∈ 𝐹𝐹, 

𝑓𝑓:𝐹𝐹𝑛𝑛 → 𝐹𝐹,�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦ 𝑎𝑎1𝑥𝑥1 + ⋯+ 𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)�

𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)

= (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�

 

抽象：设 𝑉𝑉 是 𝐹𝐹 上的 𝑛𝑛  维线性空间， 𝑓𝑓:𝑉𝑉 → 𝐹𝐹 是线性函数 

如果 ∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,𝑓𝑓(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦) = 𝛼𝛼𝛼𝛼(𝑥⃗𝑥) + 𝛽𝛽𝛽𝛽(𝑦⃗𝑦) 

对偶：𝑓𝑓 ∈ 𝑉𝑉∗ 

双线性函数：给定 𝛼𝛼𝑖𝑖𝑖𝑖 ∈ 𝐹𝐹, 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 

𝑓𝑓:𝐹𝐹𝑛𝑛 × 𝐹𝐹𝑛𝑛 → 𝐹𝐹, �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� ↦��𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

令 𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� , 𝑦⃗𝑦 = �

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = ��𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

= (𝑥𝑥1, … ,𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

其中 𝐴𝐴 = �𝛼𝛼𝑖𝑖𝑖𝑖�𝑖𝑖=1,…,𝑛𝑛
𝑗𝑗=1,…,𝑛𝑛

∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)       �通过矩阵乘法可直接验证� 

当 𝑦⃗𝑦 取 𝐹𝐹𝑛𝑛 中某个向量  𝑣⃗𝑣,让 𝑥⃗𝑥 变化时， 𝑓𝑓(𝑥⃗𝑥, 𝑣⃗𝑣)是关于 𝑥⃗𝑥 的线性函数 

同样 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦)是关于 𝑦⃗𝑦 的线性函数 
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设 𝑞𝑞(𝑥⃗𝑥) = 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) = ��𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

𝑞𝑞是从 𝑉𝑉 到  𝐹𝐹 的齐二次函数，它不是线性的。 

 

【例 10.1.1】线性函数举例 

𝑓𝑓:ℝ × ℝ → ℝ, (𝑥𝑥,𝑦𝑦) ↦ 𝑥𝑥𝑥𝑥      是双线性的  

𝑞𝑞:ℝ → ℝ, 𝑥𝑥 ↦ 𝑥𝑥2              不是线性的 

 

本章余下的内容：双线性函数，二次函数 

核心工具：矩阵的合同 
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§10.2 双线性型的定义和性质 

设 𝑉𝑉 是 𝐹𝐹 上的线性空间 

【定义 10.2.1】双线性型 

𝑓𝑓:𝑉𝑉 × 𝑉𝑉 → 𝐹𝐹 称为 𝑉𝑉 上的双线性型， 

如果 ∀𝛼𝛼, 𝑏𝑏 ∈ 𝐹𝐹, 𝑥⃗𝑥, 𝑦⃗𝑦, 𝑧𝑧 ∈ 𝑉𝑉,满足 

𝑓𝑓(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑧𝑧, 𝑦⃗𝑦) = 𝛼𝛼𝛼𝛼(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝛽𝛽𝛽𝛽(𝑧𝑧, 𝑦⃗𝑦)  

𝑓𝑓(𝑥⃗𝑥,𝛼𝛼𝑦⃗𝑦 + 𝛽𝛽𝑧𝑧) = 𝛼𝛼𝛼𝛼(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝛽𝛽𝛽𝛽(𝑥⃗𝑥, 𝑧𝑧) 

 

【例 10.2.1】双线性型基本性质 

设 𝑓𝑓 是  𝑉𝑉 上的双线性型 

(𝑖𝑖)证明：∀𝑥⃗𝑥 ∈ 𝑉𝑉, 𝑓𝑓�0�⃗ , 𝑥⃗𝑥� = 𝑓𝑓�𝑥⃗𝑥, 0�⃗ � = 0 

(𝑖𝑖𝑖𝑖)设 𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹,𝑢𝑢�⃗ , 𝑣⃗𝑣, 𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,展开 𝑓𝑓(𝛼𝛼𝑥⃗𝑥,𝛽𝛽𝑦⃗𝑦)和 𝑓𝑓(𝑢𝑢�⃗ + 𝑣⃗𝑣, 𝑥⃗𝑥 + 𝑦⃗𝑦) 

解: (𝑖𝑖)𝑓𝑓�0�⃗ , 𝑥⃗𝑥� = 𝑓𝑓�0�⃗ + 0�⃗ , 𝑥⃗𝑥� = 𝑓𝑓�0�⃗ , 𝑥⃗𝑥�+ 𝑓𝑓�0�⃗ , 𝑥⃗𝑥� ⇒ 𝑓𝑓�0�⃗ , 𝑥⃗𝑥� = 0 

同理 𝑓𝑓�𝑥⃗𝑥, 0�⃗ � = 0 

(𝑖𝑖𝑖𝑖)𝑓𝑓(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦) = 𝛼𝛼𝛼𝛼(𝑥⃗𝑥,𝛽𝛽𝑦⃗𝑦) = 𝛼𝛼𝛼𝛼𝛼𝛼(𝑥⃗𝑥, 𝑦⃗𝑦) 

𝑓𝑓(𝑢𝑢�⃗ + 𝑣⃗𝑣, 𝑥⃗𝑥 + 𝑦⃗𝑦) = 𝑓𝑓(𝑢𝑢�⃗ , 𝑥⃗𝑥 + 𝑦⃗𝑦) + 𝑓𝑓(𝑣⃗𝑣, 𝑥⃗𝑥 + 𝑦⃗𝑦) 

                              = 𝑓𝑓(𝑢𝑢�⃗ , 𝑥⃗𝑥) + 𝑓𝑓(𝑢𝑢�⃗ , 𝑦⃗𝑦) + 𝑓𝑓(𝑣⃗𝑣, 𝑥⃗𝑥) + 𝑓𝑓(𝑣⃗𝑣, 𝑦⃗𝑦) 

 

【例 10.2.2】乘积双线性型 

设 𝑙𝑙1, 𝑙𝑙2 ∈ 𝑉𝑉∗,则 

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝑙𝑙1(𝑥⃗𝑥)𝑙𝑙2(𝑦⃗𝑦)  是双线性型 

任取 𝑣⃗𝑣 ∈ 𝑉𝑉, 𝑙𝑙1(𝑣⃗𝑣) ∈ 𝐹𝐹,𝑓𝑓(𝑣⃗𝑣, 𝑦⃗𝑦) = 𝑙𝑙1(𝑣⃗𝑣)𝑙𝑙2(𝑦⃗𝑦)关于 𝑦⃗𝑦 是线性的。 

同理，当 𝑦⃗𝑦 取 𝑉𝑉 的任一向量时 𝑓𝑓 关于 𝑥⃗𝑥 也是线性的。 
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§10.3 双线性型的矩阵表示 

【定义 10.3.1】双线性型的矩阵 

设 𝑉𝑉 是有限维线性空间, 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  是 𝑉𝑉 的一组基,𝑓𝑓 是 𝑉𝑉上双线性型. 

令 𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ +⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ , 𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ + ⋯+ 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛����⃗  

𝑓𝑓(𝑥⃗𝑥 , 𝑦⃗𝑦) = 𝑓𝑓 ��𝑥𝑥𝑖𝑖𝑒𝑒𝚤𝚤��⃗
𝑛𝑛

𝑖𝑖=1

, 𝑦⃗𝑦� = �𝑥𝑥𝑖𝑖𝑓𝑓(𝑒𝑒𝚤𝚤��⃗ , 𝑦⃗𝑦)
𝑛𝑛

𝑖𝑖=1

= �𝑥𝑥𝑖𝑖𝑓𝑓�𝑒𝑒𝚤𝚤��⃗ ,�𝑦𝑦𝑗𝑗𝑒𝑒𝚥𝚥��⃗
𝑛𝑛

𝑗𝑗=1

�
𝑛𝑛

𝑖𝑖=1

 

= �𝑥𝑥𝑖𝑖 ��𝑦𝑦𝑗𝑗𝑓𝑓�𝑒𝑒𝚤𝚤��⃗ , 𝑒𝑒𝚥𝚥��⃗ �
𝑛𝑛

𝑗𝑗=1

�
𝑛𝑛

𝑖𝑖=1

= ��𝑓𝑓(𝑒𝑒𝚤𝚤��⃗ , 𝑒𝑒𝚥𝚥��⃗ )
𝑛𝑛

𝑗𝑗=1

𝑥𝑥𝑖𝑖𝑦𝑦𝐽𝐽

𝑛𝑛

𝑖𝑖=1

 

令 𝐴𝐴 = �𝑓𝑓�𝑒𝑒𝚤𝚤��⃗ ,𝑒𝑒𝚥𝚥��⃗ ��𝑖𝑖=1,…,𝑛𝑛
𝑗𝑗=1,…,𝑛𝑛

  可直接验证 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

称 𝐴𝐴 是 𝑓𝑓 在 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  下的矩阵 

注 1:设 𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),使得 ∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = (𝑥𝑥1, … ,𝑥𝑥𝑛𝑛)𝐵𝐵�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

则 𝑓𝑓�𝑒𝑒𝚤𝚤��⃗ , 𝑒𝑒𝚥𝚥��⃗ � = �0, … ,0,1�第𝑖𝑖列�, 0, … ,0�𝐵𝐵

⎝

⎜
⎜
⎜
⎛

0
⋮
0
1
0
⋮
0

�第𝑗𝑗行�

⎠

⎟
⎟
⎟
⎞

= 𝑏𝑏𝑖𝑖𝑖𝑖 

⇒ 𝐵𝐵 = 𝐴𝐴 

注 2:设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹), 𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� , 𝑦⃗𝑦 = �

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� ∈ 𝐹𝐹𝑛𝑛 

定义 𝑓𝑓:𝐹𝐹𝑛𝑛 × 𝐹𝐹𝑛𝑛 → 𝐹𝐹,�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� ↦ (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐴𝐴�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

则 𝑓𝑓 是 𝐹𝐹𝑛𝑛 上双线性型，其在标准基 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗  下的矩阵是 𝐴𝐴 
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【例 10.3.1】双线性型的矩阵例 

设 𝐹𝐹3 中 𝑥⃗𝑥 = �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� , 𝑦⃗𝑦 = �

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
� ,双线性型 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝑥𝑥1𝑦𝑦2 − 𝑥𝑥2𝑦𝑦3 

求 𝐹𝐹 在标准基下的矩阵 𝐴𝐴 

解:𝐴𝐴 = �
0 1 0
0 0 −1
0 0 0

� 

 

【定理 10.1】双线性型矩阵换基公式 

设 𝑉𝑉 是 𝐹𝐹 上有限维线性空间,𝑓𝑓 是 𝑉𝑉 上的双线性型 

𝑓𝑓 在基底 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  下的矩阵为 𝐴𝐴,在基底 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗  下的矩阵为 𝐵𝐵 

设 𝐶𝐶 是从 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  到 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗  的转换矩阵，则 

𝐵𝐵 = 𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴,特别地 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴 

证:设 𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ +⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ = 𝑥𝑥1′𝜀𝜀1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛′ 𝑒𝑒𝑛𝑛����⃗  

𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ +⋯+ 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛����⃗ = 𝑦𝑦1′𝜀𝜀1���⃗ + ⋯+ 𝑦𝑦𝑛𝑛′𝜀𝜀𝑛𝑛���⃗  

由推论 7.1 �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = 𝐶𝐶 �

𝑥𝑥1′
⋮
𝑥𝑥𝑛𝑛′

� ,�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = 𝐶𝐶 �

𝑦𝑦1′
⋮
𝑦𝑦𝑛𝑛′

� 

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦 = (𝑥𝑥1, … ,𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = �

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�
𝑡𝑡

𝐴𝐴 �
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = (𝑥𝑥1′ , … ,𝑥𝑥𝑛𝑛′ )𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 �

𝑦𝑦1′
⋮
𝑦𝑦𝑛𝑛′

� 

于是  𝐵𝐵 = 𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴        ∵ 𝐶𝐶 可逆  ∴ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴        ∎ 

 

【定义 10.3.2】双线性型的秩 

设 𝑓𝑓 是 𝑉𝑉 上的双线性型，矩阵 𝐴𝐴 是 𝑓𝑓 在 𝑉𝑉 下某组基的矩阵 

则 𝐴𝐴 的秩也称为 𝑓𝑓 的秩，记为 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓 

如果 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉 ,则称  𝑓𝑓 是非退化的。 
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【例 10.3.2】双线性型秩为 0 或 1 的性质 

设 𝑓𝑓 是 𝑉𝑉 上的双线性型， 

(𝑖𝑖) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓 = 0 ⇔ ∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 0 

(𝑖𝑖𝑖𝑖) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓 = 1 ⇔ ∃𝑙𝑙1, 𝑙𝑙2 ∈ 𝑉𝑉∗ ∖ {0∗} 使得 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝑙𝑙1(𝑥⃗𝑥)𝑙𝑙2(𝑦⃗𝑦) 

证:设 𝑉𝑉 的一组基是 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ , 𝑓𝑓 在该基下的矩阵是 𝐴𝐴 

𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,且 𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ , 𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ + ⋯+ 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛����⃗   

(𝑖𝑖) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓 = 0 ⇔ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴 = 0 ⇔ 𝐴𝐴 = 𝑂𝑂𝑛𝑛×𝑛𝑛 

⇔ 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝑂𝑂𝑛𝑛×𝑛𝑛 �
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = 0 

(𝑖𝑖𝑖𝑖) ⇒: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓 = 1 ⇒ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴 = 1 

⇒ 𝐴𝐴 = �𝜆𝜆1 �
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� , 𝜆𝜆2 �

𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� , … , 𝜆𝜆𝑛𝑛 �

𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
�� 

其中 �
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� ≠ �

0
⋮
0
� , 𝜆𝜆1, … , 𝜆𝜆𝑛𝑛不全为零 

于是𝐴𝐴 = �
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� (𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) 

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = 

(𝑥𝑥1, … ,𝑥𝑥𝑛𝑛)�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� (𝜆𝜆1, … , 𝜆𝜆𝑛𝑛)�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

= (𝛼𝛼1𝑥𝑥1 + ⋯+ 𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛)(𝜆𝜆1𝑦𝑦1 + ⋯+ 𝜆𝜆𝑛𝑛𝑦𝑦𝑛𝑛) 

令 𝑙𝑙1:𝑉𝑉 → 𝐹𝐹, 𝑥⃗𝑥 ↦ 𝛼𝛼1𝑥𝑥1 + ⋯+ 𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛����⃗     

 𝑙𝑙2:𝑉𝑉 → 𝐹𝐹, 𝑦⃗𝑦 ↦ 𝜆𝜆1𝑦𝑦1 + ⋯+ 𝜆𝜆𝑛𝑛𝑦𝑦𝑛𝑛 

得𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝑙𝑙1(𝑥⃗𝑥)𝑙𝑙2(𝑦⃗𝑦) 
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⇐: 𝑙𝑙1:𝑉𝑉 → 𝐹𝐹, 𝑥⃗𝑥 ↦ 𝛼𝛼1𝑥𝑥1 +⋯+ 𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛, 𝛼𝛼1, , . . . ,𝛼𝛼𝑛𝑛不全为零 

𝑙𝑙2:𝑉𝑉 → 𝐹𝐹, 𝑦⃗𝑦 ↦ 𝜆𝜆1𝑦𝑦1 + ⋯+ 𝜆𝜆𝑛𝑛𝑦𝑦𝑛𝑛, 𝜆𝜆1, … , 𝜆𝜆𝑛𝑛不全为零 

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� (𝜆𝜆1, … , 𝜆𝜆𝑛𝑛)

�����������
𝐴𝐴

�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

∵ 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛,𝜆𝜆1, … , 𝜆𝜆𝑛𝑛不全为零 

∴ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴 = 1 
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§10.4 矩阵的合同 

【定义 10.4.1】矩阵的合同 

设 𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),如果存在 𝐶𝐶 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹) 

使得 𝐵𝐵 = 𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 ,则称 𝐵𝐵与 𝐴𝐴 合同,记为 𝐵𝐵~𝑐𝑐𝐴𝐴 

验证: ~𝑐𝑐是等价关系 

∀𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑡𝑡𝐴𝐴𝐴𝐴 ⇒ 𝐴𝐴~𝑐𝑐𝐴𝐴 

设 𝐵𝐵~𝑐𝑐𝐴𝐴,则 ∃𝐶𝐶 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),使得 𝐵𝐵 = 𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴,  

于是(𝐶𝐶𝑡𝑡)−1𝐵𝐵𝐶𝐶−1 = 𝐴𝐴 

∵ (𝐶𝐶𝑡𝑡)−1 = (𝐶𝐶−1)𝑡𝑡    ∴ 𝐴𝐴 = (𝐶𝐶−1)𝑡𝑡𝐵𝐵𝐶𝐶−1 

⇒ 𝐴𝐴~𝑐𝑐𝐵𝐵 

设 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),𝐴𝐴1~𝑐𝑐𝐴𝐴2,𝐴𝐴2~𝑐𝑐𝐴𝐴3 

则 ∃𝐶𝐶1,𝐶𝐶2 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),使得 𝐴𝐴1 = 𝐶𝐶1𝑡𝑡𝐴𝐴2𝐶𝐶1,𝐴𝐴2 = 𝐶𝐶2𝑡𝑡𝐴𝐴3𝐶𝐶2 

则 𝐴𝐴1 = 𝐶𝐶1𝑡𝑡𝐶𝐶2𝑡𝑡𝐴𝐴3𝐶𝐶2𝐶𝐶1 = (𝐶𝐶2𝐶𝐶1)𝑡𝑡𝐴𝐴3𝐶𝐶2𝐶𝐶1 ⇒ 𝐴𝐴1~𝑐𝑐𝐴𝐴3    ∎ 

 

【定理 10.2】合同换基存在定理 

设 𝑓𝑓 是 𝑉𝑉 上的双线性型，𝐴𝐴 是 𝑓𝑓 在 𝑉𝑉 的基底 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵 

设 𝐵𝐵~𝑐𝑐𝐴𝐴,则存在 𝑉𝑉的一组基 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ,使得 𝑓𝑓 在该基下的矩阵为 𝐵𝐵 

证:∵ 𝐵𝐵~𝑐𝑐𝐴𝐴   ∴ ∃𝐶𝐶 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹)使得 𝐵𝐵 = 𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 

令 (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐶𝐶,  

因为 𝐶𝐶 可逆,所以  𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗  是𝑉𝑉的基        �定理 7.1� 

由定理 10.1   𝑓𝑓 在  𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗  下的矩阵是 𝐵𝐵       ∎ 

注:把双线性型 𝑓𝑓 化为标准型 

⇔在与 𝐴𝐴 合同的矩阵中找出尽可能简单的矩阵 

�0 尽可能多，非零元出现尽可能有规律� 

75／363



李子明老师的线性代数讲义 

 

§10.5 对称与斜对称双线性型 

【定义 10.5.1】（斜）对称双线性型 

设 𝑓𝑓 是 𝑉𝑉 上的双线性型， ∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉 

如果 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥),则称 𝑓𝑓 是对称的 

如果 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = −𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥),则称 𝑓𝑓 是斜对称的 

 

【记号】双线性型的记号 

𝑉𝑉 上所有双线性型的集合为记为 ℒ2(𝑉𝑉,𝐹𝐹) 

𝑉𝑉 上所有对称双线性型的集合为记为 ℒ2+(𝑉𝑉,𝐹𝐹) 

𝑉𝑉 上所有斜对称双线性型的集合为记为 ℒ2−(𝑉𝑉,𝐹𝐹) 

 

【命题 10.1】对称与斜对称双线性型直和分解 

ℒ2(𝑉𝑉,𝐹𝐹)是 𝐹𝐹 上的线性空间, 

ℒ2+(𝑉𝑉,𝐹𝐹),ℒ2−(𝑉𝑉,𝐹𝐹)是它的子空间，当 𝑐𝑐ℎ𝑎𝑎𝑎𝑎 𝐹𝐹 ≠ 2 时 

ℒ2(𝑉𝑉,𝐹𝐹) = ℒ2+(𝑉𝑉,𝐹𝐹)⊕𝐿𝐿2−(𝑉𝑉,𝐹𝐹) 

证:因为 ℒ(𝑉𝑉,𝐹𝐹) ⊂ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉 × 𝑉𝑉,𝐹𝐹) 

所以只要证明 ℒ(𝑉𝑉,𝐹𝐹)对线性运算封闭即可。 

设 𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑓𝑓,𝑔𝑔 ∈ ℒ2(𝑉𝑉,𝐹𝐹),ℎ = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 

∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,固定 𝑥⃗𝑥 = 𝑥𝑥0����⃗ ,ℎ(𝑥𝑥0����⃗ , 𝑦⃗𝑦) = 𝛼𝛼𝛼𝛼(𝑥𝑥0����⃗ , 𝑦⃗𝑦) + 𝛽𝛽𝛽𝛽(𝑥𝑥0����⃗ , 𝑦⃗𝑦) 

∵ 𝑓𝑓(𝑥𝑥0����⃗ , 𝑦⃗𝑦),𝑔𝑔(𝑥𝑥0, 𝑦⃗𝑦)关于 𝑦⃗𝑦 是线性函数 

∴ ℎ(𝑥𝑥0����⃗ , 𝑦⃗𝑦)关于 𝑦⃗𝑦 也是线性函数 

同理， ℎ(𝑥⃗𝑥, 𝑦⃗𝑦)关于 𝑥⃗𝑥 也是 ℎ ∈ ℒ2(𝑉𝑉,𝐹𝐹) 
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设 𝑓𝑓,𝑔𝑔 ∈ ℒ2+(𝑉𝑉,𝐹𝐹),  

则 ℎ(𝑦⃗𝑦, 𝑥⃗𝑥) = 𝛼𝛼𝛼𝛼(𝑦⃗𝑦, 𝑥⃗𝑥) + 𝛽𝛽𝛽𝛽(𝑦⃗𝑦, 𝑥⃗𝑥) = 𝛼𝛼𝛼𝛼(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝛽𝛽𝛽𝛽(𝑥⃗𝑥, 𝑦⃗𝑦) = ℎ(𝑥⃗𝑥, 𝑦⃗𝑦) 

由此可知 ℎ ∈ ℒ2+(𝑉𝑉,𝐹𝐹), ℒ2+(𝑉𝑉,𝐹𝐹)是子空间 

同理 ℒ2−(𝑉𝑉,𝐹𝐹)是子空间 

设 𝑐𝑐ℎ𝑎𝑎𝑎𝑎 𝐹𝐹 ≠ 2,𝑓𝑓 ∈ ℒ2(𝑉𝑉,𝐹𝐹) 

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) =
1
2
�𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥)��������������

ℒ2+(𝑉𝑉,𝐹𝐹)

+
1
2
�𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦)− 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥)��������������

ℒ2−(𝑉𝑉,𝐹𝐹)

 

于是  ℒ2(𝑉𝑉,𝐹𝐹) = ℒ2+(𝑉𝑉,𝐹𝐹) + ℒ2−(𝑉𝑉,𝐹𝐹) 

设 𝑔𝑔 ∈ ℒ2+(𝑉𝑉,𝐹𝐹) ∩ ℒ2−(𝑉𝑉,𝐹𝐹) 

则 𝑔𝑔(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝑔𝑔(𝑦⃗𝑦, 𝑥⃗𝑥)且 𝑔𝑔(𝑥⃗𝑥, 𝑦⃗𝑦) = −𝑔𝑔(𝑦⃗𝑦, 𝑥⃗𝑥) 

⇒ 2𝑔𝑔(𝑥⃗𝑥, 𝑦⃗𝑦) ⇒ 𝑔𝑔(𝑥⃗𝑥, 𝑦⃗𝑦) = 0 

⇒ ℒ2(𝑉𝑉,𝐹𝐹) = ℒ2+(𝑉𝑉,𝐹𝐹)⊕ℒ2−(𝑉𝑉,𝐹𝐹)        ∎ 

 

【命题 10.2】（斜）对称双线性型矩阵的性质 

设 𝑉𝑉 是有限维线性空间 

𝑓𝑓 ∈ 𝐿𝐿2+(𝑉𝑉,𝐹𝐹),𝐴𝐴 是 𝑓𝑓 在基底 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  下的矩阵 

(𝑖𝑖)𝑓𝑓 ∈ 𝐿𝐿2+(𝑉𝑉,𝐹𝐹) ⇔ 𝐴𝐴 对称 

(𝑖𝑖𝑖𝑖)𝑓𝑓 ∈ 𝐿𝐿2−(𝑉𝑉,𝐹𝐹) ⇔ 𝐴𝐴 斜对称 

证: (𝑖𝑖) ⇒:𝑓𝑓 ∈ 𝐿𝐿2+(𝑉𝑉,𝐹𝐹) ⇒ ∀𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛},𝑓𝑓�𝑒𝑒𝚤𝚤��⃗ ,𝑒𝑒𝚥𝚥��⃗ � = 𝑓𝑓�𝑒𝑒𝚥𝚥��⃗ ,𝑒𝑒𝚤𝚤��⃗ � 

由 𝐴𝐴 的定义可知， 𝐴𝐴对称 
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⇐:设 𝐴𝐴 对称, 𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ , 𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ + ⋯+ 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛����⃗   则 

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦)  = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = �(𝑥𝑥1, … ,𝑥𝑥𝑛𝑛)𝐴𝐴�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
��

𝑡𝑡

= (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛)𝐴𝐴𝑡𝑡 �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛)𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥) 

(𝑖𝑖𝑖𝑖)类似       ∎ 

约定:从此到本章结束,𝑉𝑉 是 𝐹𝐹 上的有限维线性空间,且 char𝐹𝐹 ≠ 2 
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§11 对称双线性型的规范基 

【引理 11.1】对称双线性型的极化公式 

设𝑓𝑓 ∈ ℒ2+(𝑉𝑉,𝐹𝐹),则∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉 

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) =
1
2
�𝑓𝑓(𝑥⃗𝑥 + 𝑦⃗𝑦, 𝑥⃗𝑥 + 𝑦⃗𝑦)− 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)− 𝑓𝑓(𝑦⃗𝑦, 𝑦⃗𝑦)� 

特别地,如果𝑓𝑓不是零映射,则∃𝑣⃗𝑣 ∈ 𝑉𝑉使得𝑓𝑓(𝑣⃗𝑣, 𝑣⃗𝑣) ≠ 0 

证:
1
2
�𝑓𝑓(𝑥⃗𝑥 + 𝑦⃗𝑦, 𝑥⃗𝑥 + 𝑦⃗𝑦) − 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)− 𝑓𝑓(𝑦⃗𝑦, 𝑦⃗𝑦)� 

=
1
2
�𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥 + 𝑦⃗𝑦) + 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥 + 𝑦⃗𝑦)− 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)− 𝑓𝑓(𝑦⃗𝑦, 𝑦⃗𝑦)� 

=
1
2
�𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) + 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥) + 𝑓𝑓(𝑦⃗𝑦, 𝑦⃗𝑦)− 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)− 𝑓𝑓(𝑦⃗𝑦, 𝑦⃗𝑦)� 

=
1
2
�𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥)� = 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) 

由极化公式右侧可知 

当𝑓𝑓 ≠ 0 时,∃𝑥⃗𝑥, 𝑦⃗𝑦,使得�𝑓𝑓(𝑥⃗𝑥 + 𝑦⃗𝑦, 𝑥⃗𝑥 + 𝑦⃗𝑦)− 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)− 𝑓𝑓(𝑦⃗𝑦, 𝑦⃗𝑦)� ≠ 0 

则𝑓𝑓(𝑥⃗𝑥 + 𝑦⃗𝑦, 𝑥⃗𝑥 + 𝑦⃗𝑦),𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥),𝑓𝑓(𝑦⃗𝑦, 𝑦⃗𝑦)至少有一个不为零 

∴ ∃𝑣⃗𝑣 ∈ 𝑉𝑉,使得𝑓𝑓(𝑣⃗𝑣, 𝑣⃗𝑣) ≠ 0          ∎ 

 

【定理 11.1】对称双线性型可对角化 

设𝑓𝑓 ∈ 𝐿𝐿2+(𝑉𝑉,𝐹𝐹),则存在𝑉𝑉的一组基𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ , 

使得𝑓𝑓在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵是diag𝑛𝑛(𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 , 0, … ,0) 

其中𝑟𝑟 = rank 𝑓𝑓 

证:如果𝑟𝑟 = 0,则定理成立 

设𝑟𝑟 > 0,对dim𝑉𝑉归纳 

当dim𝑉𝑉 = 1 时,定理成立 
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设dim𝑉𝑉 = 𝑛𝑛 − 1 时定理成立,再设dim𝑉𝑉 = 𝑛𝑛 

∵ 𝑟𝑟 > 0   ∴ 𝑓𝑓 ≠ 0    由引理 11.1,∃𝑒𝑒1���⃗ ∈ 𝑉𝑉,使得𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒1���⃗ ) ≠ 0 

令𝑈𝑈 = {𝑢𝑢�⃗ ∈ 𝑉𝑉|𝑓𝑓(𝑢𝑢�⃗ , 𝑒𝑒𝚤𝚤��⃗ ) = 0} 

考虑线性函数 𝜑𝜑:𝑉𝑉 → 𝐹𝐹, 𝑣⃗𝑣 ↦ 𝑓𝑓(𝑣⃗𝑣, 𝑒𝑒1���⃗ ),则𝑈𝑈 = ker𝜑𝜑 

∵ 𝜑𝜑(𝑒𝑒1���⃗ ) = 𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒1���⃗ ) ≠ 0   ∴ 𝜑𝜑 ≠ 0 

∵ dim im𝜑𝜑 = 1  ∴ dim𝑈𝑈 = 𝑛𝑛 − 1 

设𝑣⃗𝑣 ∈ ⟨𝑒𝑒1���⃗ ⟩ ∩ 𝑈𝑈,则𝑣⃗𝑣 = 𝛼𝛼𝑒𝑒1���⃗ ,𝛼𝛼 ∈ 𝐹𝐹 

0 = 𝑓𝑓(𝛼𝛼𝑒𝑒1���⃗ , 𝑒𝑒1���⃗ ) = 𝛼𝛼𝛼𝛼(𝑒𝑒1���⃗ , 𝑒𝑒1���⃗ ) ⇒ 𝛼𝛼 = 0 

⇒ ⟨𝑒𝑒1���⃗ ⟩ ∩ 𝑈𝑈 = �0�⃗ � ⇒ dim(⟨𝑒𝑒1���⃗ ⟩ + 𝑈𝑈) = dim𝑈𝑈 + dim⟨𝑒𝑒1���⃗ ⟩ = 𝑛𝑛 = dim𝑉𝑉 

⇒ 𝑉𝑉 = ⟨𝑒𝑒1���⃗ ⟩ ⊕ 𝑈𝑈      [∗]  

设𝑔𝑔 = 𝑓𝑓│𝑈𝑈×𝑈𝑈 ,即𝑔𝑔:𝑈𝑈 × 𝑈𝑈 → 𝐹𝐹, (𝑥⃗𝑥, 𝑦⃗𝑦) ↦ 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) 

则𝑔𝑔 ∈ ℒ2+(𝑈𝑈,𝐹𝐹) 

由归纳假设,存在𝑈𝑈中一组基𝑒𝑒2���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  

使得𝑔𝑔在该基下的矩阵为diag𝑛𝑛−1(𝜆𝜆2, … , 𝜆𝜆𝑠𝑠, 0, … ,0) 

其中𝑠𝑠 = rank𝑔𝑔 + 1,特别地 

∀𝑖𝑖, 𝑗𝑗 ∈ {2, … ,𝑛𝑛}, 𝑖𝑖 ≠ 𝑗𝑗,𝑔𝑔�𝑒𝑒𝚤𝚤��⃗ ,𝑒𝑒𝚥𝚥��⃗ � = 0 = 𝑓𝑓�𝑒𝑒𝚤𝚤��⃗ , 𝑒𝑒𝚥𝚥��⃗ � 

∵ 𝑒𝑒2���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ∈ 𝑈𝑈 ∴ 𝑓𝑓(𝑒𝑒𝚤𝚤��⃗ , 𝑒𝑒1���⃗ ) = 0, 𝑖𝑖 = 2, … ,𝑛𝑛 

又因为𝑓𝑓对称,𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒𝚤𝚤��⃗ ) = 0, 𝑖𝑖 = 2, … ,𝑛𝑛 

令𝜆𝜆1 = 𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒1���⃗ ),则𝑓𝑓在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵为diag𝑛𝑛(𝜆𝜆1, … , 𝜆𝜆𝑠𝑠, 0, … ,0) 

且 rank 𝑓𝑓 = 𝑠𝑠          ∎ 

注:由[∗], 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的基底    
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【推论 11.1】对称矩阵可对角化 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)对称,则∃𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 ∈ 𝐹𝐹 ∖ {0} 

使得𝐴𝐴~𝑐𝑐 diag𝑛𝑛(𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 , 0, … ,0) 

证:设𝐹𝐹𝑛𝑛的标准基为𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  

定义𝑓𝑓:𝐹𝐹𝑛𝑛 × 𝐹𝐹𝑛𝑛 → 𝐹𝐹, �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� ↦ (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

即𝐴𝐴为𝑓𝑓在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵 

∵ 𝐴𝐴对称   ∴ 𝑓𝑓对称   �命题 10.2� 

由定理 11.1,∃𝑉𝑉的一组基𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗  

使得在该基下𝑓𝑓的矩阵是diag𝑛𝑛(𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 , 0, … ,0) 

其中𝑟𝑟 = rank𝐴𝐴 

由定理 10.1,𝐴𝐴~𝑐𝑐 diag(𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 , 0, … ,0) 

 

【定义 11.1.1】对称双线性型的规范基 

设𝑓𝑓 ∈ ℒ2(𝑉𝑉,𝐹𝐹),若𝑓𝑓在𝑉𝑉的某组基下的矩阵是对角矩阵 

则该基称为𝑓𝑓的一组规范基 

 

【例 11.1.1】降维法求规范基和规范型 

设ℝ3中,对称双线性型𝑓𝑓在标准基𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗下的矩阵是 

𝐴𝐴 = �
1 1 −2
1 5 0
−2 0 −4

� 

求𝑓𝑓在规范基和在该基下的矩阵 

解: 1.求𝑣⃗𝑣使得𝑓𝑓(𝑣⃗𝑣, 𝑣⃗𝑣) ≠ 0      由𝐴𝐴的定义,可取𝑣⃗𝑣 = 𝑒𝑒1���⃗  

2.令𝜑𝜑:ℝ3 → ℝ, 𝑥⃗𝑥 ↦ 𝑓𝑓(𝑥⃗𝑥,𝑒𝑒1���⃗ ),求 ker𝜑𝜑的一组基 
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设𝑥⃗𝑥 = �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� ,𝜑𝜑(𝑥⃗𝑥) = (𝑥𝑥1,𝑥𝑥2,𝑥𝑥3)𝐴𝐴�

1
0
0
� = 𝑥𝑥1 + 𝑥𝑥2 − 2𝑥𝑥3 

ker𝜑𝜑 = ��
1
−1
0
�

���
𝜀𝜀2����⃗

,�
2
0
1
�

�
𝜀𝜀3����⃗

�  

3.求𝑓𝑓│𝑈𝑈×𝑈𝑈在𝜀𝜀2���⃗ , 𝜀𝜀3���⃗下的矩阵,其中𝑈𝑈 = ker𝜑𝜑 

设𝑔𝑔 = 𝑓𝑓│𝑈𝑈×𝑈𝑈 ,则𝑔𝑔在𝜀𝜀2���⃗ , 𝜀𝜀3���⃗下的矩阵是 

𝐵𝐵 = �𝑔𝑔
(𝜀𝜀2���⃗ , 𝜀𝜀2���⃗ ) 𝑔𝑔(𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ )

𝑔𝑔(𝜀𝜀3���⃗ , 𝜀𝜀2���⃗ ) 𝑔𝑔(𝜀𝜀3���⃗ , 𝜀𝜀3���⃗ )� = �𝑓𝑓
(𝜀𝜀2���⃗ , 𝜀𝜀2���⃗ ) 𝑓𝑓(𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ )
𝑓𝑓(𝜀𝜀3���⃗ , 𝜀𝜀2���⃗ ) 𝑓𝑓(𝜀𝜀3���⃗ , 𝜀𝜀3���⃗ )� = � 4 −2

−2 8 �    

降维重复 

1.求𝑢𝑢�⃗ ∈ 𝑈𝑈,使得 𝑔𝑔(𝑢𝑢�⃗ ,𝑢𝑢�⃗ ) ≠ 0,由𝐵𝐵的定义可知取𝑢𝑢�⃗ = 𝜀𝜀2���⃗  

2.设𝜓𝜓:𝑈𝑈 → ℝ, 𝑥⃗𝑥 ↦ 𝑔𝑔(𝑥⃗𝑥, 𝜀𝜀2���⃗ ),确定ker𝜓𝜓 

设𝑧𝑧 = 𝑧𝑧1𝜀𝜀1���⃗ + 𝑧𝑧2𝜀𝜀2���⃗ , 𝜓𝜓(𝑧𝑧, 𝜀𝜀2���⃗ ) = (𝑧𝑧1, 𝑧𝑧2)𝐵𝐵 �1
0� = 4𝑧𝑧1 − 2𝑧𝑧2 

ker𝜓𝜓 = ⟨𝜀𝜀2���⃗ + 2𝜀𝜀3���⃗ ⟩ 

𝜀𝜀2���⃗ + 2𝜀𝜀3���⃗ = �
1
−1
0
�+ 2�

2
0
1
� = �

5
−1
2
� 

设𝑤𝑤1����⃗ = 𝑒𝑒1���⃗ ,𝑤𝑤2�����⃗ = 𝜀𝜀2���⃗ ,𝑤𝑤��⃗ 3 = 𝜀𝜀2���⃗ + 2𝜀𝜀3���⃗  

则𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ,𝑤𝑤3�����⃗是𝑓𝑓的规范基 

(𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ,𝑤𝑤3�����⃗ ) = (𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ )�
1 1 5
0 −1 −1
0 0 2

�
�����������

𝐶𝐶

 

𝑓𝑓在𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ,𝑤𝑤3�����⃗下的矩阵 

𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 = �
1 0 0
0 4 0
0 0 −36

� 

注:设𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + 𝑥𝑥2𝑒𝑒2���⃗ + 𝑥𝑥3𝑒𝑒3���⃗ , 𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ + 𝑦𝑦2𝑒𝑒2���⃗ + 𝑦𝑦3𝑒𝑒3���⃗  

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = (𝑥𝑥1,𝑥𝑥2,𝑥𝑥3)�
1 1 −2
1 5 0
−2 0 −4

� 
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= 𝑥𝑥1𝑦𝑦1 + 𝑥𝑥1𝑦𝑦2 + 𝑥𝑥2𝑦𝑦1 − 2𝑥𝑥1𝑦𝑦3 − 2𝑥𝑥3𝑦𝑦1 + 5𝑥𝑥2𝑦𝑦2 − 4𝑥𝑥2𝑦𝑦2 

设𝑥⃗𝑥 = 𝑥𝑥1′𝑤𝑤1����⃗ + 𝑥𝑥2′𝑤𝑤2�����⃗ + 𝑥𝑥3′𝑤𝑤3�����⃗ , 𝑦⃗𝑦 = 𝑦𝑦1′𝑤𝑤1����⃗ + 𝑦𝑦2′𝑤𝑤2�����⃗ + 𝑦𝑦3′𝑤𝑤3�����⃗  

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = (𝑥𝑥1′ ,𝑥𝑥2′ ,𝑥𝑥3′ )�
1 0 0
0 4 0
0 0 −36

��
𝑦𝑦1′
𝑦𝑦2′
𝑦𝑦3′
� 

= 𝑥𝑥1′𝑦𝑦1′ + 4𝑥𝑥2′𝑦𝑦2′ − 36𝑥𝑥3′𝑦𝑦3′  

�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = �

1 1 5
0 −1 −1
0 0 2

�
�����������

𝐶𝐶

�
𝑥𝑥1′
𝑥𝑥2′
𝑥𝑥3′
� ,�

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
� = 𝐶𝐶 �

𝑦𝑦1′
𝑦𝑦2′
𝑦𝑦3′
� 

令𝑡𝑡1���⃗ = 𝑤𝑤1����⃗ , 𝑡𝑡2���⃗ =
1
2
𝑤𝑤2�����⃗ , 𝑡𝑡3���⃗ =

1
6
𝑤𝑤3�����⃗  

𝑓𝑓�𝑡𝑡1���⃗ , 𝑡𝑡1���⃗ � = 1,𝑓𝑓�𝑡𝑡2���⃗ , 𝑡𝑡2���⃗ � = 𝑓𝑓 �
1
2
𝑤𝑤2�����⃗ ,

1
2
𝑤𝑤2�����⃗ � =

1
4
𝑓𝑓(𝑤𝑤2�����⃗ ,𝑤𝑤2�����⃗ ) = 1 

𝑓𝑓�𝑡𝑡3���⃗ , 𝑡𝑡3���⃗ � =
1
6
𝑓𝑓(𝑤𝑤3�����⃗ ,𝑤𝑤3�����⃗ ) = −1 

在𝑡𝑡1���⃗ , 𝑡𝑡2���⃗ , 𝑡𝑡3���⃗下𝑓𝑓的矩阵为�
1 0 0
0 1 0
0 0 −1

� 
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§12 二次型

§12.1 二次型的定义和性质

【定义 12.1.1】二次型 配极双线性型 

𝑞𝑞:𝑉𝑉 → 𝐹𝐹称为二次型 

如果存在𝑓𝑓 ∈ ℒ2+使得∀𝑥⃗𝑥 ∈ 𝑉𝑉, 𝑞𝑞(𝑥⃗𝑥) = 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)

由柯𝑃𝑃31 定理 3 可知上述定义与柯𝑃𝑃31 的定义等价 

注 1:称𝑓𝑓为𝑞𝑞的一个配极双线性型 

【命题 12.1】配极双线性型唯一性 

设𝑞𝑞是𝑉𝑉上的二次型,则𝑞𝑞的配极双线性型唯一 

证:设𝑓𝑓,𝑔𝑔 ∈ ℒ2+(𝑉𝑉,𝐹𝐹)使得𝑞𝑞(𝑥⃗𝑥) = 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) = 𝑔𝑔(𝑥⃗𝑥, 𝑥⃗𝑥)

则∀𝑥⃗𝑥 ∈ 𝑉𝑉, 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) = 𝑔𝑔(𝑥⃗𝑥, 𝑥⃗𝑥) 

由极化公式�引理 11.1�可知 ∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉, 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝑔𝑔(𝑥⃗𝑥, 𝑦⃗𝑦)  ∎ 

【例 12.1.1】二次型是齐二次函数 

设𝑓𝑓 ∈ ℒ2+(𝑉𝑉,𝐹𝐹), 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的基,𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)是𝑓𝑓在该基下的矩阵

则𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
对称

令𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = ��𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

= �𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

+ � �𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑗𝑗𝑗𝑗�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
1≤1<𝑗𝑗≤𝑛𝑛
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§12 二次型

= �𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

+ 2 � 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
1≤1<𝑗𝑗≤𝑛𝑛

 

令𝑞𝑞(𝑥⃗𝑥) = 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥),𝑞𝑞:𝑉𝑉 → 𝐹𝐹, 𝑥⃗𝑥 ↦�𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

+ � �𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑗𝑗𝑗𝑗�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
1≤1<𝑗𝑗≤𝑛𝑛

 

每一个二次型都是一个二次齐次函数 

【例 12.1.2】由解析式求二次型矩阵 

𝑞𝑞:𝐹𝐹𝑛𝑛 → 𝐹𝐹, 𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦�𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

+ � 𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
1≤1<𝑗𝑗≤𝑛𝑛

 

令𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛, 𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑗𝑗𝑗𝑗 =
𝛼𝛼𝑖𝑖𝑖𝑖
2

, 1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑛𝑛 

𝑞𝑞(𝑥⃗𝑥) = �𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

+ � �𝛽𝛽𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑗𝑗𝑗𝑗�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
1≤1<𝑗𝑗≤𝑛𝑛

 

= �𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

+ ��𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

−�𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

= ��𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

= (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐵𝐵�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

其中𝐵𝐵 = �𝛽𝛽𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
,𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑗𝑗𝑗𝑗 

∵ 𝐵𝐵对称  ∴ 𝑓𝑓:𝐹𝐹𝑛𝑛 × 𝐹𝐹𝑛𝑛 → 𝐹𝐹, �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� ↦ (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐵𝐵�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

是对称双线性型,且𝑞𝑞(𝑥⃗𝑥) = 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)是二次型 

85／363



李子明老师的线性代数讲义 

【定义 12.1.2】二次型的矩阵 

设𝑞𝑞:𝑉𝑉 → 𝐹𝐹是二次型,𝑓𝑓 ∈ ℒ2+(𝑉𝑉,𝐹𝐹)是𝑞𝑞的配极

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的基,𝐴𝐴是𝑓𝑓在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵

称𝐴𝐴是𝑞𝑞在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵, rank 𝑞𝑞 ≔ rank 𝑓𝑓

注:𝑞𝑞在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵是对称的

【例 12.1.3】二次型的矩阵例 

𝑞𝑞:𝐹𝐹3 → 𝐹𝐹,�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� ↦ 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 − 3𝑥𝑥2𝑥𝑥3

求𝑞𝑞在𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗下的矩阵

𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 − 3𝑥𝑥2𝑥𝑥3 = 𝑥𝑥12 +
1
2
𝑥𝑥1𝑥𝑥2 +

1
2
𝑥𝑥2𝑥𝑥1 −

3
2
𝑥𝑥2𝑥𝑥3 −

3
2
𝑥𝑥3𝑥𝑥2

𝐴𝐴 =

⎝

⎜
⎜
⎛

1
1
2

0
1
2

0 −
3
2

0 −
3
2

0 ⎠

⎟
⎟
⎞

【例 12.1.4】二次型的矩阵例 2 

𝑞𝑞(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥2𝑥𝑥3 + ⋯+ 𝑥𝑥𝑛𝑛−1𝑥𝑥𝑛𝑛

求𝐴𝐴在𝐹𝐹𝑛𝑛的标准基下的矩阵

𝐴𝐴 =

⎝

⎜⎜
⎜
⎛

0 1/2
1/2 0 1/2

1/2 0 ⋱
⋱ ⋱ ⋱

⋱ 0 1/2
1/2 0 ⎠

⎟⎟
⎟
⎞

86／363



§12 二次型

【定义 12.1.3】二次型的规范基 

设𝑞𝑞:𝑉𝑉 → 𝐹𝐹是二次型,𝑓𝑓 ∈ ℒ2+(𝑉𝑉,𝐹𝐹)是𝑞𝑞的配极

𝑓𝑓的规范基也称为𝑞𝑞的规范基 

【定理 12.1】二次型可对角化 

设𝑞𝑞是𝑉𝑉上的二次型, rank 𝑞𝑞 = 𝑟𝑟 

𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是𝑞𝑞的规范基,则∃𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 ∈ 𝐹𝐹 ∖ {0}

使得∀𝑥⃗𝑥 = 𝑥𝑥1𝜀𝜀1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝜀𝜀𝑛𝑛���⃗ ∈ 𝑉𝑉,𝑞𝑞(𝑥⃗𝑥) = 𝜆𝜆1𝑥𝑥12 + ⋯+ 𝜆𝜆𝑟𝑟2𝑥𝑥𝑟𝑟2

证:设𝑓𝑓 ∈ ℒ2+(𝑉𝑉,𝐹𝐹)是𝑞𝑞的配极

则在𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗下,𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝜆𝜆1𝑥𝑥1𝑦𝑦1 + ⋯+ 𝜆𝜆𝑟𝑟𝑥𝑥𝑟𝑟𝑦𝑦𝑟𝑟

其中𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 ∈ 𝐹𝐹 ∖ {0],

𝑥⃗𝑥 = 𝑥𝑥1𝜀𝜀1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝜀𝜀𝑛𝑛���⃗ , 𝑦⃗𝑦 = 𝑦𝑦1𝜀𝜀1���⃗ +⋯+ 𝑦𝑦𝑛𝑛𝜀𝜀𝑛𝑛���⃗  

𝑞𝑞(𝑥⃗𝑥, 𝑥⃗𝑥) = 𝜆𝜆1𝑥𝑥12 + ⋯+ 𝜆𝜆𝑟𝑟𝑥𝑥𝑟𝑟2           ∎ 

【问题】求二次型的规范基和规范型 

方法 1.  𝐴𝐴.写出二次型的矩阵 

𝐵𝐵.写出二次型的配极 

𝐶𝐶.利用 11 节的降维法 

方法 2  配方法 

方法 3  行列变换法 

【例 12.1.5】配方法求二次型的规范基和规范型 

设𝑥⃗𝑥 = �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� , 𝑞𝑞(𝑥⃗𝑥) = 2𝑥𝑥1𝑥𝑥2 + 2𝑥𝑥1𝑥𝑥3 − 6𝑥𝑥2𝑥𝑥3
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求𝑞𝑞的规范型的一组规范基 

注:此时𝑞𝑞:𝐹𝐹3 → 𝐹𝐹, 𝑥⃗𝑥 ↦ 𝑞𝑞(𝑥⃗𝑥)

作线性变量替换 

�
𝑥𝑥1 = 𝑦𝑦1 + 𝑦𝑦2
𝑥𝑥2 = 𝑦𝑦1 − 𝑦𝑦2
𝑥𝑥3 = 𝑦𝑦3

 令𝑦⃗𝑦 = �
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
� , 𝑥⃗𝑥 = �

1 1 0
1 −1 0
0 0 1

�
���������

𝐶𝐶1

𝑦⃗𝑦      𝐶𝐶1可逆

𝑞𝑞(𝑥⃗𝑥) = 𝑞𝑞(𝐶𝐶1𝑦⃗𝑦) = 2𝑦𝑦12 − 2𝑦𝑦22 − 4𝑦𝑦1𝑦𝑦3 + 8𝑦𝑦2𝑦𝑦3

配方 𝑞𝑞(𝐶𝐶1𝑦⃗𝑦) = 2(𝑦𝑦12 − 2𝑦𝑦1𝑦𝑦3)− 2(𝑦𝑦2 − 4𝑦𝑦2𝑦𝑦3)

= 2(𝑦𝑦12 − 2𝑦𝑦1𝑦𝑦3 + 𝑦𝑦32)− 2(𝑦𝑦22 − 4𝑦𝑦2𝑦𝑦3 + 4𝑦𝑦32)− 2𝑦𝑦32 + 8𝑦𝑦32

= 2(𝑦𝑦1 − 𝑦𝑦3)2 − 2(𝑦𝑦2 − 2𝑦𝑦3)2 + 6𝑦𝑦32

线性变量替换 

�
𝑧𝑧1 = 𝑦𝑦1 − 𝑦𝑦3
𝑧𝑧2 = 𝑦𝑦2 − 2𝑦𝑦3
𝑧𝑧3 = 𝑦𝑦3

 令𝑧𝑧 = �
𝑧𝑧1
𝑧𝑧2
𝑧𝑧3
� , 𝑧𝑧 = �

1 0 −1
0 1 −2
0 0 1

�
���������

𝐶𝐶2

𝑦⃗𝑦 

𝑦⃗𝑦 = 𝐶𝐶2−1𝑧𝑧, 𝑞𝑞(𝐶𝐶1𝐶𝐶2−1𝑧𝑧) = 2𝑧𝑧12 − 2𝑧𝑧22 + 6𝑧𝑧32

坐标变换为𝑥⃗𝑥 = 𝐶𝐶1𝐶𝐶2−1𝑧𝑧 ⇒ (𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ ) = (𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ )(𝐶𝐶1𝐶𝐶2−1)

𝐶𝐶1𝐶𝐶2−1 = �
1 1 0
1 −1 0
0 0 1

��
1 0 1
0 1 2
0 0 1

� = �
1 1 3
1 −1 −1
0 0 1���������

�

𝐶𝐶

 

(𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ ) = (𝑒𝑒1���⃗ ,𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ )𝐶𝐶 = 𝐶𝐶    规范型为𝑞𝑞(𝑧𝑧) = 2𝑧𝑧12 − 2𝑧𝑧22 + 6𝑧𝑧32

注:𝑞𝑞(𝑥⃗𝑥)在标准基下的矩阵是𝐴𝐴 = �
0 1 1
1 0 −3
1 −3 0

� 

𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 = �
2 0 0
0 −2 0
0 0 6

� 

88／363



李子明老师的线性代数讲义 

§13 应用：齐二次多项式因式分解

【问题】二次型能否因式分解 

给定𝑝𝑝 ∈ 𝐹𝐹[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛]齐二次,问𝑝𝑝是否能写成两个齐一次多项式之积

注:如果齐二次的多项式可以写成两个一次多项式之积, 

这两个多项式一定是齐次的 

【命题 13.1】n 元多项式环之间同构 

设𝐹𝐹[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]和𝐹𝐹[𝑦𝑦1, … ,𝑦𝑦𝑛𝑛]是两个多项式环

𝐶𝐶 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),令𝐶𝐶 = �𝑐𝑐𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛

则环同态𝜑𝜑𝐶𝐶:𝐹𝐹[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛] → 𝐹𝐹[𝑦𝑦1, … ,𝑦𝑦𝑛𝑛]

𝜑𝜑𝐶𝐶│𝐹𝐹 = 𝐼𝐼𝑑𝑑   𝜑𝜑𝐶𝐶(𝑥𝑥𝑖𝑖) = �𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗

𝑛𝑛

𝑗𝑗=1

, 𝑖𝑖 = 1, … ,𝑛𝑛    是同构 

易验证𝜑𝜑𝐶𝐶是同态,要证𝜑𝜑𝐶𝐶是同构,只需证明𝜑𝜑𝐶𝐶逆存在

设𝐶𝐶−1 = 𝐷𝐷 = �𝑑𝑑𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛

𝜓𝜓𝐷𝐷:𝐹𝐹[𝑦𝑦1, … ,𝑦𝑦𝑛𝑛] → 𝐹𝐹[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]

满足𝜓𝜓𝐷𝐷│𝐹𝐹 = 𝐼𝐼𝐼𝐼   𝜓𝜓�𝑦𝑦𝑗𝑗� = �𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

,易验证𝜓𝜓𝐷𝐷是同态

∀𝑎𝑎 ∈ 𝐹𝐹,𝜑𝜑𝐶𝐶 ∘ 𝜓𝜓𝐷𝐷(𝑎𝑎) = 𝑎𝑎

∀𝑖𝑖 ∈ {1, … ,𝑛𝑛},𝜑𝜑𝐶𝐶 ∘ 𝜓𝜓𝐷𝐷(𝑦𝑦𝑖𝑖) = 𝜑𝜑𝐶𝐶 ��𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

� 

= �𝑑𝑑𝑖𝑖𝑖𝑖𝜑𝜑𝐶𝐶�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

= �𝑑𝑑𝑖𝑖𝑖𝑖�𝑐𝑐𝑗𝑗𝑗𝑗𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑗𝑗=1
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= ���𝑑𝑑𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑗𝑗

𝑛𝑛

𝑗𝑗=1

�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= �𝛿𝛿𝑖𝑖𝑖𝑖𝑦𝑦𝑘𝑘

𝑛𝑛

𝑘𝑘=1

= 𝑦𝑦𝑖𝑖 

即𝜑𝜑𝐶𝐶 ∘ 𝜓𝜓𝐷𝐷│𝐹𝐹 = 𝐼𝐼𝐼𝐼,𝜑𝜑𝐶𝐶 ∘ 𝜓𝜓𝐷𝐷(𝑦𝑦𝑖𝑖) = 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 

⇒ 𝜑𝜑𝐶𝐶 ∘ 𝜓𝜓𝐷𝐷 = 𝐼𝐼𝐼𝐼 

同理𝜓𝜓𝐷𝐷 ∘ 𝜑𝜑𝐶𝐶:𝐹𝐹[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛] → 𝐹𝐹[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]是恒同映射        ∎ 

注:𝜑𝜑𝐶𝐶为由线性变量替换�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = 𝐶𝐶 �

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
�诱导的同构 

注:∵ 𝜑𝜑𝐶𝐶是同构    𝑝𝑝 ∈ 𝐹𝐹[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛],𝑔𝑔, ℎ ∈ 𝐹𝐹[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛] 

𝑝𝑝 = 𝑔𝑔ℎ ⇒ 𝜑𝜑𝐶𝐶(𝑝𝑝) = 𝜑𝜑𝐶𝐶(𝑔𝑔ℎ) = 𝜑𝜑𝐶𝐶(𝑔𝑔)𝜑𝜑𝐶𝐶(ℎ) 

𝜑𝜑𝐶𝐶(𝑝𝑝) = 𝜑𝜑𝐶𝐶(𝑔𝑔)𝜑𝜑𝐶𝐶(ℎ) ⇒ 𝜑𝜑𝐶𝐶−1�𝜑𝜑𝐶𝐶(𝑝𝑝)� = 𝜑𝜑𝐶𝐶−1�𝜑𝜑𝐶𝐶(𝑔𝑔)𝜑𝜑𝐶𝐶(ℎ)� 

⇒ 𝑝𝑝 = 𝜑𝜑𝐶𝐶−1 ∘ 𝜑𝜑𝐶𝐶(𝑔𝑔)𝜑𝜑𝐶𝐶−1 ∘ 𝜑𝜑𝐶𝐶(ℎ) = 𝑔𝑔ℎ 

于是𝑝𝑝在𝐹𝐹[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]中可约⇔ 𝜑𝜑𝐶𝐶(𝑝𝑝)在𝐹𝐹[𝑦𝑦1, … , 𝑦𝑦𝑛𝑛]中可约 

设𝑝𝑝是齐二次的,则𝑝𝑝可以看成𝐹𝐹𝑛𝑛 → 𝐹𝐹的二次型 

在标准基下 𝑝𝑝 = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

其中𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)对称,把𝐴𝐴的秩也称为𝑝𝑝的秩,记为 rank 𝑝𝑝 

 

【命题 13.2】二次型可分解的必要条件 

设𝑝𝑝 ∈ 𝐹𝐹[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]齐二次 

如果𝑝𝑝(𝑥𝑥1, … ,𝑥𝑥𝑛𝑛) = 𝑙𝑙1(𝑥𝑥1, … ,𝑥𝑥𝑛𝑛)𝑙𝑙2(𝑥𝑥1, … ,𝑥𝑥𝑛𝑛) 

其中𝑙𝑙1, 𝑙𝑙2是齐一次的𝐹𝐹[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛]中的多项式 

则 rank 𝑝𝑝 ≤ 2 

证:由𝑝𝑝 = 𝑙𝑙1𝑙𝑙2可知 ∀𝑥⃗𝑥 ∈ 𝐹𝐹𝑛𝑛,𝑝𝑝(𝑥⃗𝑥) = 𝑙𝑙1(𝑥⃗𝑥)𝑙𝑙2(𝑥⃗𝑥) 

设𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) =
1
2
�𝑙𝑙1(𝑥⃗𝑥)𝑙𝑙2(𝑦⃗𝑦) + 𝑙𝑙1(𝑦⃗𝑦)𝑙𝑙2(𝑥⃗𝑥)� 
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则𝑓𝑓 ∈ ℒ+(𝐹𝐹𝑛𝑛,𝐹𝐹) 且𝑓𝑓是二次型𝑝𝑝的配极 

设𝐾𝐾1 = ker 𝑙𝑙1 ,𝐾𝐾2 = ker 𝑙𝑙2 

由维数公式, dim(𝐾𝐾1 ∩ 𝐾𝐾2) = dim𝐾𝐾1 + dim𝐾𝐾2 − dim(𝐾𝐾1 +𝐾𝐾2) 

≥ 𝑛𝑛 − 1 + 𝑛𝑛 − 1 − 𝑛𝑛 = 𝑛𝑛 − 2 

设𝜀𝜀3���⃗ , … , 𝜀𝜀𝑛𝑛���⃗ ∈ 𝐾𝐾1 ∩ 𝐾𝐾2线性无关,并将其扩充为𝐹𝐹𝑛𝑛的基𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗  

则∀𝑖𝑖 ≥ 3,𝑘𝑘 ∈ {1, … ,𝑛𝑛},𝑓𝑓(𝜀𝜀𝑘𝑘���⃗ , 𝜀𝜀𝚤𝚤��⃗ ) = 𝑓𝑓(𝜀𝜀𝚤𝚤��⃗ , 𝜀𝜀𝑘𝑘���⃗ ) = 0 

于是𝑝𝑝在𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗下的矩阵为�
𝑓𝑓(𝜀𝜀1���⃗ , 𝜀𝜀1���⃗ ) 𝑓𝑓(𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ )
𝑓𝑓(𝜀𝜀2���⃗ , 𝜀𝜀1���⃗ ) 𝑓𝑓(𝜀𝜀2���⃗ , 𝜀𝜀2���⃗ ) 𝑂𝑂

𝑂𝑂 𝑂𝑂
� 

于是 rank 𝑝𝑝 ≤ 2    ∎ 

 

【例 13.1.1】判断不可分解例 

𝑝𝑝 = 𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 ∈ 𝐹𝐹[𝑥𝑥1,𝑥𝑥2,𝑥𝑥3]不可约 

 

【命题 13.3】二次型可分解的判定 

设𝑝𝑝 ∈ 𝐹𝐹[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]齐二次非零 

设𝑝𝑝在𝐹𝐹𝑛𝑛的某组基下的矩阵为𝑀𝑀 = diag(𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 , 0, … ,0) 

𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 ∈ 𝐹𝐹 ∖ {0} 

(𝑖𝑖)𝑟𝑟 ≥ 3 时,𝑝𝑝不可约 

(𝑖𝑖𝑖𝑖)𝑟𝑟 ≤ 2 时,𝑝𝑝可约当且仅当𝜆𝜆1𝑦𝑦12 + 𝜆𝜆2𝑦𝑦22在𝐹𝐹[𝑦𝑦1, 𝑦𝑦2]中可约 

证: (𝑖𝑖) ∵ rank 𝑝𝑝 = 𝑟𝑟  ∴ (𝑖𝑖)成立 �命题 13.2� 

(𝑖𝑖𝑖𝑖)设𝑝𝑝在标准基下的矩阵是𝐴𝐴 

则存在可逆矩阵𝐶𝐶使得𝑀𝑀 = 𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 

考虑由线性变量替换�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = 𝐶𝐶 �

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
�诱导的同构 
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𝜑𝜑𝐶𝐶 = 𝐹𝐹[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛] → 𝐹𝐹[𝑦𝑦1, … , 𝑦𝑦𝑛𝑛] 

𝜑𝜑𝐶𝐶(𝑝𝑝) = 𝜑𝜑𝐶𝐶 �(𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�� 

= (𝑦𝑦1 ⋯ 𝑦𝑦𝑛𝑛)𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 �
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = 𝜆𝜆1𝑦𝑦12 + 𝜆𝜆2𝑦𝑦22 

由命题 13.1, 𝑝𝑝可约⇔ 𝜆𝜆1𝑦𝑦12 + 𝜆𝜆2𝑦𝑦22可约       ∎ 
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§14 复二次型 

【定理 14.1】复二次型可单位矩阵化 

设 𝑉𝑉 是 ℂ 上有限维线性空间,  

𝑞𝑞 是 𝑉𝑉 上的二次型，则存在 𝑉𝑉 的一组基 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗   

使得 𝑞𝑞 在该基底下的矩阵是 �𝐸𝐸𝑟𝑟 0
0 0� 

即 ∀𝑥⃗𝑥 = 𝑥𝑥1𝜀𝜀1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝜀𝜀𝑛𝑛���⃗ ∈ 𝑉𝑉, 𝑞𝑞(𝑥⃗𝑥) = 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑟𝑟2 

证：由定理 12.1,存在𝑉𝑉的一组基 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  和 𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 ∈ ℂ ∖ {0} 

使得 𝑞𝑞 在 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  下的矩阵是𝐴𝐴 = diag(𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 , 0, … ,0) 

由代数学基本定理,�𝜆𝜆𝑖𝑖 ∈ ℂ, 𝑖𝑖 = 1, … , 𝑟𝑟 

考虑基变换 

(𝜀𝜀1���⃗  , . . . , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , . . . , 𝑒𝑒𝑛𝑛����⃗ ) diag�
1
�𝜆𝜆1

, … ,
1
�𝜆𝜆𝑟𝑟

, 1, … ,1�
�������������������

𝐶𝐶

 

则 𝑞𝑞 在 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗  下的矩阵是 

𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 = �𝐸𝐸𝑟𝑟 O
𝑂𝑂 O�         ∎ 

 

【推论 14.1】复对称矩阵可单位矩阵化 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ)对称且 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴 

则 𝐴𝐴~𝑐𝑐 �
𝐸𝐸𝑟𝑟 0
0 0� 

证：设 𝑞𝑞:ℂ𝑛𝑛 → ℂ,�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦ (𝑥𝑥1, … ,𝑥𝑥𝑛𝑛)𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

因为 𝐴𝐴 对称，所以 𝐴𝐴 是 𝑞𝑞 的矩阵 

由定理 14.1， 𝐴𝐴~𝑐𝑐 �
𝐸𝐸𝑟𝑟 0
0 0�       ∎ 
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【推论 14.2】复矩阵合同秩相等 

设𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(ℂ)对称，则 𝐴𝐴~𝑐𝑐𝐵𝐵 ⇔ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵 

证： ⇒定理 10.1 

⇐由推论 14.1 

𝐴𝐴~𝑐𝑐 �
𝐸𝐸𝑟𝑟 0
0 0� ,𝐵𝐵~𝑐𝑐 �

𝐸𝐸𝑟𝑟 0
0 0� 

其中 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵 

于是 𝐴𝐴~𝑐𝑐𝐵𝐵        ∎ 

 

【推论 14.3】复二次型可约的充要条件 

设 𝑝𝑝 ∈ ℂ[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛] ∖ {0}齐二次 

则 𝑝𝑝 在 ℂ[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]中可约⇔ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝 ≤ 2 

证： ⇒命题 13.2 

⇐∵ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝 ≤ 2 

∴由定理 14.1 可知 𝑝𝑝 作为二次型在 𝐹𝐹𝑛𝑛的某组基下的规范型为 

𝑦𝑦12 = 𝑦𝑦1 · 𝑦𝑦1或 𝑦𝑦12 + 𝑦𝑦22 = �𝑦𝑦1 + √−1𝑦𝑦2��𝑦𝑦1 − √−1𝑦𝑦2� 

由命题 13.3,𝑝𝑝可约          ∎  
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§15 实二次型 

【定理 15.1】惯性定理 

设𝑉𝑉是 ℝ上有限维线性空间，𝑞𝑞:𝑉𝑉 → ℝ 是二次型，则 

(𝑖𝑖)𝑞𝑞在某组基𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗下的矩阵是 

𝐴𝐴 = �
𝐸𝐸𝑠𝑠 0 0
0 −𝐸𝐸𝑡𝑡 0
0 0 0

� 

即∀𝑥⃗𝑥 = 𝑥𝑥1𝜀𝜀1���⃗ +. . . +𝑥𝑥𝑛𝑛𝜀𝜀𝑛𝑛���⃗ ,𝑞𝑞(𝑥⃗𝑥) = 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑠𝑠2 − 𝑥𝑥𝑠𝑠+12 − ⋯− 𝑥𝑥𝑠𝑠+𝑡𝑡2  

(𝑖𝑖𝑖𝑖)如果𝑞𝑞在另一组基𝜀𝜀1′���⃗  , … , 𝜀𝜀𝑛𝑛′���⃗下的矩阵是 

𝐴𝐴′ = �
𝐸𝐸𝑠𝑠′ 0 0
0 −𝐸𝐸𝑡𝑡′ 0
0 0 0

� 

则𝑠𝑠 = 𝑠𝑠′, 𝑡𝑡 = 𝑡𝑡′ 

证：(𝑖𝑖)由定理 12.1，存在𝑉𝑉的一组基𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗和𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 ∈ ℝ ∖ {0} 

使得𝑞𝑞在该基下的矩阵是 

𝐴𝐴 = diag(𝜆𝜆1, … , 𝜆𝜆𝑠𝑠) 

适当调整基底下标顺序，不妨设λ1, … , 𝜆𝜆𝑠𝑠 ∈ ℝ+,𝜆𝜆𝑠𝑠+1, … , 𝜆𝜆𝑠𝑠+𝑡𝑡 ∈ ℝ−, 

其中𝑠𝑠 + 𝑡𝑡 = 𝑟𝑟，考虑基变换 

(𝜀𝜀1���⃗ , … , 𝜀𝜀𝑛𝑛���⃗ )

= (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ) diag�
1
�𝜆𝜆1

, … ,
1
�𝜆𝜆𝑠𝑠

,
1

�−𝜆𝜆𝑠𝑠+1
, … ,

1
�−𝜆𝜆𝑠𝑠+𝑡𝑡

, 0, … ,0�
���������������������������������

𝐶𝐶

 

则𝑞𝑞在(𝜀𝜀1���⃗ , … , 𝜀𝜀𝑛𝑛���⃗ )下的矩阵是𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 = �
𝐸𝐸𝑠𝑠 0 0
0 −𝐸𝐸𝑡𝑡 0
0 0 0

�
𝑛𝑛×𝑛𝑛

  

(𝑖𝑖𝑖𝑖)𝑠𝑠 + 𝑡𝑡 = 𝑠𝑠′ + 𝑡𝑡′ = rank(𝐴𝐴) ,要证𝑠𝑠 = 𝑠𝑠′, 𝑡𝑡 = 𝑡𝑡′,只需证𝑠𝑠 = 𝑠𝑠′ 

假设𝑠𝑠 > 𝑠𝑠′，令𝑈𝑈 = 〈𝜀𝜀1���⃗ , … , 𝜀𝜀𝑠𝑠���⃗ ⟩,𝑈𝑈′ = �𝜀𝜀𝑠𝑠′+1′�����������⃗ , … , 𝜀𝜀𝑛𝑛′�����⃗ � 

则dim(𝑈𝑈 ∩ 𝑈𝑈′) = dim𝑈𝑈 + dim𝑈𝑈′ − dim(𝑈𝑈 + 𝑈𝑈′) 
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≥ 𝑠𝑠 + (𝑛𝑛 − 𝑠𝑠′) − 𝑛𝑛 = 𝑠𝑠 − 𝑠𝑠′ > 0 

∴ ∃𝑢𝑢�⃗ ∈ 𝑈𝑈 ∩ 𝑈𝑈′且𝑢𝑢�⃗ ≠ 0�⃗ . 

令𝑢𝑢�⃗ = 𝛼𝛼1𝜀𝜀1���⃗ +⋯+ 𝛼𝛼𝑠𝑠𝜀𝜀𝑠𝑠���⃗ = 𝛽𝛽𝑠𝑠+1𝜀𝜀𝑠𝑠+1′���������⃗ + ⋯+ 𝛽𝛽𝑛𝑛𝜀𝜀𝑛𝑛′�����⃗  

其中𝛼𝛼1, … ,𝛼𝛼𝑠𝑠,𝛽𝛽𝑠𝑠+1, … ,𝛽𝛽𝑛𝑛不全为零 

𝑞𝑞(𝑢𝑢�⃗ ) = 𝛼𝛼12 + ⋯+ 𝛼𝛼𝑠𝑠2 > 0, 𝑞𝑞(𝑢𝑢�⃗ ) = −𝛽𝛽𝑠𝑠+12 − ⋯− 𝛽𝛽𝑠𝑠+𝑡𝑡 
2 ≤ 0,矛盾 

同理, 𝑠𝑠 < 𝑠𝑠′不成立 ⇒ 𝑠𝑠 = 𝑠𝑠′         ∎ 

 

【定义 15.1.1】二次型的正负惯性指数 签名 

设𝑞𝑞, 𝑠𝑠, 𝑡𝑡如定理 15.1, 

称𝑠𝑠是𝑞𝑞的正惯性指数, 𝑡𝑡是𝑞𝑞的负惯性指数; (𝑠𝑠, 𝑡𝑡)称为𝑞𝑞的签名 

注：𝑠𝑠 + 𝑡𝑡 = rank 𝑞𝑞 

 

【推论 15.1】实对称矩阵对角化 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称，则∃! 𝑠𝑠, 𝑡𝑡 ∈ ℕ使得 

A~c �
𝐸𝐸𝑠𝑠 0 0
0 −𝐸𝐸𝑡𝑡 0
0 0 0

�    

证：设𝑞𝑞:ℝ𝑛𝑛 → ℝ, �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� ↦ (𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑛𝑛)𝐴𝐴�

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� 

因为𝐴𝐴对称，所以𝐴𝐴是𝑞𝑞在标准基下的矩阵。 

由定理 15.1，∃ℝ𝑛𝑛的一组基𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ , 

使得𝑞𝑞在该基下的矩阵为�
𝐸𝐸𝑠𝑠 0 0
0 −𝐸𝐸𝑡𝑡 0
0 0 0

�，且𝑠𝑠, 𝑡𝑡唯一 

因此该矩阵与𝐴𝐴合同。     ∎ 
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【定义 15.1.2】矩阵的正负惯性指数 签名 

设𝐴𝐴, 𝑠𝑠, 𝑡𝑡与推论 15.1 相同，称𝑠𝑠为𝐴𝐴的正惯性指数，𝑡𝑡为𝐴𝐴的负惯性指数 

(𝑠𝑠, 𝑡𝑡)为𝐴𝐴的签名，𝑠𝑠 + 𝑡𝑡 = rank𝐴𝐴 

 

【推论 15.2】合同签名相同 

设𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称，则𝐴𝐴~c𝐵𝐵 ⇔它们有同样的签名 

证： 

⇒：𝐴𝐴~𝑐𝑐𝐵𝐵,且𝐴𝐴,𝐵𝐵对称，则𝐴𝐴,𝐵𝐵是同一个二次型 

在不同基底下的矩阵。设该二次型为𝑞𝑞，它的签名是(𝑠𝑠, 𝑡𝑡)， 

则𝐴𝐴~𝑐𝑐 �
𝐸𝐸𝑠𝑠 0 0
0 −𝐸𝐸𝑡𝑡 0
0 0 0

� ,𝐵𝐵~𝑐𝑐 �
𝐸𝐸𝑠𝑠 0 0
0 −𝐸𝐸𝑡𝑡 0
0 0 0

�  ⇒ A, B 有相同签名 

⇐: 

𝐴𝐴~𝑐𝑐 �
𝐸𝐸𝑠𝑠 0 0
0 −𝐸𝐸𝑡𝑡 0
0 0 0

�~𝑐𝑐𝐵𝐵 ⇒ 𝐴𝐴~𝑐𝑐𝐵𝐵      ∎ 

 

【推论 15.3】二次型可约的充要条件签名版 

设𝑝𝑝 ∈ ℝ[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛] ∖ {0}齐二次，则 

𝑝𝑝在 ℝ[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]中可约 

⇔ 𝑝𝑝作为二次型的秩为 1 或者𝑝𝑝的签名为(1,−1) 

证： 

⇐:若 rank 𝑝𝑝 = 1 或签名为(1,−1), 

则𝑝𝑝在ℝ𝑛𝑛某组基下的规范型是 ± 𝑦𝑦12 = (±𝑦𝑦1)(𝑦𝑦1) 

或者𝑦𝑦12 − 𝑦𝑦22 = (𝑦𝑦1 − 𝑦𝑦2)(𝑦𝑦1 + 𝑦𝑦2) 

由命题 13.3 得𝑝𝑝可约 
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⇒:由命题 13.2, rank𝑝𝑝 ≤ 2  

于是𝑝𝑝 的签名为�
(1,0)(0,1)�������

rank(𝑝𝑝) = 1
�或�

(2,0)(1,1)(0,2)�����������
rank(𝑝𝑝) = 2

� 

只要证明 当𝑝𝑝的签名为(2,0)和(0,2)时，𝑝𝑝不可约即可。 

此时𝑝𝑝有规范型𝑦𝑦12 + 𝑦𝑦22和− 𝑦𝑦12 − 𝑦𝑦22,它们在 ℝ[𝑦𝑦1,𝑦𝑦2]中不可约。 

∎ 

 

【例 15.1.1】转置乘积的性质 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ),证明 

(𝑖𝑖)𝐴𝐴𝑡𝑡𝐴𝐴对称（对任何域都成立） 

(𝑖𝑖𝑖𝑖)𝐴𝐴𝑡𝑡𝐴𝐴的负惯性指数为零 

(𝑖𝑖𝑖𝑖𝑖𝑖) rank(𝐴𝐴𝑡𝑡𝐴𝐴) = rank(𝐴𝐴) 

证：(𝑖𝑖)设𝐵𝐵 = 𝐴𝐴𝑡𝑡𝐴𝐴,𝐵𝐵𝑡𝑡 = (𝐴𝐴𝑡𝑡𝐴𝐴)𝑡𝑡 = 𝐴𝐴𝑡𝑡(𝐴𝐴𝑡𝑡)𝑡𝑡 = 𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐵𝐵 ⇒ 𝐵𝐵对称 

(𝑖𝑖𝑖𝑖)设𝑞𝑞:ℝ𝑛𝑛 → ℝ, 𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦ (𝑥𝑥1 . . . 𝑥𝑥𝑛𝑛)𝐵𝐵�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

设𝐵𝐵的签名是(𝑠𝑠, 𝑡𝑡),在ℝ𝑛𝑛的某组基 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗下 

∀𝑦⃗𝑦 = 𝑦𝑦1𝜀𝜀1���⃗ + ⋯+ 𝑦𝑦𝑛𝑛𝜀𝜀𝑛𝑛���⃗ , 

𝑞𝑞(𝑦⃗𝑦) = 𝑦𝑦12 + ⋯+ 𝑦𝑦𝑠𝑠2 − 𝑦𝑦𝑠𝑠+12 − ⋯− 𝑦𝑦𝑠𝑠+𝑡𝑡2 �惯性定理� 

假设𝑡𝑡 > 0,则有 𝑞𝑞(𝜀𝜀𝑠𝑠+1��������⃗ ) = −1 < 0,而 

∀𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� , 𝑞𝑞(𝑥⃗𝑥) = (𝑥𝑥1 . . . 𝑥𝑥𝑛𝑛)𝐵𝐵�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = (𝑥𝑥1 . . . 𝑥𝑥𝑛𝑛)𝐴𝐴𝑡𝑡𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

令�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� = 𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,则(𝛼𝛼1 . . . 𝛼𝛼𝑛𝑛) = (𝑥𝑥1 . . . 𝑥𝑥𝑛𝑛)𝐴𝐴𝑡𝑡, 

𝑞𝑞(𝑥⃗𝑥) = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)�
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� = 𝛼𝛼12 +⋯+ 𝛼𝛼𝑛𝑛2 ≥ 0，矛盾 
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(𝑖𝑖𝑖𝑖𝑖𝑖)由(𝑖𝑖𝑖𝑖), ∀𝑦⃗𝑦 = 𝑦𝑦1𝜀𝜀1���⃗ + ⋯+ 𝑦𝑦𝑛𝑛𝜀𝜀𝑛𝑛���⃗  

𝑞𝑞(𝑦⃗𝑦) = 𝑦𝑦12 + ⋯+ 𝑦𝑦𝑠𝑠2 ⇒ rank(𝑞𝑞) = 𝑠𝑠 ⇒ rank𝐵𝐵 = 𝑠𝑠 

要证: rank𝐵𝐵 = rank𝐴𝐴    [𝐵𝐵 = 𝐴𝐴𝑡𝑡𝐴𝐴] 

注意到𝑞𝑞(𝜀𝜀𝑠𝑠+1��������⃗ ) = ⋯ = 𝑞𝑞(𝜀𝜀𝑛𝑛���⃗ ) = 0 

令𝜀𝜀𝚥𝚥��⃗ = �
𝛼𝛼1𝑗𝑗
⋮
𝛼𝛼𝑛𝑛𝑛𝑛

� , 𝑗𝑗 = 𝑠𝑠 + 1, … ,𝑛𝑛, �
𝛽𝛽1𝑗𝑗
⋮
𝛽𝛽𝑛𝑛𝑛𝑛

� = 𝐴𝐴�
𝛼𝛼1𝑗𝑗
⋮
𝛼𝛼𝑛𝑛𝑛𝑛

� 

0 = 𝑞𝑞�𝜀𝜀𝚥𝚥��⃗ � = �𝛼𝛼1𝑗𝑗 , … ,𝛼𝛼𝑛𝑛𝑛𝑛�𝐴𝐴𝑡𝑡𝐴𝐴�
𝛼𝛼1𝑗𝑗
⋮
𝛼𝛼𝑛𝑛𝑛𝑛

� = �𝛽𝛽1𝑗𝑗 , … ,𝛽𝛽𝑖𝑖𝑖𝑖  ��
𝛽𝛽1𝑗𝑗
⋮
𝛽𝛽𝑛𝑛𝑛𝑛

�

= 𝛽𝛽1𝑗𝑗2 + ⋯+ 𝛽𝛽𝑛𝑛𝑛𝑛2  

⇒ 𝛽𝛽1𝑗𝑗 = ⋯ = 𝛽𝛽𝑛𝑛𝑛𝑛 = 0  �∵ 𝛽𝛽𝑖𝑖𝑖𝑖 ∈ ℝ� 

�
𝛽𝛽1𝑗𝑗
⋮
𝛽𝛽𝑛𝑛𝑛𝑛

� = 𝐴𝐴�
𝛼𝛼1𝑗𝑗
⋮
𝛼𝛼𝑛𝑛𝑛𝑛

� ⇒ 𝜀𝜀𝑠𝑠+1��������⃗ , … , 𝜀𝜀𝑛𝑛���⃗ ∈ 𝑉𝑉𝐴𝐴    �𝐴𝐴𝑥⃗𝑥 = �
0
⋮
0
�的解空间� 

换言之 

𝜀𝜀𝑠𝑠+1��������⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ∈ 𝑉𝑉𝐴𝐴 ⇒ dim𝑉𝑉𝐴𝐴 ≥ 𝑛𝑛 − 𝑠𝑠 

由dim𝑉𝑉𝐴𝐴 + rank𝐴𝐴 = 𝑛𝑛 可知 rank(𝐴𝐴) ≤ 𝑠𝑠 

𝑠𝑠 = rank(𝐵𝐵) = rank(𝐴𝐴𝑡𝑡𝐴𝐴) ≤ rank(𝐴𝐴) ≤ 𝑠𝑠 

⇒ rank(𝐴𝐴) = rank(𝐵𝐵) = 𝑠𝑠 

∎ 
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§16 Jacobi公式 

【引理 16.1】n-1 维子空间交维数下限 

设dim𝑉𝑉 = 𝑛𝑛, 

𝑈𝑈1, … ,𝑈𝑈𝑘𝑘是𝑉𝑉中的子空间，且dim𝑈𝑈𝑖𝑖 ≥ 𝑛𝑛 − 1, 𝑖𝑖 = 1, … , 𝑘𝑘 

则dim��𝑈𝑈𝑖𝑖

𝑘𝑘

𝑖𝑖=1

� ≥ 𝑛𝑛 − 𝑘𝑘 

证：对𝑘𝑘归纳，𝑘𝑘 = 1 正确 

设𝑘𝑘 − 1 时引理成立，则𝑘𝑘时 

dim��𝑈𝑈𝑖𝑖

𝑘𝑘

𝑖𝑖=1

� = dim���𝑈𝑈𝑖𝑖

𝑘𝑘−1

𝑖𝑖=1

� ∩ 𝑈𝑈𝑘𝑘� 

= dim��𝑢𝑢𝑖𝑖

𝑘𝑘−1

𝑖𝑖=1

� + dim𝑈𝑈𝑘𝑘 − dim���𝑈𝑈𝑖𝑖

𝑘𝑘−1

𝑖𝑖=1

�+ 𝑈𝑈𝑘𝑘� 

≥ 𝑛𝑛 − (𝑘𝑘 − 1) + (𝑛𝑛 − 1) − 𝑛𝑛 = 𝑛𝑛 − 𝑘𝑘        ∎ 

 

【推论 16.1】和少于 n 个向量双线性型为零的向量存在性 

设𝑓𝑓 ∈ ℒ2(𝑉𝑉,𝐹𝐹), dim𝑉𝑉 = 𝑛𝑛, 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ∈ 𝑉𝑉 

如果𝑘𝑘 < 𝑛𝑛,则∃𝑣⃗𝑣 ∈ 𝑉𝑉\{0�⃗ }，使得𝑓𝑓(𝑣⃗𝑣,𝑣𝑣𝚤𝚤���⃗ ) = 0, 𝑖𝑖 = 1,2, … ,𝑘𝑘 

证：设 𝑔𝑔𝑖𝑖:𝑉𝑉 → 𝐹𝐹, 𝑥⃗𝑥 ↦ 𝑓𝑓(𝑥⃗𝑥,𝑣𝑣𝚤𝚤���⃗ ), 𝑖𝑖 = 1, … ,𝑘𝑘,则𝑔𝑔𝑖𝑖 ∈ 𝑉𝑉∗ 

dim ker𝑔𝑔𝑖𝑖 = dim𝑉𝑉 − dim im𝑔𝑔𝑖𝑖 = 𝑛𝑛 − 1 

记𝐾𝐾 = � ker𝑔𝑔𝑖𝑖

𝑘𝑘

𝑖𝑖=1

,则dim𝐾𝐾 ≥ 𝑛𝑛 − 𝑘𝑘    �引理 16.1� 

∵ 𝑘𝑘 < 𝑛𝑛    ∴ dim𝐾𝐾 ≥ 1 

∃𝑣⃗𝑣 ∈ 𝐾𝐾\�0�⃗ �,𝑓𝑓(𝑣⃗𝑣,𝑣𝑣𝚤𝚤���⃗ ) = 𝑔𝑔𝑖𝑖(𝑣⃗𝑣) = 0, 𝑖𝑖 = 1, … ,𝑘𝑘        ∎ 
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【引理 16.2】正交向量组判定向量在生成空间中 

设𝑓𝑓 ∈ ℒ2(𝑉𝑉,𝐹𝐹),𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ∈ 𝑉𝑉,且∀𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑘𝑘} 

𝑓𝑓(𝑣𝑣𝚤𝚤���⃗ ,𝑣𝑣𝚤𝚤���⃗ ) ≠ 0,𝑓𝑓�𝑣𝑣𝚤𝚤���⃗ ,𝑣𝑣𝚥𝚥���⃗ � = 0  (𝑖𝑖 ≠ 𝑗𝑗) 

如果∃𝑣⃗𝑣 ≠ 0 使得𝑓𝑓(𝑣⃗𝑣,𝑣𝑣𝚤𝚤���⃗ ) = 0, 𝑖𝑖 = 1, … ,𝑘𝑘,则𝑣⃗𝑣 ∉ 〈𝑣𝑣𝚤𝚤���⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ⟩ 

证：假设 𝑣⃗𝑣 ∈ 〈𝑣𝑣𝚤𝚤���⃗ , … ,𝑣𝑣𝑘𝑘����⃗ ⟩，则∃𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝑉𝑉使得 

𝑣⃗𝑣 = 𝛼𝛼1𝑣𝑣1����⃗ + ⋯+ 𝛼𝛼𝑘𝑘𝑣𝑣𝑘𝑘����⃗  

0 = 𝑓𝑓(𝑣⃗𝑣,𝑣𝑣𝚤𝚤���⃗ ) = 𝑓𝑓(𝛼𝛼1𝑣𝑣1����⃗ +⋯+ 𝛼𝛼𝑘𝑘𝑣𝑣𝑘𝑘����⃗ ,𝑣𝑣𝚤𝚤���⃗ )

= 𝛼𝛼1𝑓𝑓(𝑣𝑣1����⃗ ,𝑣𝑣𝚤𝚤���⃗ ) + ⋯+ 𝛼𝛼𝑘𝑘𝑓𝑓(𝑣𝑣𝑘𝑘����⃗ ,𝑣𝑣𝚤𝚤���⃗ )

= 𝛼𝛼𝑖𝑖𝑓𝑓(𝑣𝑣𝚤𝚤���⃗ ,𝑣𝑣𝚤𝚤���⃗ )

 

𝑓𝑓(𝑣𝑣𝚤𝚤���⃗ ,𝑣𝑣𝚤𝚤���⃗ ) ≠ 0 ⇒ 𝛼𝛼𝑖𝑖 = 0, 𝑖𝑖 = 1, … ,𝑘𝑘 

⇒ 𝑣⃗𝑣 = 0�⃗  矛盾       ∎ 

 

【定义 16.1】矩阵的（顺序）主子式 

设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹), 1 ≤ 𝑖𝑖1 < ⋯ < 𝑖𝑖𝑘𝑘 ≤ 𝑛𝑛 

则 �

𝑎𝑎𝑖𝑖1𝑖𝑖1 𝑎𝑎𝑖𝑖1𝑖𝑖2 … 𝑎𝑎𝑖𝑖1𝑖𝑖𝑘𝑘
𝑎𝑎𝑖𝑖2𝑖𝑖1 𝑎𝑎𝑖𝑖2𝑖𝑖2 … 𝑎𝑎𝑖𝑖2𝑖𝑖𝑘𝑘
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖1 𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖2 … 𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘

�称为𝐴𝐴的一个𝑘𝑘阶主子式。 

当𝑖𝑖1 = 1, 𝑖𝑖2 = 2, … , 𝑖𝑖𝑘𝑘 = 𝑘𝑘时， 

该主子式称为𝐴𝐴的第𝑘𝑘个顺序主子式，记为△𝑘𝑘 (𝐴𝐴) 
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【定理 16.1】Jacobi 定理 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)对称，记△0= 1,  △𝑘𝑘=△𝑘𝑘 (𝐴𝐴),𝑘𝑘 = 1,2, … ,𝑛𝑛 

如果△𝑘𝑘≠ 0,𝑘𝑘 = 1,2, … ,𝑛𝑛,则 

𝐴𝐴~𝑐𝑐

⎝

⎜
⎜
⎜
⎜
⎛

△1

△0
△2

△1
⋱

△𝑛𝑛

△𝑛𝑛−1⎠

⎟
⎟
⎟
⎟
⎞

 

证：对𝑛𝑛归纳知 

当𝑛𝑛 = 1 时,𝐴𝐴 = (𝑎𝑎11) = �
△1

△0
�  正确 

设𝑛𝑛 − 1 时定理成立，令𝐵𝐵 = �

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1,𝑛𝑛−1
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2,𝑛𝑛−1
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛−1,1 𝑎𝑎𝑛𝑛−1,2 ⋯ 𝑎𝑎𝑛𝑛−1,𝑛𝑛−1

� 

则△𝑖𝑖=△𝑖𝑖 (𝐵𝐵), 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 1，由归纳假设 

𝐵𝐵~𝑐𝑐

⎝

⎜
⎜
⎜
⎜
⎛

△1

△0
△2

△1
⋱

△𝑛𝑛−1

△𝑛𝑛−2⎠

⎟
⎟
⎟
⎟
⎞

=:𝐿𝐿 

则存在𝐶𝐶 ∈ 𝐺𝐺𝐺𝐺𝑛𝑛−1(𝐹𝐹)使得𝐿𝐿 = 𝐶𝐶𝑡𝑡𝐵𝐵𝐵𝐵 

令𝐷𝐷 = �𝐶𝐶 0
0 1�则𝐷𝐷 ∈ 𝐺𝐺𝐺𝐺𝑛𝑛(𝐹𝐹) 

直接计算𝐷𝐷𝑡𝑡𝐴𝐴𝐴𝐴 = �𝐶𝐶
𝑡𝑡 0

0 1
� �𝐵𝐵 𝑎⃗𝑎
𝑎⃗𝑎𝑡𝑡 𝑎𝑎𝑛𝑛𝑛𝑛

� �𝐶𝐶 0
0 1�    �其中𝑎⃗𝑎 = �

𝑎𝑎1,𝑛𝑛
⋮

𝑎𝑎𝑛𝑛−1,𝑛𝑛

�� 

=
� 𝐿𝐿 𝑏𝑏�⃗
𝑏𝑏�⃗ 𝑡𝑡 𝑎𝑎𝑛𝑛𝑛𝑛

�
�������

𝑀𝑀

    �其中𝑏𝑏�⃗ = 𝐶𝐶𝑡𝑡𝑎⃗𝑎 ∈ 𝐹𝐹𝑛𝑛−1� 

于是𝐴𝐴~𝑐𝑐𝑀𝑀. 
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设𝑓𝑓:𝐹𝐹𝑛𝑛 × 𝐹𝐹𝑛𝑛 → 𝐹𝐹,�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� ↦ (𝑥𝑥1 𝑥𝑥2 . . . 𝑥𝑥𝑛𝑛)𝑀𝑀�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

则𝑓𝑓 ∈ 𝐿𝐿2+(𝑉𝑉,𝐹𝐹),𝑀𝑀是𝑓𝑓在标准基𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵。 

且对𝑖𝑖 = 1,2, … ,𝑛𝑛 − 1, 

𝑓𝑓(𝑒𝑒𝚤𝚤��⃗ , 𝑒𝑒𝚤𝚤��⃗ ) =
△𝑖𝑖

△𝑖𝑖−1
≠ 0,𝑓𝑓�𝑒𝑒𝚤𝚤��⃗ , 𝑒𝑒𝚥𝚥��⃗ � = 0, 𝑖𝑖, 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛 − 1}, 𝑖𝑖 ≠ 𝑗𝑗 

由推论 16.1, ∃𝑣⃗𝑣 ∈ 𝑉𝑉\�0�⃗ �,𝑓𝑓(𝑣⃗𝑣, 𝑒𝑒𝚤𝚤��⃗ ) = 0, 𝑖𝑖 = 1, … ,𝑛𝑛 − 1 

由引理 16.2, 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛−1��������⃗ , 𝑣⃗𝑣是𝐹𝐹𝑛𝑛的一组基 

𝑓𝑓在该基下的矩阵 𝑁𝑁 = �𝐿𝐿 0
0 𝜆𝜆� ,其中 λ = 𝑓𝑓(𝑣⃗𝑣, 𝑣⃗𝑣) ≠ 0 

𝑀𝑀~c𝑁𝑁 ⇒ 𝐴𝐴~𝑐𝑐𝑁𝑁 ⇒ ∃𝐺𝐺 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),使得𝐺𝐺𝑡𝑡𝐴𝐴𝐺𝐺 = 𝑁𝑁 

则|GtAG| = |Gt||A||G| = |𝐺𝐺|2|𝐴𝐴| = 𝜆𝜆 △𝑛𝑛−1 

⇒ 𝜆𝜆 =
|𝐺𝐺|2 △𝑛𝑛

△𝑛𝑛−1
 

于是有 �
𝐸𝐸𝑛𝑛−1 0

0
1

|𝐺𝐺|
�

𝑡𝑡

�𝐿𝐿 0
0 𝜆𝜆��

𝐸𝐸𝑛𝑛−1 0

0
1

|𝐺𝐺|
� = �

𝐿𝐿 0

0
△𝑛𝑛−1

△𝑛𝑛

� 

即𝑁𝑁~𝑐𝑐 �
𝐿𝐿 0

0
△𝑛𝑛−1

△𝑛𝑛

� ⇒ 𝐴𝐴~𝑐𝑐

⎝

⎜
⎜
⎜
⎜
⎛

△1

△0
△2

△1
⋱

△𝑛𝑛

△𝑛𝑛−1⎠

⎟
⎟
⎟
⎟
⎞

 

∎ 
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§17 正定二次型与正定矩阵 

本节中𝑉𝑉是 ℝ上的有限维向量空间 

 

【定义 17.1.1】二次型的（半）正定 （半）负定  

设𝑞𝑞:𝑉𝑉 → ℝ是二次型，如果∀𝑥⃗𝑥 ∈ 𝑉𝑉 ∖ {0}  

(𝑖𝑖) 𝑞𝑞(𝑥⃗𝑥) > 0 则称𝑞𝑞是正定的

(𝑖𝑖𝑖𝑖) 𝑞𝑞(𝑥⃗𝑥) < 0 则称𝑞𝑞是负定的

(𝑖𝑖𝑖𝑖𝑖𝑖) 𝑞𝑞(𝑥⃗𝑥) ≥ 0 则称𝑞𝑞是半正定的

(𝑖𝑖𝑣𝑣) 𝑞𝑞(𝑥⃗𝑥) ≤ 0 则称𝑞𝑞是半负定的

    

注：当𝑞𝑞是二次型时，𝑞𝑞�0�⃗ � = 0�⃗  

 

【定理 17.1】签名与正负定性关系 

 设𝑞𝑞是𝑉𝑉上的二次型，(𝑠𝑠, 𝑡𝑡)是其签名。 

(𝑖𝑖) 𝑞𝑞正定 ⇔ 𝑠𝑠 = dim𝑉𝑉
(𝑖𝑖𝑖𝑖) 𝑞𝑞负定 ⇔ 𝑡𝑡 = dim𝑉𝑉
(𝑖𝑖𝑖𝑖𝑖𝑖) 𝑞𝑞半正定 ⇔ 𝑡𝑡 = 0
(𝑖𝑖𝑖𝑖) 𝑞𝑞半负定 ⇔ 𝑠𝑠 = 0

 

证：设𝑛𝑛 = dim𝑉𝑉 ,在𝑉𝑉的基𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下，有∀𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ∈ 𝑉𝑉 

𝑞𝑞(𝑥⃗𝑥) = 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑠𝑠2 − 𝑥𝑥𝑠𝑠+12 −⋯− 𝑥𝑥𝑠𝑠+𝑡𝑡2          [∗] 

其中𝑠𝑠 + 𝑡𝑡 = rank(𝑞𝑞) ≤ 𝑛𝑛 

则∀𝑖𝑖 ∈ {1, … ,𝑛𝑛}, 𝑞𝑞(𝑒𝑒𝚤𝚤��⃗ ) = �
1 𝑖𝑖 ∈ {1, … , 𝑠𝑠}
−1 𝑖𝑖 ∈ {𝑠𝑠 + 1, … , 𝑠𝑠 + 𝑡𝑡}
0 𝑖𝑖 ∈ {𝑠𝑠 + 𝑡𝑡 + 1, … ,𝑛𝑛}

         [∗∗] 

(𝑖𝑖)𝑞𝑞正定⇒ ∀𝑖𝑖 ∈ {1, … ,𝑛𝑛},𝑞𝑞(𝑒𝑒𝚤𝚤��⃗ ) > 0
[∗∗]
��𝑠𝑠 = 𝑛𝑛 

𝑠𝑠 = 𝑛𝑛
[∗]
⇒𝑞𝑞(𝑥⃗𝑥) = 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2 ⇒当𝑥⃗𝑥 ≠ 0�⃗时,𝑞𝑞(𝑥⃗𝑥) > 0 

(𝑖𝑖𝑖𝑖)类似 
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(𝑖𝑖𝑖𝑖𝑖𝑖)𝑞𝑞半正定⇒ ∀𝑖𝑖 ∈ {1, … ,𝑛𝑛},𝑞𝑞(𝑒𝑒𝚤𝚤��⃗ ) ≥ 0
[∗∗]
��𝑡𝑡 = 0 

𝑡𝑡 = 0
[∗]
⇒𝑞𝑞(𝑥⃗𝑥) = 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑠𝑠2 ⇒ 𝑞𝑞(𝑥⃗𝑥) ≥ 0        (𝑖𝑖𝑖𝑖)类似        ∎ 

注：当𝑞𝑞是正定或负定时，由𝑠𝑠 + 𝑡𝑡 = rank(𝑞𝑞)可知 

rank 𝑞𝑞 = dim𝑉𝑉 ⇒ 𝑞𝑞非退化 

 

【定义 17.1.2】矩阵的（半）正定 （半）负定 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ),令𝑞𝑞𝐴𝐴:ℝ𝑛𝑛 → ℝ,�

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� ↦ (𝑥𝑥1 𝑥𝑥2 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴�

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� 

如果𝑞𝑞𝐴𝐴是正定�负定，半正定，半负定�， 

则称𝐴𝐴是正定�负定，半正定，半负定� 

 

【定理 17.2】矩阵正负定性性质 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称， 签名为(𝑠𝑠, 𝑡𝑡)，则 

(𝑖𝑖)𝐴𝐴正定 ⇔ 𝑠𝑠 = 𝑛𝑛 ⇔ A~c𝐸𝐸𝑛𝑛
(𝑖𝑖𝑖𝑖)𝐴𝐴负定 ⇔ 𝑡𝑡 = 𝑛𝑛 ⇔ A~c − 𝐸𝐸𝑛𝑛
(𝑖𝑖𝑖𝑖𝑖𝑖)𝐴𝐴半正定 ⇔ 𝑡𝑡 = 0 ⇔ A~c �

𝐸𝐸𝑠𝑠 0
0 0�

(𝑖𝑖𝑖𝑖)𝐴𝐴半负定 ⇔ 𝑠𝑠 = 0 ⇔ A~c �
−𝐸𝐸𝑡𝑡 0

0 0�

 

证明：直接应用定理 17.1 和𝐴𝐴~𝑐𝑐 �
𝐸𝐸𝑠𝑠 0 0
0 −𝐸𝐸𝑡𝑡 0
0 0 0

�     ∎ 

注：当𝐴𝐴是正定或负定时 rank𝐴𝐴 = 𝑛𝑛，即𝐴𝐴满秩 

注：二次型𝑞𝑞 �或对称矩阵𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)�是�半�负定 

 ⇔ −𝑞𝑞�或− 𝐴𝐴�是�半�正定的 
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【定理 17.3】转置乘积正定性 

 设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称， 

(𝑖𝑖)𝐴𝐴半正定⇔ ∃𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(ℝ) 使得𝐴𝐴 = 𝐵𝐵𝑡𝑡𝐵𝐵 

(𝑖𝑖𝑖𝑖)𝐴𝐴正定⇔ ∃𝐵𝐵 ∈ 𝐺𝐺𝐺𝐺𝑛𝑛(ℝ) 使得 𝐴𝐴 = 𝐵𝐵𝑡𝑡𝐵𝐵 

证：(𝑖𝑖)设𝑟𝑟 = rank𝐴𝐴 ,𝐷𝐷𝑟𝑟 = �𝐸𝐸𝑟𝑟 0
0 0�𝑛𝑛×𝑛𝑛

, 𝑟𝑟为 A 的正惯性指数 

则𝐷𝐷𝑟𝑟𝑡𝑡 = 𝐷𝐷𝑟𝑟�对称性�, 𝐷𝐷𝑟𝑟2 = 𝐷𝐷𝑟𝑟�幂等性� 

⇒ :  𝐴𝐴半正定 ⇒ 𝐴𝐴~𝑐𝑐𝐷𝐷𝑟𝑟�定理 17.2(𝑖𝑖𝑖𝑖𝑖𝑖),其中𝑠𝑠 = 𝑟𝑟� 

  ⇒ ∃𝐶𝐶 ∈ 𝐺𝐺𝐺𝐺𝑛𝑛(ℝ),   𝐴𝐴 = 𝐶𝐶𝑡𝑡𝐷𝐷𝑟𝑟𝐶𝐶 = 𝐶𝐶𝑡𝑡𝐷𝐷𝑟𝑟𝐷𝐷𝑟𝑟𝐶𝐶 �幂等� = 𝐶𝐶𝑡𝑡𝐷𝐷𝑟𝑟𝑡𝑡𝐷𝐷𝑟𝑟𝐶𝐶�对称�

= (𝐷𝐷𝑟𝑟𝐶𝐶)𝑡𝑡(𝐷𝐷𝑟𝑟𝐶𝐶) 

令𝐵𝐵 = 𝐷𝐷𝑟𝑟𝐶𝐶即可 

⇐ : 由例 15.1.1(𝑖𝑖𝑖𝑖) ,𝐴𝐴的负惯性指数是零 ⇒ 𝐴𝐴半正定 

(𝑖𝑖𝑖𝑖) ⇒:𝐴𝐴正定 ⇒ 𝐴𝐴半正定
(𝑖𝑖)
��∃𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(ℝ),𝐴𝐴 = 𝐵𝐵𝑡𝑡𝐵𝐵 

                                     ⇒ 𝐵𝐵 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ)  [𝐴𝐴满秩] 

⇐ : rank𝐵𝐵 = 𝑛𝑛 ⇒ rank𝐴𝐴 = 𝑛𝑛,设(𝑠𝑠, 𝑡𝑡)为𝐴𝐴的签名 

由于𝐴𝐴是半正定的，于是𝑠𝑠等于𝐴𝐴的秩 = 𝑛𝑛  �定理 17.2(𝑖𝑖)� 

⇒ 𝐴𝐴正定           ∎ 

 

【例 17.1.1】正定相加正定 

设𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(ℝ)正定，证明𝐴𝐴 + 𝐵𝐵也正定 

证：设𝑀𝑀 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称， 

𝑞𝑞𝑀𝑀:ℝ𝑛𝑛 → ℝ, �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� ↦ (𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑛𝑛)𝑀𝑀�

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� 

是二次型，且在标准基下的矩阵是𝑀𝑀 

于是𝑞𝑞𝐴𝐴,𝑞𝑞𝐵𝐵正定，且𝑞𝑞𝐴𝐴 + 𝑞𝑞𝐵𝐵 = 𝑞𝑞𝐴𝐴+𝐵𝐵   
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∀𝑥⃗𝑥 ∈ ℝ𝑛𝑛 ∖ �0�⃗ �,𝑞𝑞𝐴𝐴+𝐵𝐵(𝑥⃗𝑥) = 𝑞𝑞𝐴𝐴(𝑥⃗𝑥) + 𝑞𝑞𝐵𝐵(𝑥⃗𝑥) > 0 ⇒ 𝑞𝑞𝐴𝐴+𝐵𝐵正定                 

 ⇒ 𝐴𝐴 + 𝐵𝐵正定         ∎ 

  

【例 17.1.2】正定的行列式和逆正定 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)正定，证明(𝑖𝑖)|𝐴𝐴| > 0, (𝑖𝑖𝑖𝑖)𝐴𝐴−1正定 

证：(𝑖𝑖)由定理 17.3，  𝐴𝐴 = 𝐵𝐵𝑡𝑡𝐵𝐵,其中𝐵𝐵 ∈ 𝐺𝐺𝐺𝐺𝑛𝑛(ℝ) 

|𝐴𝐴| = |𝐵𝐵𝑡𝑡||𝐵𝐵| = |𝐵𝐵|2 > 0 

(𝑖𝑖𝑖𝑖)A−1 = (BtB)−1 = 𝐵𝐵−1(𝐵𝐵𝑡𝑡)−1 = 𝐵𝐵−1(𝐵𝐵−1)𝑡𝑡 

令𝐶𝐶 = (𝐵𝐵−1)𝑡𝑡,𝐴𝐴−1 = 𝐶𝐶𝑡𝑡𝐶𝐶.   由定理 17.3, A−1正定  ∎ 

 

【引理 17.1】正定矩阵主子式的性质 

设𝐴𝐴正定，则𝐴𝐴的任何主子式为正， 

且任何主子式对应的子矩阵正定。 

证：设 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
, 1 ≤ 𝑖𝑖1 < ⋯ < 𝑖𝑖𝑘𝑘 ≤ 𝑛𝑛 

 𝑀𝑀 = �

𝑎𝑎𝑖𝑖1𝑖𝑖1 𝑎𝑎𝑖𝑖1𝑖𝑖2 ⋯ 𝑎𝑎𝑖𝑖1𝑖𝑖𝑘𝑘
𝑎𝑎𝑖𝑖2𝑖𝑖1 𝑎𝑎𝑖𝑖2𝑖𝑖2 ⋯ 𝑎𝑎𝑖𝑖2𝑖𝑖𝑘𝑘
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖1 𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖2 ⋯ 𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘

� 

由上例(𝑖𝑖)可知，要证|𝑀𝑀| > 0,只要证𝑀𝑀正定 

𝑞𝑞𝐴𝐴:ℝ𝑛𝑛 → ℝ正定，𝑞𝑞𝑀𝑀:ℝ𝑘𝑘 → ℝ分别是𝐴𝐴和𝑀𝑀对应的二次型。 

∀𝑧𝑧 = �

𝑧𝑧1
𝑧𝑧2
⋮
𝑧𝑧𝑛𝑛

� ∈ ℝ𝑘𝑘且z⃗ ≠ 0�⃗ 𝑘𝑘 , 令𝑥⃗𝑥 =

⎝

⎜
⎜
⎜
⎜
⎛

⋮
𝑧𝑧1    �行𝑖𝑖1�

⋮
𝑧𝑧2     �行𝑖𝑖2�

⋮
𝑧𝑧𝑘𝑘     �行𝑖𝑖𝑘𝑘�

⋮ ⎠

⎟
⎟
⎟
⎟
⎞

≠ 0�⃗  

即𝑥⃗𝑥的第𝑖𝑖𝑙𝑙个坐标为𝑧𝑧𝑙𝑙 , 𝑙𝑙 = 1,2, … ,𝑘𝑘,其他坐标为零，则 
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𝑥⃗𝑥 ≠ 0�⃗ , 0 < 𝑞𝑞𝐴𝐴(𝑥⃗𝑥) = 𝑥⃗𝑥𝑡𝑡𝐴𝐴𝑥⃗𝑥 = 𝑧𝑧𝑡𝑡𝑀𝑀𝑧𝑧  [直接验证] = 𝑞𝑞𝑀𝑀(𝑧𝑧) 

⇒ 𝑞𝑞𝑀𝑀(𝑧𝑧) > 0 ⇒ 𝑀𝑀正定             ∎              

注：𝑀𝑀是正定矩阵 

 

【定理 17.4】sylvester 判别法 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称,则𝐴𝐴正定⇔ ∀𝑖𝑖 ∈ {1, … ,𝑛𝑛},△𝑖𝑖 (𝐴𝐴) > 0 

证:⇒ :    引理 17.1 

⇐ :      由 Jacobi 定理 

A = 𝑈𝑈

⎝

⎜
⎛

△1

△0
  

 ⋱  

  
△𝑛𝑛

△𝑛𝑛−1⎠

⎟
⎞

�������������
𝐵𝐵

𝑈𝑈,其中𝑈𝑈 =

⎝

⎜
⎜
⎜
⎜
⎛

1

�△1
△0

  

 ⋱  

  
1

� △𝑛𝑛
△𝑛𝑛−1⎠

⎟
⎟
⎟
⎟
⎞

 

其中△0= 1,△𝑘𝑘=△𝑘𝑘 (𝐴𝐴),𝑘𝑘 = 1,2, … ,𝑛𝑛 

∵
△1

△0
> 0, … ,

△𝑛𝑛

△𝑛𝑛−1
> 0, ∴ 𝐵𝐵正定 ⇒ 𝐴𝐴正定        ∎ 

注：𝐴𝐴半正定⇔ 𝐴𝐴的所有主子式不小于 0 

 

【例 17.1.3】正定求参数范围 

设𝑀𝑀 = �
𝛼𝛼 −1 −1
−1 𝛼𝛼 1
−1 1 𝛼𝛼

� ,当 α取何值时𝑀𝑀是正定的？ 

解：△1 (𝑀𝑀) = 𝛼𝛼    △2 (𝑀𝑀) = � 𝛼𝛼 −1
−1 𝛼𝛼 � = 𝛼𝛼2 − 1   

          △3 (𝑀𝑀) = (𝛼𝛼 − 1)2(𝛼𝛼 + 2) 

𝑀𝑀正定⇔ 𝛼𝛼 > 0,α2 − 1 > 0, (𝛼𝛼 − 1)2(𝛼𝛼 + 2) > 0 ⇔ 𝛼𝛼 > 1 
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§17 正定二次型与正定矩阵 

【例 17.4】正定性的应用 1 

设𝐴𝐴是𝑛𝑛阶正定矩阵，𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛 ∈ ℝ不全为零 

证明 𝐷𝐷 = � 𝐴𝐴
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛

𝛼𝛼1 ⋯ 𝛼𝛼𝑛𝑛 0

� < 0  

证：设𝐴̃𝐴 = � 𝐴𝐴
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛

𝛼𝛼1 ⋯ 𝛼𝛼𝑛𝑛 0

� 

∵ 𝐴𝐴正定 ,∃𝐵𝐵 ∈ 𝐺𝐺𝐺𝐺𝑛𝑛(ℝ),𝐸𝐸𝑛𝑛 = 𝐵𝐵𝑡𝑡𝐴𝐴𝐴𝐴 

令𝐶𝐶 = �𝐵𝐵 0
0 1�  则𝐶𝐶可逆 

𝐶𝐶𝑡𝑡𝐴̃𝐴𝐶𝐶 = �𝐵𝐵
𝑡𝑡 0

0 1
� � 𝐴𝐴 𝛼⃗𝛼
𝛼⃗𝛼𝑡𝑡 0

� �𝐵𝐵 0
0 1�   �其中𝛼⃗𝛼 = �

𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
�� = � 𝐸𝐸𝑛𝑛 𝐵𝐵𝑡𝑡𝛼⃗𝛼

𝛼⃗𝛼𝑡𝑡𝐵𝐵 0
� 

令𝛽𝛽 = 𝐵𝐵𝑡𝑡𝛼⃗𝛼 = �
𝛽𝛽1
⋮
𝛽𝛽𝑛𝑛
� ,则𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛不全为零�∵ 𝐵𝐵𝑡𝑡可逆且𝛼⃗𝛼 ≠ 0�⃗ � 

则𝐶𝐶𝑡𝑡𝐴̃𝐴𝐶𝐶 = �𝐸𝐸𝑛𝑛 𝛽𝛽
𝛽𝛽𝑡𝑡 0

� 

�𝐶𝐶𝑡𝑡𝐴̃𝐴𝐶𝐶� = �
�

1 𝛽𝛽1
1 𝛽𝛽2

⋱ ⋮
1 𝛽𝛽𝑛𝑛

𝛽𝛽1 𝛽𝛽2 ⋯ 𝛽𝛽𝑛𝑛 0

�
�
 

= �
�

1 0 ⋯ 0 𝛽𝛽1
0 1 ⋯ 0 𝛽𝛽2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 𝛽𝛽𝑛𝑛
0 0 0 0 −𝛽𝛽12 − 𝛽𝛽22 −⋯ .−𝛽𝛽𝑛𝑛2

�
� 

= ��−𝛽𝛽𝑖𝑖2�
𝑘𝑘

𝑖𝑖=1

< 0        ∎ 
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【例 17.5】正定性的应用 2 估计行列式 

设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
∈ 𝑀𝑀𝑛𝑛(ℝ)正定，证明 

(i)|𝐴𝐴| ≤ 𝑎𝑎11𝑎𝑎22 ⋯𝑎𝑎𝑛𝑛𝑛𝑛 

(𝑖𝑖𝑖𝑖)|𝐴𝐴|2 ≤���𝑎𝑎𝑗𝑗𝑗𝑗2
𝑛𝑛

𝑗𝑗=1

�
𝑛𝑛

𝑖𝑖=1

    (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻不等式) 

证：(i)对𝑛𝑛归纳，𝑛𝑛 = 1 时𝐴𝐴 = (𝑎𝑎11), |𝐴𝐴| = 𝑎𝑎11 ≤ 𝑎𝑎11,成立 

设𝑛𝑛 − 1 时结论成立 

令𝐴𝐴𝑛𝑛−1 = �

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1 𝑛𝑛−1 
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2 𝑛𝑛−1
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛−1 1 𝑎𝑎𝑛𝑛−1 2 ⋯ 𝑎𝑎𝑛𝑛−1 𝑛𝑛−1

�  

由 sylvester 判别法,𝐴𝐴𝑛𝑛−1正定 

�𝐴𝐴𝑛𝑛−1对称且△𝑖𝑖 (𝐴𝐴𝑛𝑛−1) =△𝑖𝑖 (𝐴𝐴) > 0, 𝑖𝑖 = 1, … ,𝑛𝑛 − 1� 

由归纳假设, |𝐴𝐴𝑛𝑛−1| ≤ 𝑎𝑎11𝑎𝑎22 ⋯𝑎𝑎𝑛𝑛−1 𝑛𝑛−1 

|𝐴𝐴| = � 𝐴𝐴𝑛𝑛−1
𝛼𝛼1
⋮

𝛼𝛼𝑛𝑛−1
𝛼𝛼1 ⋯ 𝛼𝛼𝑛𝑛−1 𝑎𝑎𝑛𝑛𝑛𝑛

�，其中𝛼𝛼𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 1 

= � 𝐴𝐴𝑛𝑛−1
0 + 𝛼𝛼1
⋮

0 + 𝛼𝛼𝑛𝑛−1
𝛼𝛼1 ⋯ 𝛼𝛼𝑛𝑛−1 𝑎𝑎𝑛𝑛𝑛𝑛 + 0

� 

= � 𝐴𝐴𝑛𝑛−1
0
⋮
0

𝛼𝛼1 ⋯ 𝛼𝛼𝑛𝑛−1 𝑎𝑎𝑛𝑛𝑛𝑛

�+ � 𝐴𝐴𝑛𝑛−1
𝛼𝛼1
⋮

𝛼𝛼𝑛𝑛−1
𝛼𝛼1 ⋯ 𝛼𝛼𝑛𝑛−1 0

� 

= |𝐴𝐴𝑛𝑛−1|𝑎𝑎𝑛𝑛𝑛𝑛 + β,其中 β = −α12 −⋯− αn−12 ≤ 0,见上例 

≤ |𝐴𝐴𝑛𝑛−1|𝑎𝑎𝑛𝑛𝑛𝑛 = 𝑎𝑎11𝑎𝑎22 ⋯𝑎𝑎𝑛𝑛𝑛𝑛 
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(𝑖𝑖𝑖𝑖)当|𝐴𝐴| = 0 时，不等式显然成立。 

设𝐴𝐴 ≠ 0,令𝐵𝐵 = 𝐴𝐴𝑡𝑡𝐴𝐴，则𝐵𝐵正定 

设𝐵𝐵 = �𝑏𝑏𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
,𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛

,𝐴𝐴𝑡𝑡 = �𝑎𝑎𝑖𝑖𝑖𝑖′�𝑛𝑛×𝑛𝑛
,则𝑎𝑎𝑖𝑖𝑖𝑖′ = 𝑎𝑎𝑗𝑗𝑗𝑗 

由(𝑖𝑖), |𝐴𝐴|2 = |𝐵𝐵| ≤ 𝑏𝑏11 ⋯𝑏𝑏𝑛𝑛𝑛𝑛 

= �𝑏𝑏𝑖𝑖𝑖𝑖

n

i=1

= ���𝑎𝑎𝑖𝑖𝑖𝑖′𝑎𝑎𝑗𝑗𝑗𝑗

𝑛𝑛

𝑗𝑗=1

� =
𝑛𝑛

𝑖𝑖=1

���𝑎𝑎𝑗𝑗𝑗𝑗2
𝑛𝑛

𝑗𝑗=1

�
𝑛𝑛

𝑖𝑖=1

          ∎ 

注：|𝐴𝐴𝑡𝑡| = |𝐴𝐴| ⇒ |𝐴𝐴|2 ≤���𝑎𝑎𝑖𝑖𝑖𝑖2
𝑛𝑛

𝑗𝑗=1

�
𝑛𝑛

𝑖𝑖=1
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§18 仿射同构下的二次曲面 

【回忆】 

§13 应用：齐二次多项式因式分解——线性变量替换 

 

【定义 18.1】平移变量替换 

设𝛼⃗𝛼 = �
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� ∈ ℝ𝑛𝑛, 𝑥⃗𝑥 = 𝑦⃗𝑦 + 𝛼⃗𝛼; 𝑦⃗𝑦 = 𝑥⃗𝑥 − 𝛼⃗𝛼 

诱导出同构   𝜑𝜑𝛼𝛼��⃗ :ℝ[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛] → ℝ[𝑦𝑦1, … , 𝑦𝑦𝑛𝑛]满足 

𝜑𝜑𝛼𝛼��⃗ |ℝ = idℝ, 𝜑𝜑𝛼𝛼��⃗ (𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖 + 𝛼𝛼𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛 

同样  𝜑𝜑−𝛼𝛼��⃗ :ℝ[𝑦𝑦1, … ,𝑦𝑦𝑛𝑛] → ℝ[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛]满足𝜑𝜑−𝛼𝛼��⃗ │ℝ = idℝ 

𝜑𝜑−𝛼𝛼��⃗ (𝑦𝑦𝑖𝑖) = 𝑥𝑥𝑖𝑖 − 𝛼𝛼𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛  

可直接验证 𝜑𝜑−𝛼𝛼��⃗ ∘ 𝜑𝜑𝛼𝛼��⃗ = idℝ[𝑥𝑥1,…,𝑥𝑥𝑛𝑛] , 𝜑𝜑𝛼𝛼��⃗ ∘ 𝜑𝜑−𝛼𝛼��⃗ = idℝ[𝑥𝑥1,…,𝑥𝑥𝑛𝑛]  

⇒ 𝜑𝜑𝛼𝛼��⃗ 是同构，称为由平移变量替换诱导出的同构。 

 

由有限个线性变量替换和平移变量替换诱导出的同构的复合 

�当复合有意义时�称为仿射同构。 

容易验证，仿射同构是下列变量替换 

𝑥⃗𝑥 = 𝐴𝐴𝑦⃗𝑦 + 𝛼⃗𝛼; 𝑦⃗𝑦 = 𝐴𝐴−1𝑥⃗𝑥 − 𝐴𝐴−1𝛼⃗𝛼 

依照同样方式诱导出的从 ℝ[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛]到 ℝ[𝑦𝑦1, … ,𝑦𝑦𝑛𝑛]的同构。 

 

【定理 18.1】二次型化规范型的仿射同构存在性 

设𝑝𝑝 ∈ ℝ[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛], deg𝑝𝑝 = 2,设 ℎ是𝑝𝑝的齐二次部分， 

把 ℎ作为从ℝ𝑛𝑛 → ℝ的二次型，设其签名为(𝑠𝑠, 𝑡𝑡) 

则存在仿射同构  𝜑𝜑:ℝ[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛] → ℝ[𝑦𝑦1, … ,𝑦𝑦𝑛𝑛] 
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§18 仿射同构下的二次曲面 

使得𝜑𝜑(𝑝𝑝) = 𝑦𝑦12 + ⋯+ 𝑦𝑦𝑠𝑠2 − 𝑦𝑦𝑠𝑠+12 − ⋯− 𝑦𝑦𝑠𝑠+𝑡𝑡2 + 𝜆𝜆𝑦𝑦𝑠𝑠+1 + 𝜇𝜇,其中𝜆𝜆, 𝜇𝜇 ∈ ℝ 

证：由惯性定理， ∃𝐶𝐶 ∈ 𝐺𝐺𝐺𝐺𝑛𝑛(ℝ),使得 

对于𝑥⃗𝑥 = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� , 𝑦⃗𝑦 = �

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑛𝑛

�, 

𝑝𝑝(𝑥⃗𝑥) = 𝑝𝑝(𝐶𝐶𝑦⃗𝑦) = 𝑦𝑦12 + ⋯+ 𝑦𝑦𝑠𝑠2 − 𝑦𝑦𝑠𝑠+12 − ⋯− 𝑦𝑦𝑠𝑠+𝑡𝑡2  

+2𝛼𝛼1𝑦𝑦1 +⋯+ 2𝛼𝛼𝑠𝑠𝑦𝑦𝑠𝑠 − 2𝛼𝛼𝑠𝑠+1𝑦𝑦𝑠𝑠+1 − ⋯− 2𝛼𝛼𝑠𝑠+𝑡𝑡𝑦𝑦𝑠𝑠+𝑡𝑡 + 𝛽𝛽𝑠𝑠+𝑡𝑡+1𝑦𝑦𝑠𝑠+𝑡𝑡+1

+ ⋯+ 𝛽𝛽𝑛𝑛𝑦𝑦𝑛𝑛 + 𝜇𝜇, 其中𝛼𝛼𝑖𝑖,𝛽𝛽𝑗𝑗 ,𝜇𝜇 ∈ ℝ,那么 

𝑝𝑝(𝑥⃗𝑥) = 𝑝𝑝(𝐶𝐶𝑦⃗𝑦) = (𝑦𝑦1 + 𝛼𝛼1)2 + ⋯+ (𝑦𝑦𝑠𝑠 + 𝛼𝛼𝑠𝑠)2 

                                  −(𝑦𝑦𝑠𝑠+1 + 𝛼𝛼𝑠𝑠+1)2 − ⋯− (𝑦𝑦𝑠𝑠+𝑡𝑡 + 𝛼𝛼𝑠𝑠+𝑡𝑡2 ) 

                                  +𝛽𝛽𝑠𝑠+𝑦𝑦+1𝑦𝑦𝑠𝑠+𝑡𝑡+1 + ⋯+ 𝛽𝛽𝑛𝑛𝑦𝑦𝑛𝑛 + 𝛿𝛿, 𝛿𝛿 ∈ ℝ 

令𝑦⃗𝑦 = 𝑧𝑧 −

⎝

⎜⎜
⎛

𝛼𝛼1
⋮

𝛼𝛼𝑠𝑠+𝑡𝑡
0
⋮
0 ⎠

⎟⎟
⎞

= 𝑧𝑧 − 𝛼⃗𝛼 

𝑝𝑝(𝑥⃗𝑥) = 𝑝𝑝(𝐶𝐶𝑦⃗𝑦) = 𝑝𝑝�𝐶𝐶(𝑧𝑧 − 𝛼⃗𝛼)� 

= 𝑧𝑧12 + ⋯+ 𝑧𝑧𝑠𝑠2 − 𝑧𝑧𝑠𝑠+12 −⋯− 𝑧𝑧𝑠𝑠+𝑡𝑡2 + 𝛽𝛽𝑠𝑠+𝑡𝑡+1𝑧𝑧𝑠𝑠+𝑡𝑡+1 + ⋯+ 𝛽𝛽𝑛𝑛𝑧𝑧𝑛𝑛 + 𝛿𝛿′ 

如果 𝛽𝛽𝑠𝑠+𝑡𝑡+1 = ⋯ = 𝛽𝛽𝑛𝑛 = 0,取 λ = 0,μ = δ′即可 

否则，不妨设βs+t+1 ≠ 0 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑤𝑤1 = 𝑧𝑧1
⋮

𝑤𝑤𝑠𝑠+𝑡𝑡 = 𝑧𝑧𝑠𝑠+𝑡𝑡
𝑤𝑤𝑠𝑠+𝑡𝑡+1 = 𝛽𝛽𝑠𝑠+𝑡𝑡+1𝑧𝑧𝑠𝑠+𝑡𝑡+1 + ⋯+ 𝛽𝛽𝑛𝑛𝑧𝑧𝑛𝑛
 𝑤𝑤𝑠𝑠+𝑡𝑡+2 = 𝑧𝑧𝑠𝑠+𝑡𝑡+2

⋮
𝑤𝑤𝑛𝑛 = 𝑧𝑧𝑛𝑛
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 𝑤𝑤��⃗ =

⎝

⎜
⎛
𝐸𝐸𝑠𝑠+𝑡𝑡

𝛽𝛽𝑠𝑠+𝑡𝑡+1 𝛽𝛽𝑠𝑠+𝑡𝑡+2 ⋯ 𝛽𝛽𝑛𝑛
1

⋱
1 ⎠

⎟
⎞

�����������������������
𝐴𝐴

�
𝑧𝑧1
⋮
𝑧𝑧𝑛𝑛
� 

则|𝐴𝐴| ≠ 0 ⇒ 𝐴𝐴可逆 

𝑝𝑝(𝑥⃗𝑥) = 𝑝𝑝(𝐶𝐶𝑦⃗𝑦) = 𝑝𝑝�𝐶𝐶(𝑧𝑧 − 𝛼⃗𝛼)� = 𝑝𝑝�𝐶𝐶(𝐴𝐴−1𝑤𝑤��⃗ − 𝛼⃗𝛼)� = 𝑝𝑝(𝐶𝐶𝐴𝐴−1𝑤𝑤��⃗ − 𝐶𝐶𝛼⃗𝛼) 

= 𝑤𝑤12 + ⋯+ 𝑤𝑤𝑠𝑠2 − 𝑤𝑤𝑠𝑠+12 − ⋯−𝑤𝑤𝑠𝑠+𝑡𝑡2 + 𝜆𝜆𝑤𝑤𝑠𝑠+𝑡𝑡+1 + 𝜇𝜇        ∎ 

 

【推论 18.1】进一步化简规范型 

设𝑝𝑝 ∈ ℝ[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛], deg𝑝𝑝 = 2,ℎ为𝑝𝑝的齐二次部分 

 ℎ的签名是(𝑠𝑠, 𝑡𝑡) 令𝑟𝑟 = 𝑠𝑠 + 𝑡𝑡，则存在仿射同构 

𝜓𝜓:ℝ[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛] → ℝ[𝑦𝑦1, … ,𝑦𝑦𝑛𝑛] 

使得𝜓𝜓(𝑝𝑝) = 𝑦𝑦12 + ⋯+ 𝑦𝑦𝑠𝑠2 − 𝑦𝑦𝑠𝑠+12 − ⋯− 𝑦𝑦𝑟𝑟2 + 𝑦𝑦𝑟𝑟+1 

或𝜓𝜓(𝑝𝑝) = 𝑦𝑦12 + ⋯+ 𝑦𝑦𝑠𝑠2 − 𝑦𝑦𝑠𝑠+12 − ⋯− 𝑦𝑦𝑟𝑟2 + 𝜉𝜉, 𝜉𝜉 ∈ ℝ 

证：由定理 18.1 ,∃仿射同构𝜑𝜑:ℝ[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛] → ℝ[𝑦𝑦1, … ,𝑦𝑦𝑛𝑛] 

使得 𝜑𝜑(𝑝𝑝) = 𝑦𝑦12 + ⋯+ 𝑦𝑦𝑠𝑠2 − 𝑦𝑦𝑠𝑠+12 − ⋯− 𝑦𝑦𝑟𝑟2 + 𝜆𝜆𝑦𝑦𝑟𝑟+1 + 𝜇𝜇,其中 λ,μ ∈ ℝ 

若 λ = 0，令𝜉𝜉 = 𝜇𝜇即可，否则考虑仿射变量替换 

⎝

⎜
⎜
⎜
⎛

𝑧𝑧1
⋮
𝑧𝑧𝑟𝑟
𝑧𝑧𝑟𝑟+1
𝑧𝑧𝑟𝑟+2
⋮
𝑧𝑧𝑛𝑛 ⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

𝑦𝑦1
⋮
𝑦𝑦𝑟𝑟

𝜆𝜆𝑦𝑦𝑟𝑟+1 + 𝜇𝜇
𝑦𝑦𝑟𝑟+2
⋮
𝑦𝑦𝑛𝑛 ⎠

⎟
⎟
⎟
⎞

 

由此变换诱导的仿射同构把 

𝑦𝑦12 + ⋯+ 𝑦𝑦𝑠𝑠2 − 𝑦𝑦𝑠𝑠+12 − ⋯− 𝑦𝑦𝑟𝑟2 + 𝜆𝜆𝑦𝑦𝑟𝑟+1 + 𝜇𝜇 

映为 

𝑧𝑧12 + ⋯+ 𝑧𝑧𝑠𝑠2 − 𝑧𝑧𝑠𝑠+12 − ⋯− 𝑧𝑧𝑟𝑟2 + 𝑧𝑧𝑟𝑟+1        ∎ 
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§18 仿射同构下的二次曲面 

设𝑝𝑝 ∈ ℝ[𝑥𝑥1, … ,𝑥𝑥𝑛𝑛] , deg𝑝𝑝 = 2 

𝑝𝑝(𝑥𝑥1, … ,𝑥𝑥𝑛𝑛) = 0 在ℝ𝑛𝑛中轨迹称为ℝ𝑛𝑛中的二次曲面。 

我们来考虑𝑝𝑝在仿射同构意义下的轨迹。 

设𝑟𝑟是𝑝𝑝的齐二次部分的秩，(𝑠𝑠, 𝑡𝑡)为𝑝𝑝的齐二次部分的签名 

情形 1：𝑛𝑛 = 2 

① 𝑟𝑟 = 2, (𝑠𝑠, 𝑡𝑡) = (2,0) 

𝑦𝑦12 + 𝑦𝑦22 + 𝜉𝜉 = 0    �
圆 𝜉𝜉 < 0

{(0,0)}
∅

𝜉𝜉 = 0
𝜉𝜉 > 0�退化

  

②𝑟𝑟 = 2, (𝑠𝑠, 𝑡𝑡) = (1,1) 

𝑦𝑦12 − 𝑦𝑦22 + 𝜉𝜉 = 0    �
双曲线 𝜉𝜉 ≠ 0
两条直线 𝜉𝜉 = 0  退化

 

③𝑟𝑟 = 2, (𝑠𝑠, 𝑡𝑡) = (0,2)已考虑 

④𝑟𝑟 = 1, (𝑠𝑠, 𝑡𝑡) = (1,0) 

𝑦𝑦12 + 𝑦𝑦2 = 0�抛物线�或 𝑦𝑦12 + 𝜉𝜉 = 0(退化) 

 

情形 2：𝑛𝑛 = 3 

𝑝𝑝 ∈ ℝ[𝑥𝑥1,𝑥𝑥2,𝑥𝑥3],齐二次部分的秩是𝑟𝑟，签名是(𝑠𝑠, 𝑡𝑡) 

①𝑟𝑟 = 3, (𝑠𝑠, 𝑡𝑡) = (3,0) 

𝑦𝑦12 + 𝑦𝑦22 + 𝑦𝑦32 + 𝜉𝜉 = 0 

�
球 𝜉𝜉 < 0

{(0,0,0)}
∅

𝜉𝜉 = 0
𝜉𝜉 > 0�退化
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②𝑟𝑟 = 3, (𝑠𝑠, 𝑡𝑡) = (2,1) 

𝑦𝑦12 + 𝑦𝑦22 − 𝑦𝑦32 + 𝜉𝜉 = 0 

�
双叶双曲面  ξ > 0

圆锥面  𝜉𝜉 = 0
单叶双曲面  𝜉𝜉 < 0

  

 

③𝑟𝑟 = 3, (𝑠𝑠, 𝑡𝑡) = (1,2), (0,3)已考虑 

 

④𝑟𝑟 = 2, (𝑠𝑠, 𝑡𝑡) = (2,0) 

�
𝑦𝑦12 + 𝑦𝑦22 + 𝑦𝑦3 = 0 椭圆抛物面

𝑦𝑦12 + 𝑦𝑦22 + 𝜉𝜉 = 0  椭圆柱面�𝜉𝜉 ≥ 0 退化�
  

 

⑤𝑟𝑟 = 2, (𝑠𝑠, 𝑡𝑡) = (1,1) 

�
𝑦𝑦12 − 𝑦𝑦22 + 𝑦𝑦3 + 𝜉𝜉 = 0 双曲抛物面

𝑦𝑦12 − 𝑦𝑦22 + 𝜉𝜉 = 0 双曲柱面�𝜉𝜉 = 0 退化�
  

⑥𝑟𝑟 = 2, (𝑠𝑠, 𝑡𝑡) = (0,2)已考虑 

 

⑦𝑟𝑟 = 1, (𝑠𝑠, 𝑡𝑡) = (1,0) 

�
𝑦𝑦12 + 𝑦𝑦2 + 𝜉𝜉 = 0 抛物柱面

𝑦𝑦12 + 𝜉𝜉 = 0 退化
  

⑧𝑟𝑟 = 1, (𝑠𝑠, 𝑡𝑡) = (0,1) 已考虑 
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§19 斜对称双线性型的规范型 

【回忆】斜对称 

𝑓𝑓 ∈ ℒ2(𝑉𝑉,𝐹𝐹) 称为斜对称的，如果 ∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = −𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥) 

斜对称双线性型的集合记为 ℒ2−(𝑉𝑉,𝐹𝐹),它是ℒ2(𝑉𝑉,𝐹𝐹)的子空间。 

𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)是斜对称的，如果𝐴𝐴𝑡𝑡 = −𝐴𝐴 

𝑓𝑓 ∈ ℒ2−(𝑉𝑉,𝐹𝐹) ⇔ 𝑓𝑓 在 𝑉𝑉 的基底下的矩阵是斜对称的。 

 

【引理 19.1】奇数阶斜对称矩阵行列式为零 

 设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)斜对称，则det𝐴𝐴 = (−1)𝑛𝑛 det𝐴𝐴 

特别地，当𝑛𝑛为奇数时det𝐴𝐴 = 0 

证：𝐴𝐴𝑡𝑡 = −𝐴𝐴, |𝐴𝐴| = |𝐴𝐴𝑡𝑡| = |−𝐴𝐴| = (−1)𝑛𝑛𝐴𝐴 

当 𝑛𝑛 为奇数时，|𝐴𝐴| = −|𝐴𝐴| ⇒ 2|𝐴𝐴| = 0 ⇒ |𝐴𝐴| = 0  [char𝐹𝐹 ≠ 2]        ∎ 

 

【引理 19.2】斜对称等价二次型为零 

设𝑓𝑓 ∈ ℒ2(𝑉𝑉,𝐹𝐹), 

𝑓𝑓 ∈ ℒ2−(𝑉𝑉,𝐹𝐹) ⇔ ∀𝑥⃗𝑥 ∈ 𝑉𝑉,𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) = 0 

证:⇒ :  𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) = −𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) ⇒ 2𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) = 0 ⇒ 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) = 0 

⇐: 0 = 𝑓𝑓(𝑥⃗𝑥 + 𝑦⃗𝑦, 𝑥⃗𝑥 + 𝑦⃗𝑦) 

= 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) + 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥) + 𝑓𝑓(𝑦⃗𝑦, 𝑦⃗𝑦) 

= 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥)  

由此可知 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = −𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥) ∎ 
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【引理 19.3】斜对称不为零判定线性无关 

设 𝑓𝑓 ∈ ℒ2−(𝑉𝑉,𝐹𝐹), 𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝑉𝑉 ∖ {0�⃗ } 

如果 𝑓𝑓(𝑢𝑢�⃗ , 𝑣⃗𝑣) ≠ 0,则 𝑢𝑢�⃗ , 𝑣⃗𝑣 线性无关 

证：假设 𝑢𝑢�⃗ = 𝛼𝛼𝑣⃗𝑣,𝛼𝛼 ∈ 𝐹𝐹,  

0 ≠ 𝑓𝑓(𝑢𝑢�⃗ , 𝑣⃗𝑣) = 𝑓𝑓(𝛼𝛼𝑣⃗𝑣, 𝑣⃗𝑣) = 𝛼𝛼𝛼𝛼(𝑣⃗𝑣, 𝑣⃗𝑣) = 0 �引理 19.2� 

矛盾，故假设不成立。       ∎ 

 

【例 19.1.1】一维空间上的斜对称为零 

设 dim𝑉𝑉 = 1,𝑓𝑓 ∈ ℒ2−(𝑉𝑉,𝐹𝐹), 𝑣⃗𝑣 ∈ 𝑉𝑉 ∖ {0�⃗ } 

∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉, 𝑥⃗𝑥 = 𝜆𝜆𝑣⃗𝑣, 𝑦⃗𝑦 = 𝜇𝜇𝑣⃗𝑣  

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝑓𝑓(𝜆𝜆𝑣⃗𝑣,𝜇𝜇𝑣⃗𝑣) = 𝜆𝜆𝜆𝜆𝜆𝜆(𝑣⃗𝑣, 𝑣⃗𝑣) = 0 

 

【例 19.1.2】二维空间斜对称例 

设 dim𝑉𝑉 = 2,𝑓𝑓 ∈ ℒ2−(𝑉𝑉,𝐹𝐹) ∖ {0}, 

则 ∃𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ∈ 𝑉𝑉, 𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ) ≠ 0
�引理 19.3�
��������  𝑒𝑒1���⃗ , 𝑒𝑒2���⃗线性无关 

于是 𝑉𝑉 = 〈𝑒𝑒1���⃗ ,𝑒𝑒2���⃗ ⟩ 

不妨设𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ) = 1,𝑓𝑓在𝑒𝑒1���⃗ ,𝑒𝑒2���⃗下的矩阵 

�
𝑓𝑓(𝑒𝑒1���⃗ ,𝑒𝑒1���⃗ ) 𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ )

𝑓𝑓(𝑒𝑒2���⃗ ,𝑒𝑒1���⃗ ) 𝑓𝑓(𝑒𝑒2���⃗ , 𝑒𝑒2���⃗ )
� = �

0 1

−1 0
� 

设𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + 𝑥𝑥2𝑒𝑒2���⃗ , 𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ + 𝑦𝑦2𝑒𝑒2���⃗  

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = (𝑥𝑥1 𝑥𝑥2)�
0 1

−1 0
��

𝑦𝑦1
𝑦𝑦2
� = �

𝑥𝑥1 𝑦𝑦1
𝑥𝑥2 𝑦𝑦2

� 
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【定义 19.1.1】辛平面 

设𝑓𝑓 ∈ ℒ2−(𝑉𝑉,𝐹𝐹),𝑊𝑊 ⊂ 𝑉𝑉 是二维子空间， 

如果 ∃𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ∈ 𝑊𝑊,使得𝑓𝑓(𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ) ≠ 0, 

则称 𝑊𝑊 是 𝑓𝑓 的辛平面�synpletic�共生的� plane� 

 

【引理 19.4】辛平面分解 

设𝑓𝑓 ∈ 𝐿𝐿2−(𝑉𝑉,𝐹𝐹),则 𝑉𝑉 = 𝑊𝑊1 ⊕⋯𝑊𝑊𝑚𝑚⊕𝐾𝐾，其中 

(𝑖𝑖)𝑊𝑊1,⋯𝑊𝑊𝑚𝑚 是辛平面 

(𝑖𝑖𝑖𝑖)∀𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑚𝑚},𝑤𝑤𝚤𝚤����⃗ ∈ 𝑊𝑊𝑖𝑖 ,𝑤𝑤𝚥𝚥����⃗ ∈ 𝑊𝑊𝑗𝑗 ,𝑓𝑓�𝑤𝑤𝚤𝚤����⃗ ,𝑤𝑤𝚥𝚥����⃗ � = 0 

(𝑖𝑖𝑖𝑖𝑖𝑖)𝐾𝐾 = {𝑣⃗𝑣 ∈ 𝑉𝑉|∀𝑥⃗𝑥 ∈ 𝑉𝑉, 𝑓𝑓(𝑥⃗𝑥, 𝑣⃗𝑣) = 0} 

证：先验证𝐾𝐾是𝑉𝑉的子空间 

设 𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑢𝑢�⃗ , 𝑣⃗𝑣 ∈ 𝐾𝐾, 𝑥⃗𝑥 ∈ 𝑉𝑉 

𝑓𝑓(𝑥⃗𝑥,𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣) = 𝛼𝛼𝛼𝛼(𝑥⃗𝑥,𝑢𝑢�⃗ ) + 𝛽𝛽𝛽𝛽(𝑥⃗𝑥, 𝑣⃗𝑣) = 0 ⇒ 𝛼𝛼𝑢𝑢�⃗ + 𝛽𝛽𝑣⃗𝑣 ∈ 𝐾𝐾 

⇒ 𝐾𝐾是𝑉𝑉的子空间 

 

当𝑓𝑓 = 0 时，取𝐾𝐾 = 𝑉𝑉,𝑚𝑚 = 0,引理成立 

设𝑓𝑓 ≠ 0,则 ∃𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ∈ 𝑉𝑉,使得 𝑓𝑓(𝑣𝑣1����⃗ ,𝑣𝑣2����⃗  ) ≠ 0 

由引理 19.3, 𝑣𝑣1����⃗ ,𝑣𝑣2����⃗线性无关⇒ dim𝑉𝑉 ≥ 2 

对dim𝑉𝑉归纳，当dim𝑉𝑉 = 2 时，由例 19.2 可知 

取𝑊𝑊1 = 𝑉𝑉,𝑚𝑚 = 1,𝐾𝐾 = {0}即可。 

 

设引理对dim𝑉𝑉 < 𝑛𝑛成立，设dim𝑉𝑉 = 𝑘𝑘 > 2 

∵ 𝑓𝑓 ≠ 0,∴ ∃𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ∈ 𝑉𝑉,使得 𝑓𝑓(𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ) ≠ 0 

令𝑊𝑊1
′ = {𝑣⃗𝑣 ∈ 𝑉𝑉|𝑓𝑓(𝑣⃗𝑣,𝑣𝑣1����⃗ ) = 𝑓𝑓(𝑣⃗𝑣,𝑣𝑣2����⃗ ) = 0} 
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断言 1 

𝑉𝑉 = 𝑊𝑊1 ⊕𝑊𝑊1
′ 

断言 1 的证明：设 𝑤𝑤��⃗ ∈ 𝑊𝑊1 ∩𝑊𝑊1
′ 

因为 𝑤𝑤��⃗ ∈  𝑊𝑊1,所以 ∃𝛼𝛼1,𝛼𝛼2 ∈ 𝐹𝐹,使得 𝑤𝑤��⃗ = 𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗  

由 𝑤𝑤��⃗ ∈ 𝑊𝑊1
′ 得 𝑓𝑓(𝑤𝑤��⃗ ,𝑣𝑣1����⃗ ) =  𝑓𝑓(𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ,𝑣𝑣1����⃗  ) = 0 

即 𝛼𝛼1𝑓𝑓(𝑣𝑣1����⃗ ,𝑣𝑣1����⃗ ) + 𝛼𝛼2𝑓𝑓(𝑣𝑣2����⃗ ,𝑣𝑣1����⃗ ) = 0 

⇒ 𝛼𝛼2𝑓𝑓(𝑣𝑣2����⃗ ,𝑣𝑣1����⃗ ) = 0 ⇒ 𝛼𝛼2 = 0     [𝑓𝑓(𝑣𝑣2����⃗ ,𝑣𝑣1����⃗ ) = −𝑓𝑓(𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ) ≠ 0] 

同理 α1 = 0 

于是𝑊𝑊1 ⊕𝑊𝑊1
′是直和 

设  𝑙𝑙𝑖𝑖:𝑉𝑉 → 𝐹𝐹, 𝑥⃗𝑥 ↦ 𝑓𝑓(𝑥⃗𝑥,𝑣𝑣𝚤𝚤���⃗ ), 𝑖𝑖 = 1,2 

𝑊𝑊1
′ = 〈𝑙𝑙1, 𝑙𝑙2⟩° = dim𝑉𝑉 − dim〈𝑙𝑙1, 𝑙𝑙2⟩ ≥ 𝑘𝑘 − 2 

于是dim(𝑊𝑊1 + 𝑊𝑊1
′) = dim𝑊𝑊1 + dim𝑊𝑊1′ ≥ 𝑛𝑛 

⇒ dim(𝑊𝑊1 +𝑊𝑊1
′) = 𝑛𝑛 ⇒ 𝑉𝑉 = 𝑊𝑊1 ⊕𝑊𝑊1

′ 

∴断言 1 成立 

 

断言 2 

∀𝑤𝑤1����⃗ ∈ 𝑊𝑊1,𝑤𝑤1′����⃗ ∈ 𝑊𝑊1
′,𝑓𝑓 �𝑤𝑤1����⃗ ,𝑤𝑤1′����⃗ � = 0 

证明：设𝑤𝑤1����⃗ = 𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗  

𝑓𝑓 �𝑤𝑤1����⃗ ,𝑤𝑤1′����⃗ � = 𝑓𝑓 �𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ,𝑤𝑤1′����⃗ � 

= −𝛼𝛼1𝑓𝑓 �𝑤𝑤1′������⃗ ,𝑣𝑣1����⃗ � − 𝛼𝛼2𝑓𝑓 �𝑤𝑤2′����⃗ , 𝑣𝑣2����⃗ � = 0    �𝑊𝑊1的定义� 

∴断言 2 成立 

 

令𝑔𝑔 = 𝑓𝑓│𝑊𝑊1
′×𝑊𝑊1

′ , 即 𝑔𝑔:𝑊𝑊1
′ × 𝑊𝑊1

′ → 𝐹𝐹, (𝑥⃗𝑥, 𝑦⃗𝑦) ↦ 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) 

由归纳假设，𝑊𝑊1
′ = 𝑊𝑊2 ⊕⋯⊕𝑊𝑊𝑚𝑚⊕𝐾𝐾� 
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其中(𝑖𝑖)′𝑊𝑊2, … ,𝑊𝑊𝑚𝑚是𝑔𝑔的辛平面 

(𝑖𝑖𝑖𝑖)′∀𝑖𝑖, 𝑗𝑗 ∈ {2, . . ,𝑚𝑚},𝑤𝑤𝚤𝚤����⃗ ∈ 𝑊𝑊𝑖𝑖 ,𝑤𝑤𝚥𝚥����⃗ ∈ 𝑊𝑊𝑗𝑗 ,𝑔𝑔�𝑤𝑤𝚤𝚤����⃗ ,𝑤𝑤𝚥𝚥����⃗ � = 0 

(𝑖𝑖𝑖𝑖𝑖𝑖)′𝐾𝐾� = {𝑣⃗𝑣 ∈ 𝑊𝑊1
′|∀𝑥⃗𝑥 ∈ 𝑊𝑊1

′,𝑔𝑔(𝑥⃗𝑥, 𝑣⃗𝑣) = 0} 

于是  𝑉𝑉 = 𝑊𝑊1 ⊕𝑊𝑊2 ⊕⋯⊕𝑊𝑊𝑚𝑚⊕𝐾𝐾� 

下面验证上述分解满足(𝑖𝑖), (𝑖𝑖𝑖𝑖), (𝑖𝑖𝑖𝑖𝑖𝑖) 

由𝑔𝑔的定义， 𝑊𝑊2, … ,𝑊𝑊𝑚𝑚也是𝑓𝑓的辛平面，于是(i)满足 

由断言 2，∀𝑖𝑖 ∈ {2, … ,𝑚𝑚}, wı����⃗ ∈ 𝑊𝑊𝑖𝑖 ⊂ 𝑊𝑊1
′ ,𝑓𝑓(𝑤𝑤1����⃗ ,𝑤𝑤𝚤𝚤����⃗ ) = 0 [𝑤𝑤1����⃗ ∈ 𝑊𝑊1] 

再由(𝑖𝑖𝑖𝑖)′,性质(𝑖𝑖𝑖𝑖)成立 

以下证明 𝐾𝐾 = 𝐾𝐾� 

设𝑣⃗𝑣 ∈ 𝐾𝐾,由断言 1， 𝑣⃗𝑣 = 𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ + 𝑤𝑤1′������⃗ , 

其中𝛼𝛼1,𝛼𝛼2 ∈ 𝐹𝐹,𝑤𝑤1′������⃗ ∈ 𝑊𝑊1
′ 

0 = 𝑓𝑓(𝑣𝑣1����⃗ , 𝑣⃗𝑣) = 𝑓𝑓�𝑣𝑣1����⃗ ,𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ + 𝑤𝑤1����⃗
′� 

= 𝛼𝛼1𝑓𝑓(𝑣𝑣1����⃗ ,𝑣𝑣1����⃗ ) + 𝛼𝛼2𝑓𝑓(𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ) + 𝑓𝑓(𝑣𝑣1����⃗ ,𝑤𝑤1����⃗ ) 

= α2𝑓𝑓(𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ) ⇒ 𝛼𝛼2 = 0 

类似地可证 𝛼𝛼1 = 0 

于是𝑣⃗𝑣 ∈ 𝑊𝑊1
′,由定义得 𝑣⃗𝑣 ∈ 𝐾𝐾� ⇒ 𝐾𝐾 ⊂ 𝐾𝐾� 

反之，设𝑣⃗𝑣 ∈ 𝐾𝐾�, 𝑥⃗𝑥 ∈ 𝑉𝑉, ∃𝑦𝑦 ∈ 𝑊𝑊1, 𝑧𝑧 ∈ 𝑊𝑊1
′使得𝑥⃗𝑥 = 𝑦⃗𝑦 + 𝑧𝑧 

𝑓𝑓(𝑥⃗𝑥, 𝑣⃗𝑣) = 𝑓𝑓(𝑦⃗𝑦 + 𝑧𝑧, 𝑣⃗𝑣) = 𝑓𝑓(𝑦⃗𝑦, 𝑣⃗𝑣) + 𝑓𝑓(𝑧𝑧, 𝑣⃗𝑣) 

= 0  [断言 2 和𝐾𝐾�的定义] 

⇒ 𝑣⃗𝑣 ∈ 𝐾𝐾,即𝐾𝐾 = 𝐾𝐾� 

由此可知，(𝑖𝑖)(𝑖𝑖𝑖𝑖)(𝑖𝑖𝑖𝑖𝑖𝑖)都满足，归纳法完成     ∎ 
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【定理 19.1】斜对称双线性型的规范型 

设𝑓𝑓 ∈ ℒ2−(𝑉𝑉,𝐹𝐹),则𝑉𝑉有一组基 

𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , … , 𝑒𝑒2𝑚𝑚−1������������⃗ ,𝑒𝑒2𝑚𝑚�������⃗ , 𝑒𝑒2𝑚𝑚+1������������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ,  

使得𝑓𝑓在该组基下的矩阵是 

A = diag(𝑆𝑆2, … , 𝑆𝑆2, 0, … ,0) ,其中𝑆𝑆2 = �0 −1
1 0 � 

从而∀𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ , 𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ + ⋯+ 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ∈ 𝑉𝑉 

𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = �
𝑥𝑥1 𝑦𝑦1
𝑥𝑥2 𝑦𝑦2� + �

𝑥𝑥3 𝑦𝑦3
𝑥𝑥4 𝑦𝑦4� +⋯+ �

𝑥𝑥2𝑚𝑚−1 𝑦𝑦2𝑚𝑚−1
𝑥𝑥2𝑚𝑚 𝑦𝑦2𝑚𝑚  � 

证：由引理 19.4 

𝑉𝑉 = 𝑊𝑊1 ⊕𝑊𝑊2⊕⋯⊕𝑊𝑊𝑚𝑚⊕𝐾𝐾   [∗] 

其中 𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝑚𝑚 由引理 19.4 描述 

∀𝑖𝑖 ∈ {1, … ,𝑚𝑚},可取 𝑊𝑊𝑖𝑖  的基底 𝑒𝑒2𝚤𝚤−1���������⃗ , 𝑒𝑒2𝚤𝚤�����⃗  使得 𝑓𝑓(𝑒𝑒2𝚤𝚤−1���������⃗ , 𝑒𝑒2𝚤𝚤�����⃗ ) = 1 

取𝐾𝐾的基为𝑒𝑒2𝑚𝑚+1������������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ,则 

𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ,⋯ , 𝑒𝑒2𝑚𝑚−1������������⃗ , 𝑒𝑒2𝑚𝑚�������⃗ ,𝑒𝑒2𝑚𝑚+1������������⃗ ,⋯ , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的基 �∵ [∗]� 

𝑓𝑓在该组基下的矩阵𝐴𝐴 = �𝑓𝑓�𝑒𝑒𝚤𝚤��⃗ ,𝑒𝑒𝚥𝚥��⃗ ��𝑖𝑖=1,…,𝑛𝑛
𝑗𝑗=1,…𝑛𝑛

        ∎ 

 

【推论 19.1】斜对称矩阵的规范型 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)斜对称，则 

𝐴𝐴~𝑐𝑐 diag(𝑆𝑆2, … , 𝑆𝑆2, 0, … ,0) 

证：由定理 19.1 直接可得       ∎ 

 

【推论 19.2】斜对称矩阵偶数秩 

设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)斜对称，则 rank  𝐴𝐴是偶数 

证：由推论 19.1 直接可得      ∎ 
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【推论 19.3】合同斜对称矩阵等秩 

设𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)斜对称 

则𝐴𝐴~𝑐𝑐𝐵𝐵 ⇔ rank𝐴𝐴 = rank𝐵𝐵 

证：由推论 19.1 直接可得    ∎ 

 

【例 19.1.3】Pfaffian 

设𝐴𝐴 ∈ 𝑀𝑀2𝑚𝑚(ℤ)斜对称, det𝐴𝐴 ≠ 0 

则∃𝑘𝑘 ∈ ℤ使得det𝐴𝐴 = 𝑘𝑘2 

证：设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
∵ 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℤ ∴ det𝐴𝐴 ∈ ℤ 

det𝐴𝐴 = � 𝜀𝜀𝜎𝜎�𝑎𝑎𝑡𝑡𝑡𝑡(𝑡𝑡)

𝑛𝑛

𝑡𝑡=1𝜎𝜎∈𝑆𝑆𝑛𝑛

 

𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℤ) ⊂ 𝑀𝑀𝑛𝑛(ℚ), 由推论 19.1,∃𝐶𝐶 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℚ)使得 

𝐴𝐴 = 𝐶𝐶𝑡𝑡 diag(𝑆𝑆2, … , 𝑆𝑆2, 0, … ,0)𝐶𝐶 

∴ |𝐴𝐴| = |𝐶𝐶|2 

∵ |𝐴𝐴| ∈ ℤ, |𝐶𝐶| ∈ ℚ ∴ |𝐶𝐶| ∈ ℤ,令𝑘𝑘 = |𝐶𝐶| 即可    ∎ 

�|𝐶𝐶| =
𝑝𝑝
𝑞𝑞

, 𝑝𝑝,𝑞𝑞 ∈ ℤ, gcd(𝑝𝑝,𝑞𝑞) = 1 ⇒ |𝐶𝐶|2 =
𝑝𝑝2

𝑞𝑞2
, gcd(𝑝𝑝2,𝑞𝑞2) = 1� 

注：称|𝐶𝐶|为|𝐴𝐴|的 Pffafian，记为 Pf(𝐴𝐴) 
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§10-19节小结

① 𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),如果存在𝐶𝐶 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹)使得𝐵𝐵 = 𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴, 

则称𝐴𝐴~𝑐𝑐𝐵𝐵

② 𝐴𝐴对称⇔ 𝐴𝐴~diag(𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 , 0, … ,0),

𝐹𝐹 = ℂ ⇒ 𝐴𝐴~𝑐𝑐 �
𝐸𝐸𝑟𝑟 0
0 0� , 𝐹𝐹 = ℝ ⇒ 𝐴𝐴~𝑐𝑐 �

𝐸𝐸𝑠𝑠 0 0
0 −𝐸𝐸𝑡𝑡 0
0 0 0

� 

正定⇔ 𝑠𝑠 = 𝑛𝑛,半正定⇒ 𝑡𝑡 = 0,负定⇔ 𝑡𝑡 = 𝑛𝑛,半负定 ⇒ 𝑠𝑠 = 0 

𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)斜对称,定理 19.1 推论 19.1

齐二次多项式通过线性变量替换（仿射）有规范形 

二次联立方程组和三次及以上多项式属于非线性 

𝐿𝐿2(𝑉𝑉,𝐹𝐹) = 𝐿𝐿2+(𝑉𝑉,𝐹𝐹)⊕𝐿𝐿2−(𝑉𝑉,𝐹𝐹) 

𝐴𝐴 = �
𝐴𝐴 + 𝐴𝐴𝑡𝑡

2
�

�������
𝑀𝑀

+ �
𝐴𝐴 − 𝐴𝐴𝑡𝑡

2
�

�������
𝑁𝑁

= 𝑃𝑃𝑡𝑡𝑀𝑀𝑀𝑀 + 𝑄𝑄𝑡𝑡𝑁𝑁𝑁𝑁 
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第二章 线性算子 

在本章中，𝐹𝐹是域，特征任意，𝐹𝐹上的线性空间𝑈𝑈,𝑉𝑉,𝑊𝑊都是有限维的 



§1 线性映射的矩阵 

 

§1 线性映射的矩阵 

设𝑉𝑉,𝑊𝑊是𝐹𝐹上的线性空间，Hom(𝑉𝑉,𝑊𝑊)是从𝑉𝑉到𝑊𝑊的线性映射的集合 

它是𝐹𝐹上的线性空间. 

 

§1.1 矩阵表示 

【定义 1.1.1】线性映射的矩阵 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的基，𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗是𝑊𝑊的基,𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) 

∀𝑗𝑗 ∈ {1, … ,𝑛𝑛},𝜑𝜑�𝑒𝑒𝚥𝚥��⃗ � = �𝑎𝑎𝑖𝑖𝑖𝑖𝜀𝜀𝚥𝚥��⃗
𝑚𝑚

𝑖𝑖=1

   

令𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑚𝑚×𝑛𝑛
,则�𝜑𝜑(𝑒𝑒1���⃗ ), … ,𝜑𝜑(𝑒𝑒𝑛𝑛����⃗ )� = (𝜀𝜀1���⃗ , … , 𝜀𝜀𝑚𝑚�����⃗ )𝐴𝐴 

𝐴𝐴的唯一性由𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗的线性无关性决定， 

称𝐴𝐴为𝜑𝜑在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ; 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗下的矩阵 

设𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ∈ 𝑉𝑉, 𝜑𝜑(𝑥⃗𝑥) = 𝑦𝑦1𝜀𝜀1���⃗ + ⋯+ 𝑦𝑦𝑚𝑚𝜀𝜀𝑚𝑚�����⃗ ∈ 𝑊𝑊 

则𝜑𝜑(𝑥⃗𝑥) = 𝑥𝑥1𝜑𝜑(𝑒𝑒1���⃗ ) + ⋯+ 𝑥𝑥𝑛𝑛𝜑𝜑(𝑒𝑒𝑛𝑛����⃗ )

= �𝜑𝜑(𝑒𝑒1���⃗ ), … ,𝜑𝜑(𝑒𝑒𝑛𝑛����⃗ )��
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�

= (𝜀𝜀1���⃗ 𝜀𝜀2���⃗ … 𝜀𝜀𝑚𝑚�����⃗ )𝐴𝐴�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�

 

则�

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑚𝑚

� = 𝐴𝐴�

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

�
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§1.2 线性映射的秩 

【例 1.2.1】线性映射矩阵的基变换公式 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的基，𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗是𝑊𝑊的基 

设𝑒𝑒1’����⃗  , … , 𝑒𝑒𝑛𝑛’�����⃗是𝑉𝑉的另一组基，𝜀𝜀1’����⃗  , … , 𝜀𝜀𝑚𝑚’������⃗是𝑊𝑊的另一组基，且 

�𝑒𝑒1’����⃗  , … , 𝑒𝑒𝑛𝑛’�����⃗ � = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐵𝐵, �𝜀𝜀1’����⃗  , … , 𝜀𝜀𝑚𝑚’������⃗ � = (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗ )𝐶𝐶 

其中𝐵𝐵,𝐶𝐶均可逆 

�𝜑𝜑�𝑒𝑒1’����⃗ �, … ,𝜑𝜑�𝑒𝑒𝑛𝑛’�����⃗ �� =△ 𝜑𝜑 ��𝑒𝑒1’����⃗  , … , 𝑒𝑒𝑛𝑛’�����⃗ �� 

= 𝜑𝜑�(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐵𝐵� = �𝜑𝜑(𝑒𝑒1���⃗ ), … ,𝜑𝜑(𝑒𝑒𝑛𝑛����⃗ )�𝐵𝐵 

= (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗ )𝐴𝐴𝐴𝐴 

= ��𝜀𝜀1’����⃗  , … , 𝜀𝜀𝑚𝑚’������⃗ �� 𝐶𝐶−1𝐴𝐴𝐴𝐴 

𝜑𝜑在�𝑒𝑒1’����⃗  , … , 𝑒𝑒𝑛𝑛’�����⃗ �; �𝜀𝜀1’����⃗  , … , 𝜀𝜀𝑚𝑚’������⃗ �下的矩阵是𝐶𝐶−1𝐴𝐴𝐴𝐴 

⇒ rank𝐴𝐴 = rank(𝐶𝐶−1𝐴𝐴𝐴𝐴) 

 

【定义 1.2.1】线性映射的秩 

设𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) ,𝐴𝐴 ∈ 𝐹𝐹𝑚𝑚×𝑛𝑛是𝜑𝜑在𝑉𝑉和𝑊𝑊某组基下的矩阵， 

则𝜑𝜑的秩定义为 rank𝐴𝐴，记为 rank𝜑𝜑 

 

【例 1.2.2】多项式求导的矩阵 

𝜑𝜑:ℝ𝑛𝑛[𝑥𝑥] → ℝ𝑛𝑛[𝑥𝑥],𝑓𝑓(𝑥𝑥) ↦ 𝑓𝑓 ’(𝑥𝑥) 

取基底(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ) = (1,𝑥𝑥, … ,𝑥𝑥𝑛𝑛−1); (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (1, … , 𝑥𝑥𝑛𝑛−1) 

�𝜑𝜑(1),𝜑𝜑(𝑥𝑥), … ,𝜑𝜑(𝑥𝑥𝑛𝑛−1)� = (0,1,2𝑥𝑥, … , (𝑛𝑛 − 1)𝑥𝑥𝑛𝑛−2) 
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= (1,𝑥𝑥, … , 𝑥𝑥𝑛𝑛−1)

⎝

⎜
⎛

0 1 0 ⋯ 0
0 0 2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑛𝑛 − 1
0 0 0 0 0 ⎠

⎟
⎞

�����������������
𝐴𝐴

, rank𝜑𝜑 = 𝑛𝑛 − 1 

 

【例 1.2.2】矩阵乘法的矩阵 

设𝑃𝑃 ∈ 𝐹𝐹𝑘𝑘×𝑚𝑚,𝜑𝜑:𝐹𝐹𝑚𝑚×𝑛𝑛 → 𝐹𝐹𝑘𝑘×𝑛𝑛, 𝑋𝑋 ↦ 𝑃𝑃𝑋𝑋, 求 rank𝜑𝜑 

𝜑𝜑(𝑋𝑋) = 𝑃𝑃𝑃𝑃 = 𝑃𝑃 �𝑋𝑋(1)��������⃗ , … ,𝑋𝑋(𝑛𝑛)��������⃗ � = �𝑃𝑃𝑋𝑋(1)��������⃗ , … ,𝑃𝑃𝑋𝑋(𝑛𝑛)��������⃗ � 

于是 

�𝜑𝜑(𝑋𝑋)(1)���������������⃗ , … ,𝜑𝜑(𝑋𝑋)(𝑛𝑛)����������������⃗ � = �𝑃𝑃𝑋𝑋(1)��������⃗ , … ,𝑃𝑃𝑋𝑋(𝑛𝑛)��������⃗ � 

�
𝜑𝜑(𝑥𝑥)(1)���������������⃗

⋮
𝜑𝜑(𝑥𝑥)(𝑛𝑛)���������������⃗

� = �
𝑃𝑃

𝑃𝑃
⋱

𝑃𝑃

�

�������������
𝐴𝐴

�
𝑋𝑋(1)��������⃗
⋮

𝑋𝑋(𝑛𝑛)��������⃗
� 

𝐴𝐴 ∈ 𝐹𝐹𝑘𝑘𝑘𝑘×𝑚𝑚𝑚𝑚, rank𝐴𝐴 = 𝑛𝑛 rank𝑃𝑃 

 

𝐹𝐹𝑚𝑚×𝑛𝑛的基𝐸𝐸𝑖𝑖𝑖𝑖: 𝑖𝑖 ∈ {1, … ,𝑚𝑚}, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 

在𝑖𝑖行𝑗𝑗列处元素为 1，其他处为 0 

𝐹𝐹𝑘𝑘×𝑛𝑛的基𝜀𝜀𝑝𝑝𝑝𝑝:𝑝𝑝 ∈ {1, … ,𝑘𝑘},𝑞𝑞 ∈ {1, … ,𝑛𝑛} 

在𝑝𝑝行𝑞𝑞列处元素为 1，其他处为 0 

 

【命题 1.1】线性映射秩等于像维数 

设𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) ,则 rank𝜑𝜑 = dim im𝜑𝜑 

证：设 𝐴𝐴 是 𝜑𝜑 在 𝑉𝑉 的基底 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ;𝑊𝑊的基底 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗  下的矩阵 

𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ∈ 𝑉𝑉 
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𝑥⃗𝑥 ∈ ker𝜑𝜑 ⇔ 𝐴𝐴�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = �

0
⋮
0
�         [∗]�坐标形式� 

⇔ �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�在[∗]的解空间中 

dim ker𝜑𝜑 = 𝑛𝑛 − rank𝐴𝐴 = 𝑛𝑛 − rank𝜑𝜑 

由线性映射维数公式 

dim ker𝜑𝜑 + dim im𝜑𝜑 = 𝑛𝑛 ⇒ rank𝜑𝜑 = dim im𝜑𝜑        ∎ 

 

𝜑𝜑:ℝ𝑛𝑛[𝑥𝑥] → ℝ𝑛𝑛[𝑥𝑥],𝑓𝑓(𝑥𝑥) ↦ 𝑓𝑓 ’(𝑥𝑥), im𝜑𝜑 = ℝ𝑛𝑛−1[𝑥𝑥] 

 

【推论 1.1】线性映射的秩判定单满射 

设𝜑𝜑 ∈ 𝐻𝐻𝐻𝐻𝐻𝐻(𝑉𝑉,𝑊𝑊),其中dim𝑉𝑉 = 𝑛𝑛, dim𝑊𝑊 = 𝑚𝑚,则 

(𝑖𝑖) 𝜑𝜑是单射⇔ rank𝜑𝜑 = 𝑛𝑛 

(𝑖𝑖𝑖𝑖) 𝜑𝜑是满射⇔ rank𝜑𝜑 = 𝑚𝑚 

证：(𝑖𝑖)由线性映射维数公式 

dim ker𝜑𝜑 + dim im𝜑𝜑 = 𝑛𝑛 

再由命题 1.1 得，dim ker𝜑𝜑 + rank𝜑𝜑 = 𝑛𝑛 

rank𝜑𝜑 = 𝑛𝑛 ⇔ dim ker𝜑𝜑 = 0 

⇔ ker𝜑𝜑 = �0�⃗ � ⇔ 𝜑𝜑是单射 �第一章定理 6.1� 

(𝑖𝑖𝑖𝑖) rank𝜑𝜑 = 𝑚𝑚 ⇔ dim im𝜑𝜑 = 𝑚𝑚 ⇔ im𝜑𝜑 = 𝑊𝑊 

[im φ ⊂ W, dim 𝑖𝑖𝑖𝑖 𝜑𝜑 = dim𝑊𝑊 = 𝑚𝑚]       ∎
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§1.3 线性同构 

【定理 1.1】线性映射集合与矩阵空间同构 

设dim𝑉𝑉 = 𝑛𝑛, dim𝑊𝑊 = 𝑚𝑚,则Hom(𝑉𝑉,𝑊𝑊)与 𝐹𝐹𝑚𝑚×𝑛𝑛 线性同构 

特别地，dim(Hom(𝑉𝑉,𝑊𝑊)) = 𝑚𝑚𝑚𝑚 

证：设𝑉𝑉的一组基是 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  ,𝑊𝑊的一组基是 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗  

𝛷𝛷: Hom(𝑉𝑉,𝑊𝑊) → 𝐹𝐹𝑚𝑚×𝑛𝑛,𝜑𝜑 ↦ 𝐴𝐴𝜑𝜑 

其中 𝐴𝐴𝜑𝜑 是 𝜑𝜑 在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ; 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗  下的矩阵 

设 𝜑𝜑1,𝜑𝜑2 ∈ 𝐻𝐻𝐻𝐻𝐻𝐻(𝑉𝑉,𝑊𝑊),则 

�(𝜑𝜑1 + 𝜑𝜑2)(𝑒𝑒1���⃗ ), … , (𝜑𝜑1 + 𝜑𝜑2)(𝑒𝑒𝑛𝑛����⃗ )� 

= (𝜑𝜑1(𝑒𝑒1���⃗ ) + 𝜑𝜑2(𝑒𝑒1���⃗ ), … ,𝜑𝜑1(𝑒𝑒𝑛𝑛����⃗ ) + 𝜑𝜑2(𝑒𝑒𝑛𝑛����⃗ )) 

= (𝜑𝜑1(𝑒𝑒1���⃗ ), … ,𝜑𝜑1(𝑒𝑒𝑛𝑛����⃗ )) + (𝜑𝜑2(𝑒𝑒1���⃗ ), … ,𝜑𝜑2(𝑒𝑒𝑛𝑛����⃗ )) 

= (𝜀𝜀1���⃗  , . . . , 𝜀𝜀𝑚𝑚�����⃗ )𝐴𝐴𝜑𝜑1 + (𝜀𝜀1���⃗  , . . . , 𝜀𝜀𝑚𝑚�����⃗ )𝐴𝐴𝜑𝜑2 

= (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗ )�𝐴𝐴𝜑𝜑1 + 𝐴𝐴𝜑𝜑2� 

𝛷𝛷(𝜑𝜑1 + 𝜑𝜑2) = 𝐴𝐴𝜑𝜑1 + 𝐴𝐴𝜑𝜑2 = 𝛷𝛷(𝜑𝜑1) +𝛷𝛷(𝜑𝜑2) 

类似地可验证 ∀𝛼𝛼 ∈ 𝐹𝐹,𝜑𝜑 ∈ 𝐻𝐻𝐻𝐻𝐻𝐻(𝑉𝑉,𝑊𝑊),𝛷𝛷(𝛼𝛼𝛼𝛼) = 𝛼𝛼𝛼𝛼(𝜑𝜑) 

于是𝛷𝛷是线性映射。 

设𝜑𝜑 ∈ ker𝛷𝛷 ,则 𝐴𝐴𝜑𝜑 = O𝑚𝑚×𝑛𝑛, 于是 ∀𝑖𝑖 ∈ {1, … ,𝑛𝑛},𝜑𝜑(𝑒𝑒𝚤𝚤��⃗ ) = 0𝑊𝑊�����⃗  

⇒ 𝜑𝜑是零映射 ⇒ 𝛷𝛷是单射     �第一章定理 6.1� 

设𝐵𝐵 ∈ 𝐹𝐹𝑚𝑚×𝑛𝑛, 𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗  

定义 𝜓𝜓:𝑉𝑉 → 𝑊𝑊, 𝑥⃗𝑥 ↦ (𝜀𝜀1���⃗ ⋯ 𝜀𝜀𝑚𝑚�����⃗ )𝐵𝐵�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

则 𝐴𝐴𝜓𝜓 = 𝐵𝐵,即 𝛷𝛷(𝜓𝜓) = 𝐵𝐵,𝛷𝛷是满射 

由第一章命题 8.1， 𝛷𝛷是线性同构       ∎
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§1.4 线性映射的复合 

设𝜑𝜑 ∈ 𝐻𝐻𝐻𝐻𝐻𝐻(𝑈𝑈,𝑉𝑉),𝜓𝜓 ∈ 𝐻𝐻𝐻𝐻𝐻𝐻(𝑉𝑉,𝑊𝑊) 

𝑈𝑈
𝜑𝜑
→ 𝑉𝑉

𝜓𝜓
→ 𝑊𝑊

 𝑈𝑈
𝜓𝜓∘𝜑𝜑
�⎯� 𝑊𝑊  

, 𝜓𝜓 ∘ 𝜑𝜑 ∈ 𝐻𝐻𝐻𝐻𝐻𝐻(𝑉𝑉,𝑊𝑊) 

【定理 1.2】复合映射的矩阵 

设 𝜑𝜑 ∈ Hom(𝑈𝑈,𝑉𝑉),𝜓𝜓 ∈ 𝐻𝐻𝐻𝐻𝐻𝐻(𝑉𝑉,𝑊𝑊), 

𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ; ε1���⃗  , … , εn���⃗ ;𝛿𝛿1���⃗ , … , 𝛿𝛿𝑘𝑘����⃗分别是𝑈𝑈,𝑉𝑉,𝑊𝑊的基底. 

设 𝐴𝐴 是 𝜑𝜑 在 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ; 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗下的矩阵 

 𝐵𝐵 是 𝜓𝜓 在𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗ ,𝛿𝛿1���⃗ , … ,𝛿𝛿𝑘𝑘����⃗下的矩阵，则𝐴𝐴 ∈ 𝐹𝐹𝑚𝑚×𝑛𝑛,𝐵𝐵 ∈ 𝐹𝐹𝑘𝑘×𝑚𝑚 

则𝜓𝜓 ∘ 𝜑𝜑在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ,𝛿𝛿1���⃗ , … ,𝛿𝛿𝑘𝑘����⃗下的矩阵是𝐵𝐵𝐵𝐵 

注：记𝜑𝜑 = 𝜑𝜑𝐴𝐴,𝜓𝜓 = 𝜑𝜑𝐵𝐵, 则𝜑𝜑𝐵𝐵 ∘ 𝜑𝜑𝐴𝐴 = 𝜑𝜑𝐵𝐵𝐵𝐵 

证：利用坐标，设𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ , 

𝜑𝜑(𝑥⃗𝑥) = 𝑦𝑦1𝜀𝜀1���⃗ +⋯+ 𝑦𝑦𝑚𝑚𝜀𝜀𝑚𝑚�����⃗  

𝜓𝜓(𝑦⃗𝑦) = 𝜓𝜓�𝜑𝜑(𝑥⃗𝑥)� = 𝑧𝑧1𝛿𝛿1���⃗ + ⋯+ 𝑧𝑧𝑘𝑘𝛿𝛿𝑘𝑘����⃗  

�
𝑦𝑦1
⋮
𝑦𝑦𝑚𝑚
� = 𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� , �

𝑧𝑧1
⋮
𝑧𝑧𝑘𝑘
� = 𝐵𝐵�

𝑦𝑦1
⋮
𝑦𝑦𝑚𝑚
� ⇒ �

𝑧𝑧1
⋮
𝑧𝑧𝑘𝑘
� = 𝐵𝐵𝐵𝐵�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

⇒ 𝐵𝐵𝐵𝐵 是𝜓𝜓 ∘ 𝜑𝜑在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ;𝛿𝛿1���⃗ , … . ,𝛿𝛿𝑘𝑘����⃗下的矩阵       ∎ 

 

【定理 1.3】像集维数的不等式 

设𝜑𝜑 ∈ 𝐻𝐻𝐻𝐻𝐻𝐻(𝑈𝑈,𝑉𝑉),𝜓𝜓 ∈ 𝐻𝐻𝐻𝐻𝐻𝐻(𝑉𝑉,𝑊𝑊) 

(𝑖𝑖)设𝑍𝑍是𝑈𝑈的子空间，则dim𝑍𝑍 ≥ dim�𝜑𝜑(𝑍𝑍)� 

(𝑖𝑖𝑖𝑖)对任意线性映射𝑃𝑃,用𝐼𝐼𝑝𝑝简记 im 𝑝𝑝 

则dim 𝐼𝐼𝜓𝜓∘𝜑𝜑 ≤ min{dim 𝐼𝐼𝜑𝜑 , dim 𝐼𝐼𝜓𝜓} 

证：(𝑖𝑖)设𝑣𝑣1����⃗ , … , 𝑣𝑣𝑑𝑑����⃗是𝑍𝑍的基，则𝜑𝜑(𝑍𝑍) = ⟨𝜑𝜑(𝑣𝑣1����⃗ ), … ,𝜑𝜑(𝑣𝑣𝑑𝑑����⃗ )⟩ 
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§1 线性映射的矩阵 

 

dim𝑍𝑍 = 𝑑𝑑且dim𝜑𝜑(𝑍𝑍) ≤ 𝑑𝑑, (i)成立 

(𝑖𝑖𝑖𝑖)�利用核�设 𝐾𝐾𝜑𝜑 = ker𝜑𝜑 ,𝐾𝐾𝜓𝜓 = ker𝜓𝜓 ,𝐾𝐾𝜑𝜑 ⊂ 𝐾𝐾𝜓𝜓∘𝜑𝜑  

�设𝑢𝑢�⃗ ∈ 𝐾𝐾𝜑𝜑 ⇒ 𝜑𝜑(𝑢𝑢�⃗ ) = 0𝑉𝑉����⃗ ,𝜓𝜓 ∘ 𝜑𝜑(𝑢𝑢�⃗ ) = 0𝑊𝑊�����⃗ ⇒ 𝑢𝑢�⃗ ∈ ker𝜓𝜓 ∘ 𝜑𝜑� 

dim𝐾𝐾𝜑𝜑 + dim 𝐼𝐼𝜑𝜑 = dim𝐾𝐾𝜓𝜓∘𝜑𝜑 + dim 𝐼𝐼𝜓𝜓∘𝜑𝜑 = dim𝑈𝑈 

dim𝐾𝐾𝜑𝜑 ≤ dim𝐾𝐾𝜓𝜓∘𝜑𝜑 ⇒ dim 𝐼𝐼𝜑𝜑 ≥ dim 𝐼𝐼𝜓𝜓∘𝜑𝜑  

𝐼𝐼𝜓𝜓∘𝜑𝜑 = 𝜓𝜓�𝐼𝐼𝜑𝜑�  由(i) dim 𝐼𝐼𝜑𝜑 ≥ dim 𝐼𝐼𝜓𝜓∘𝜑𝜑        ∎ 

注：设 𝐴𝐴,𝐵𝐵 分别是 𝜑𝜑,𝜓𝜓 在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ; 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗  下的矩阵 

𝜓𝜓 ∘ 𝜑𝜑的矩阵是𝐵𝐵𝐵𝐵 

rank𝐵𝐵𝐵𝐵 ≤ min(rank𝐴𝐴 , rank𝐵𝐵) 

 

 

【例 1.4.1】矩阵行列满秩分解 

设𝑀𝑀 ∈ 𝐹𝐹𝑚𝑚×𝑛𝑛,如果 rank𝑀𝑀 = 𝑚𝑚，则称 𝑀𝑀 行满秩； 

如果 rank𝑀𝑀 = 𝑛𝑛，则称 𝑀𝑀 列满秩； 

设𝐴𝐴 ∈ 𝐹𝐹𝑚𝑚×𝑛𝑛,证明𝐴𝐴 = 𝐵𝐵𝐵𝐵，其中𝐵𝐵列满秩，𝐶𝐶行满秩 

证：�矩阵法� 

设 𝑟𝑟 = rank𝐴𝐴，由初等行列变换可知 

∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑚𝑚(𝐹𝐹),𝑄𝑄 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),使得 𝐴𝐴 = 𝑃𝑃 �𝐸𝐸𝑟𝑟 0
0 0�𝑚𝑚×𝑛𝑛

𝑄𝑄 

𝐴𝐴 = 𝑃𝑃 �𝐸𝐸𝑟𝑟0 �𝑚𝑚×𝑟𝑟�������
𝐵𝐵

(𝐸𝐸𝑟𝑟 0)𝑟𝑟×𝑛𝑛𝑄𝑄���������
𝐶𝐶

= 𝐵𝐵𝐵𝐵 

𝐵𝐵 ∈ 𝐹𝐹𝑚𝑚×𝑟𝑟 ,𝐶𝐶 ∈ 𝐹𝐹𝑟𝑟×𝑛𝑛 

rank𝐵𝐵 = 𝑟𝑟 ⇒列满秩； rank𝐶𝐶 = 𝑛𝑛 ⇒行满秩        ∎ 
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�映射法� 

𝜑𝜑𝐴𝐴:𝐹𝐹𝑛𝑛 → 𝐹𝐹𝑚𝑚,�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦ 𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�, 

则 𝐴𝐴 是 𝜑𝜑𝐴𝐴 在 𝐹𝐹𝑛𝑛 和 𝐹𝐹𝑚𝑚 标准基下的矩阵。 

𝐹𝐹𝑛𝑛
𝜋𝜋�满�
�⎯⎯� 𝐹𝐹𝑛𝑛/ker𝜑𝜑𝐴𝐴

𝜑𝜑𝐴𝐴����[单]
�⎯⎯⎯� 𝐹𝐹𝑚𝑚

𝐹𝐹𝑛𝑛
𝜑𝜑𝐴𝐴�� 𝐹𝐹𝑚𝑚

 

由线性映射分解定理， 𝜑𝜑𝐴𝐴 = 𝜑𝜑𝐴𝐴���� ∘ 𝜋𝜋 

其中 𝜋𝜋 为满射 ,𝜑𝜑𝐴𝐴���� 是单射 

设 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑠𝑠���⃗  是 𝐹𝐹𝑛𝑛/ker𝜑𝜑𝐴𝐴  的一组基， 

𝜋𝜋 在𝐹𝐹𝑛𝑛 的标准基和 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑠𝑠���⃗  下的矩阵为𝐶𝐶 ∈ 𝐹𝐹𝑠𝑠×𝑛𝑛 

𝜋𝜋满射 ⇒ 𝐶𝐶行满秩 

设 𝜑𝜑𝐴𝐴���� 是 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑠𝑠���⃗  和 𝐹𝐹𝑛𝑛 的标准基下的矩阵 𝐵𝐵 ∈ 𝐹𝐹𝑚𝑚×𝑠𝑠 

𝜑𝜑𝐴𝐴����单射，𝐵𝐵列满秩 

由定理 1.2，𝐴𝐴 = 𝐵𝐵𝐵𝐵        ∎ 
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§1.5 线性映射的标准型 

【回忆】初等变换 

初等变换：设𝐴𝐴 ∈ 𝐹𝐹𝑚𝑚×𝑛𝑛, 𝑟𝑟 = rank𝐴𝐴 ,则 

∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),𝑄𝑄 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),使得 

𝑃𝑃𝑃𝑃𝑃𝑃 = �𝐸𝐸𝑟𝑟 0
0 0�𝑚𝑚×𝑛𝑛

 

 

【定理 1.4】线性映射的标准型 

设 𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) ,则在𝑉𝑉和𝑊𝑊的某组基下,𝜑𝜑的矩阵是 

�𝐸𝐸𝑟𝑟 0
0 0� ∈ 𝐹𝐹

𝑚𝑚×𝑛𝑛 

证：设 𝑒𝑒1���⃗  , . . . , 𝑒𝑒𝑛𝑛����⃗是 𝑉𝑉 的一组基，𝜀𝜀1���⃗  , . . . , 𝜀𝜀𝑚𝑚�����⃗是 𝑊𝑊 的一组基 

𝜑𝜑 在这两组基下的矩阵设为 𝐴𝐴,由初等行列变换可知 

∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑚𝑚(𝐹𝐹),𝑄𝑄 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),使得 𝑃𝑃𝑃𝑃𝑃𝑃 = �𝐸𝐸𝑟𝑟 0
0 0�𝑚𝑚×𝑛𝑛

 

设 �𝜀𝜀1′���⃗ ⋯ 𝜀𝜀𝑚𝑚′�����⃗ � = (𝜀𝜀1���⃗ ⋯ 𝜀𝜀𝑚𝑚�����⃗ )𝑃𝑃−1 

�𝑒𝑒1′���⃗ ⋯ 𝑒𝑒𝑛𝑛′����⃗ � = (𝑒𝑒1���⃗ ⋯ 𝑒𝑒𝑛𝑛����⃗ )𝑄𝑄 

则 �𝜀𝜀1′���⃗ ⋯ 𝜀𝜀𝑚𝑚′�����⃗ � 是𝑊𝑊的基  [∵ 𝑃𝑃−1可逆] 

�𝑒𝑒1′���⃗ ⋯ 𝑒𝑒𝑛𝑛′����⃗ �是𝑉𝑉的基  [∵ 𝑄𝑄可逆] 

于是 𝜑𝜑 在 𝑒𝑒1′���⃗ ⋯ 𝑒𝑒𝑛𝑛′����⃗ ; 𝜀𝜀1′���⃗ ⋯ 𝜀𝜀𝑚𝑚′�����⃗  下的矩阵为 

𝑃𝑃𝑃𝑃𝑃𝑃 = �𝐸𝐸𝑟𝑟 0
0 0�       ∎ 
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§1.6 对偶映射 

【定义 1.6.1】对偶映射 

设 𝑉𝑉∗,𝑊𝑊∗ 分别是𝑉𝑉,𝑊𝑊的对偶空间，𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) 

∀𝑓𝑓 ∈ 𝑊𝑊∗,有 𝑓𝑓 ∘ 𝜑𝜑 ∈ 𝑉𝑉∗ 

由此得到映射  𝜑𝜑∗:𝑊𝑊∗ → 𝑉𝑉∗,𝑓𝑓 ↦ 𝑓𝑓 ∘ 𝜑𝜑 

𝜑𝜑∗称为 𝜑𝜑 的对偶映射 

 

【定理 1.5】对偶映射的基 

设𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) ,则𝜑𝜑∗ ∈ Hom(𝑊𝑊∗,𝑉𝑉∗) 

再设 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ; 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗   分别为 𝑉𝑉 和 𝑊𝑊 的基， 

𝜑𝜑 在这两组基下的矩阵是𝐴𝐴， 

则 𝜑𝜑∗ 在它们的对偶基 𝜀𝜀1∗���⃗ , … . , 𝜀𝜀𝑚𝑚∗�����⃗ ;   𝑒𝑒1∗���⃗ , … , 𝑒𝑒𝑛𝑛∗����⃗   下的矩阵是𝐴𝐴𝑡𝑡 

证：先验证 𝜑𝜑∗ ∈ Hom(𝑊𝑊∗,𝑉𝑉∗) 

设 𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, 𝑓𝑓,𝑔𝑔 ∈ 𝑊𝑊∗ 

𝜑𝜑∗(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽) = (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽) ∘ 𝜑𝜑, 对∀𝑥⃗𝑥 ∈ 𝑉𝑉, 

  

(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽) ∘ 𝜑𝜑(𝑥⃗𝑥) = (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)�𝜑𝜑(𝑥⃗𝑥)�

= 𝛼𝛼𝛼𝛼�𝜑𝜑(𝑥⃗𝑥)�+ 𝛽𝛽𝛽𝛽�𝜑𝜑(𝑥⃗𝑥)�

= 𝛼𝛼(𝑓𝑓 ∘ 𝜑𝜑)(𝑥⃗𝑥) + 𝛽𝛽(𝑔𝑔 ∘ 𝜑𝜑)(𝑥⃗𝑥)

= �𝛼𝛼𝜑𝜑∗(𝑓𝑓) + 𝛽𝛽𝜑𝜑∗(𝑔𝑔)�(𝑥⃗𝑥)

 

⇒ 𝜑𝜑∗(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽) = 𝛼𝛼𝜑𝜑∗(𝑓𝑓) + 𝛽𝛽𝜑𝜑∗(𝑔𝑔) 

于是 𝜑𝜑∗ ∈ Hom(𝑊𝑊∗,𝑉𝑉∗) 

设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑖𝑖=1,…,𝑚𝑚
𝑗𝑗=1,…,𝑛𝑛

, 

是 𝜑𝜑 在 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ;  𝜀𝜀1���⃗  , … , 𝜀𝜀𝑚𝑚�����⃗  下的矩阵 

设𝐵𝐵 = (𝑏𝑏𝑘𝑘𝑘𝑘)𝑘𝑘=1,…,𝑛𝑛
𝑙𝑙=1,…,𝑚𝑚
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是𝜑𝜑∗ 在 𝜀𝜀1∗���⃗ , … , 𝜀𝜀𝑚𝑚∗�����⃗ ; 𝑒𝑒1∗���⃗ , … , 𝑒𝑒𝑛𝑛∗����⃗  下的矩阵 

𝜀𝜀𝑙𝑙∗���⃗ ∘ 𝜑𝜑 = 𝜑𝜑∗�𝜀𝜀𝑙𝑙∗���⃗ � = �𝑏𝑏𝑘𝑘𝑘𝑘𝑒𝑒𝑘𝑘∗����⃗
𝑛𝑛

𝑘𝑘=1

 

𝜀𝜀𝑙𝑙∗���⃗ ∘ 𝜑𝜑�𝑒𝑒𝚥𝚥��⃗ � = 𝜀𝜀𝑙𝑙∗���⃗ ��𝑎𝑎𝑖𝑖𝑖𝑖𝜀𝜀𝚤𝚤��⃗
𝑚𝑚

𝑖𝑖=1

� = �𝑎𝑎𝑖𝑖𝑖𝑖 �𝜀𝜀𝑙𝑙∗���⃗ (𝜀𝜀𝚤𝚤��⃗ )�
𝑚𝑚

𝑖𝑖=1

 

= �𝑎𝑎𝑖𝑖𝑖𝑖𝛿𝛿𝑙𝑙𝑙𝑙

𝑛𝑛

𝑖𝑖=1

= 𝑎𝑎𝑙𝑙𝑙𝑙𝛿𝛿𝑙𝑙𝑙𝑙 = 𝑎𝑎𝑙𝑙𝑙𝑙 

��𝑏𝑏𝑘𝑘𝑘𝑘𝑒𝑒𝑘𝑘∗����⃗
𝑛𝑛

𝑘𝑘=1

� �𝑒𝑒𝚥𝚥��⃗ � = �𝑏𝑏𝑘𝑘𝑘𝑘𝑒𝑒𝑘𝑘∗����⃗
𝑛𝑛

𝑘𝑘=1

�𝑒𝑒𝚥𝚥��⃗ � = �𝑏𝑏𝑘𝑘𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘

𝑛𝑛

𝑘𝑘=1

= 𝑏𝑏𝑗𝑗𝑗𝑗𝛿𝛿𝑗𝑗𝑗𝑗 = 𝑏𝑏𝑗𝑗𝑗𝑗 

⇒ 𝑎𝑎𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑗𝑗𝑗𝑗 , 𝑗𝑗 ∈ (1, … ,𝑛𝑛), 𝑙𝑙 ∈ {1, … ,𝑚𝑚} 

⇒ 𝐵𝐵 = 𝐴𝐴𝑡𝑡   ∎ 
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§2 线性算子代数 

【记号】 

Hom(𝑉𝑉,𝑉𝑉)记为 ℒ(𝑉𝑉),  

ℒ(𝑉𝑉)中的元素称为线性算子, 

用𝒜𝒜,ℬ,𝒞𝒞, …来表示。 

 

§2.1 矩阵的相似 

【例 2.1.1】线性算子的换基公式 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝑉𝑉的一组基是 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ , 

则 𝒜𝒜 在 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ; 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  下的矩阵为𝐴𝐴 

简称为 𝒜𝒜 在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵 

再设 𝑒𝑒1′�����⃗  , … , 𝑒𝑒𝑛𝑛′�����⃗  是 𝑉𝑉 的另一组基，令 �𝑒𝑒1′�����⃗  , … , 𝑒𝑒𝑛𝑛′�����⃗ � = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝑃𝑃 

其中 𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),则 𝒜𝒜 在𝑒𝑒1′�����⃗  , … , 𝑒𝑒𝑛𝑛′�����⃗  下的矩阵是 𝑃𝑃−1𝐴𝐴𝐴𝐴 

 

【定义 2.1.1】相似等价关系 

设 𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),如果存在𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹)使得 

𝐵𝐵 = 𝑃𝑃−1𝐴𝐴𝐴𝐴 

则𝐵𝐵与𝐴𝐴相似，记为 𝐵𝐵~𝑠𝑠𝐴𝐴 

验证：~s是等价关系 

∀𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),𝐴𝐴 = 𝐸𝐸−1𝐴𝐴𝐴𝐴 ⇒ 𝐴𝐴~𝑠𝑠𝐴𝐴      �自反� 

设𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),𝐵𝐵~𝑠𝑠𝐴𝐴,则 ∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹) 

使得 𝐵𝐵 = 𝑃𝑃−1𝐴𝐴𝐴𝐴 ⇒ 𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃−1 = (𝑃𝑃−1)−1𝐴𝐴𝑃𝑃−1 

⇒ 𝐴𝐴~s𝐵𝐵    [对称] 
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再设 𝐶𝐶 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),𝐴𝐴~𝑠𝑠𝐵𝐵,𝐵𝐵~𝑆𝑆𝐶𝐶 

则 ∃𝑃𝑃,𝑄𝑄 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹) 使得 

𝐴𝐴 = 𝑃𝑃−1𝐵𝐵𝐵𝐵,𝐵𝐵 = 𝑄𝑄−1𝐶𝐶𝐶𝐶 

𝐴𝐴 = 𝑃𝑃−1(𝑄𝑄−1𝐶𝐶𝐶𝐶)𝑃𝑃 = (𝑃𝑃−1𝑄𝑄−1)𝐶𝐶(𝑄𝑄𝑄𝑄) = (𝑄𝑄𝑄𝑄)−1𝐶𝐶(𝑄𝑄𝑄𝑄) 

⇒ 𝐴𝐴~𝑠𝑠𝐶𝐶     [传递] 

 

【本章的目的】 

给定𝒜𝒜 ∈ ℒ(𝑉𝑉),求 𝑉𝑉 的一组基, 

使得 𝒜𝒜 在该基下的矩阵尽可能“简单” 

给定𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),求𝐴𝐴的相似意义下的“规范型” 

 

【命题 2.1】若干相似不变量 

设𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹), 𝐴𝐴~𝑠𝑠𝐵𝐵,则 

(𝑖𝑖) rank𝐴𝐴 = rank𝐵𝐵 

(𝑖𝑖𝑖𝑖) tr𝐴𝐴 = tr𝐵𝐵 

(𝑖𝑖𝑖𝑖𝑖𝑖) det𝐴𝐴 = det𝐵𝐵 

证：设𝐴𝐴 = 𝑃𝑃−1𝐵𝐵𝐵𝐵,其中𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹) 

⇒ rank𝐴𝐴 = rank𝐵𝐵   (𝑖𝑖)成立 

tr𝐴𝐴 = tr(𝑃𝑃−1𝐵𝐵𝐵𝐵) = tr�𝐵𝐵(𝑃𝑃𝑃𝑃−1)� = tr𝐵𝐵     (𝑖𝑖𝑖𝑖)成立 

|𝐴𝐴| = |𝑃𝑃−1𝐵𝐵𝐵𝐵| = |𝑃𝑃−1||𝐵𝐵||𝑃𝑃| = |𝐵𝐵|    (𝑖𝑖𝑖𝑖𝑖𝑖)成立  ∎ 

 

【例 2.1.2】不相似的判定 

�0 0
0 0� ≁𝑠𝑠 �

1 0
0 1�     由命题 2.1(i) 

�1 0
0 1� ≁𝑠𝑠 �

2 0

0
1
2
�     由命题 2.1(ii) 
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�1 0
0 1� ≁𝑠𝑠 �

2 1
1 0�… .由命题 2.1(𝑖𝑖𝑖𝑖𝑖𝑖) 

 

【例 2.1.3】解方程判定不相似 

证明： �1 0
0 1�与 �1 1

0 1�不相似 

设𝑆𝑆 = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� ∈ 𝐺𝐺𝐿𝐿2

(𝐹𝐹) 使得 

�1 0
0 1� = 𝑆𝑆−1 �1 1

0 1� 𝑆𝑆 ⇒ 𝑆𝑆 �1 0
0 1� = �1 1

0 1�𝑆𝑆 

�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� = �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� �
1 0
0 1� = �1 1

0 1� �
𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� = �𝑎𝑎 + 𝑐𝑐 𝑏𝑏 + 𝑑𝑑

𝑐𝑐 𝑑𝑑 � 

𝑎𝑎 = 𝑎𝑎 + 𝑐𝑐 ⇒ 𝑐𝑐 = 0, 𝑏𝑏 = 𝑏𝑏 + 𝑑𝑑 ⇒ 𝑑𝑑 = 0 ⇒ 𝑆𝑆不可逆，矛盾。      ∎ 
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§2.2 线性算子的若干例子 

【例 2.2.1】零算子和恒同算子 

零算子 𝒪𝒪:𝑉𝑉 → 𝑉𝑉, 𝑣⃗𝑣 ↦ 0�⃗    

它在任何基下的矩阵都是𝑂𝑂𝑛𝑛×𝑛𝑛 ,简记为 𝑂𝑂 

恒同算子 ℰ:𝑉𝑉 → 𝑉𝑉, 𝑣⃗𝑣 ↦ 𝑣⃗𝑣  恒同 

它在任何基下的矩阵都是𝐸𝐸𝑛𝑛,简记为𝐸𝐸 

 

【例 2.2.2】平行投影算子 

设 𝑉𝑉 = 𝑈𝑈⊕𝑊𝑊, 𝑈𝑈,𝑊𝑊是子空间， 

∀𝑣⃗𝑣 ∈ 𝑉𝑉,∃!𝑢𝑢�⃗ ∈ 𝑈𝑈,𝑤𝑤��⃗ ∈ 𝑊𝑊,使得 𝑣⃗𝑣 = 𝑢𝑢�⃗ + 𝑤𝑤��⃗  

𝑃𝑃𝑈𝑈:𝑉𝑉 → 𝑉𝑉, 𝑣⃗𝑣 ↦ 𝑢𝑢�⃗  称为从 𝑉𝑉 到 𝑈𝑈 沿着 𝑊𝑊 的平行投影 

𝑃𝑃𝑢𝑢 ∘ 𝑃𝑃𝑢𝑢(𝑣⃗𝑣) = 𝑃𝑃𝑢𝑢(𝑢𝑢�⃗ ) = 𝑢𝑢�⃗  

则𝑃𝑃𝑢𝑢 ∘ 𝑃𝑃𝑢𝑢 = 𝑃𝑃𝑢𝑢  �幂等� 

 

【一些记号】算子的幂 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑘𝑘 ∈ ℤ+,𝐴𝐴 ∘ 𝐴𝐴 ∘ ⋯∘ 𝐴𝐴���������
𝑘𝑘

记为𝐴𝐴𝑘𝑘 ,𝐴𝐴0 = ℰ 

可验证  ∀𝑖𝑖, 𝑗𝑗 ∈ ℕ,𝐴𝐴𝑖𝑖 ∘ 𝐴𝐴𝑗𝑗 = 𝐴𝐴𝑖𝑖+𝑗𝑗 

 

【定义 2.2.1】幂等 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),如果𝒜𝒜2 = 𝒜𝒜,则称 𝒜𝒜 为幂等的。 

同样，𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),如果 𝐴𝐴2 = 𝐴𝐴,则称𝐴𝐴是幂等的。 

 

【例 2.2.3】差分算子 

△:𝐹𝐹𝑛𝑛[𝑥𝑥] → 𝐹𝐹𝑛𝑛[𝑥𝑥], 𝑓𝑓(𝑥𝑥) ↦ 𝑓𝑓(𝑥𝑥 + 1)− 𝑓𝑓(𝑥𝑥) 
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因为线性变量替换是线性的，且 ℒ(𝑉𝑉)为线性空间，所以 

△∈ ℒ(𝐹𝐹𝑛𝑛[𝑥𝑥])   

当𝑖𝑖 ≠ 0 时，△ 𝑥𝑥𝑖𝑖 = (𝑥𝑥 + 1)𝑖𝑖 − 𝑥𝑥𝑖𝑖 , deg△ 𝑥𝑥𝑖𝑖 < deg 𝑥𝑥𝑖𝑖 

当𝑖𝑖 = 0,△ 𝑥𝑥0 = 1 − 1 = 0 

⇒ ∀𝑓𝑓 ∈ 𝐹𝐹𝑛𝑛[𝑥𝑥],△𝑛𝑛 (𝑓𝑓) = 0 

 

【定义 2.2.2】幂零 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),如果 ∃𝑘𝑘 ∈ ℤ+,使得 𝒜𝒜𝑘𝑘 = 𝒪𝒪 

则称 𝒜𝒜 是幂零的。类似地可以定义幂零矩阵。 
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§2.3 代数同构 

【引理 2.1】线性算子环 

(ℒ(𝑉𝑉), +,𝒪𝒪,∘,ℰ)是环 

且 ∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹,𝒜𝒜,ℬ ∈ ℒ(𝑉𝑉), 

(𝛼𝛼𝛼𝛼) ∘ (𝛽𝛽ℬ) = 𝛼𝛼𝛼𝛼(𝒜𝒜 ∘ ℬ)       [∗] 

证： ∵ ℒ(𝑉𝑉)是线性空间   ∴ (ℒ(𝑉𝑉), +,𝒪𝒪) 是交换群 

∀𝒜𝒜,ℬ,𝒞𝒞 ∈ ℒ(𝑉𝑉),   

𝒜𝒜 ∘ ℬ ∈ ℒ(𝑉𝑉)  �定理 1.2� 

𝒜𝒜 ∘ (ℬ ∘ 𝒞𝒞) = (𝒜𝒜 ∘ ℬ) ∘ 𝒞𝒞    �结合律� 

𝒜𝒜 ∘ ℰ = ℰ ∘ 𝒜𝒜 = 𝒜𝒜 

下面验证分配律，∀𝑣𝑣 ∈ 𝑉𝑉 

𝒜𝒜 ∘ (ℬ + 𝒞𝒞)(𝑣⃗𝑣) = 𝒜𝒜((ℬ + 𝒞𝒞)(𝑣⃗𝑣)) = 𝒜𝒜�ℬ(𝑣⃗𝑣) + 𝒞𝒞(𝑣⃗𝑣)� 

= 𝒜𝒜�ℬ(𝑣⃗𝑣)�+ 𝒜𝒜�𝒞𝒞(𝑣⃗𝑣)� = 𝒜𝒜 ∘ ℬ(𝑣⃗𝑣) + 𝒜𝒜 ∘ 𝒞𝒞(𝑣⃗𝑣) 

= (𝒜𝒜 ∘ ℬ +𝒜𝒜 ∘ 𝒞𝒞)(𝑣⃗𝑣) 

于是𝒜𝒜 ∘ (ℬ + 𝒞𝒞) = 𝒜𝒜 ∘ ℬ + 𝒜𝒜 ∘ 𝒞𝒞 

同理可验证    (𝒜𝒜 + ℬ) ∘ 𝒞𝒞 = 𝒜𝒜 ∘ 𝒞𝒞 + ℬ ∘ C 

最后验证[∗] 

(𝛼𝛼𝛼𝛼) ∘ (𝛽𝛽ℬ)(𝑣⃗𝑣) = 𝛼𝛼𝒜𝒜�𝛽𝛽ℬ(𝑣⃗𝑣)� = 𝛼𝛼𝛼𝛼(𝒜𝒜 ∘ ℬ)(𝑣⃗𝑣) 

⇒ (𝛼𝛼𝒜𝒜 ∘ 𝛽𝛽ℬ) = 𝛼𝛼𝛼𝛼𝒜𝒜 ∘ ℬ      ∎ 

 

【定理 2.1】线性算子环到矩阵的同构 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  是𝑉𝑉 的一组基， 

𝛷𝛷:ℒ(𝑉𝑉) → 𝑀𝑀𝑛𝑛(𝐹𝐹), 𝒜𝒜 ↦ 𝐴𝐴 

其中 𝐴𝐴 是 𝒜𝒜 在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵 
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则 𝛷𝛷 既是线性同构又是环同构�简称代数同构� 

证：由定理 1.1 及其证明，𝛷𝛷是线性同构 

由 2.2 节，𝛷𝛷(ℰ) = 𝐸𝐸 

由定理 1.2，𝛷𝛷(𝒜𝒜 ∘ ℬ) = 𝐴𝐴𝐴𝐴      

于是𝛷𝛷是环同构    ∎ 
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§2.4 极小多项式 

【定义 2.4.1】线性算子多项式 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),令𝐹𝐹[𝒜𝒜] = ⟨𝐴𝐴0,𝐴𝐴1, … ⟩ ⊂ ℒ(𝑉𝑉) 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),𝐹𝐹[𝐴𝐴] = ⟨𝐴𝐴0,𝐴𝐴1, … ⟩ ⊂ 𝑀𝑀𝑛𝑛(𝐹𝐹) 

 

【命题 2.2】矩阵和线性算子空间的交换子环 

(𝑖𝑖) 设 𝒜𝒜 ∈ ℒ(𝑉𝑉),则dim𝐹𝐹[𝒜𝒜] ≤ 𝑛𝑛2 且 𝐹𝐹[𝒜𝒜] 是 ℒ[𝑉𝑉] 的交换子环 

(𝑖𝑖𝑖𝑖)设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),则dim𝐹𝐹[𝐴𝐴] ≤ 𝑛𝑛2,且 𝐹𝐹[𝐴𝐴] 是 𝑀𝑀𝑛𝑛(𝐹𝐹) 的交换子环 

证：(𝑖𝑖) ∵ 𝐹𝐹[𝒜𝒜] ⊂ ℒ(𝑉𝑉) 且 dimℒ(𝑉𝑉) = 𝑛𝑛2 

∴ dim𝐹𝐹[𝒜𝒜] ≤ 𝑛𝑛2 

因为 𝐹𝐹[𝒜𝒜]是子空间，所以 (𝐹𝐹[𝒜𝒜], +,𝒪𝒪)是交换群 

设 𝒮𝒮 = �𝑓𝑓𝑖𝑖𝐴𝐴𝑖𝑖
𝑘𝑘

𝑖𝑖=0

, 𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹,𝑘𝑘 ∈ ℕ 

𝒯𝒯 = �𝑔𝑔𝑗𝑗𝐴𝐴𝑗𝑗
𝑙𝑙

𝑗𝑗=0

, 𝑔𝑔𝑗𝑗 ∈ 𝐹𝐹, 𝑙𝑙 ∈ ℕ 

因为 𝐹𝐹[𝒜𝒜] 是线性空间，所以 (𝐹𝐹[𝒜𝒜], +,𝒪𝒪) 是子群 

ℰ = 𝒜𝒜0 ∈ 𝐹𝐹[𝒜𝒜] 

𝒮𝒮 ∘ 𝒯𝒯 = ��𝑓𝑓𝑖𝑖𝒜𝒜𝑖𝑖
𝑘𝑘

𝑖𝑖=0

���𝑔𝑔𝑗𝑗𝒜𝒜𝑗𝑗
𝑙𝑙

𝑗𝑗=0

� 

= ���𝑓𝑓𝑖𝑖𝒜𝒜𝑖𝑖� ∘ �𝑔𝑔𝑗𝑗𝒜𝒜𝑗𝑗�
𝑙𝑙

𝑗𝑗=0

𝑘𝑘

𝑖𝑖=0

      [广义分配律] 

= ��𝑓𝑓𝑖𝑖𝑔𝑔𝑗𝑗𝒜𝒜𝑖𝑖 ∘ 𝒜𝒜𝑗𝑗
𝑙𝑙

𝑗𝑗=0

𝑘𝑘

𝑖𝑖=0

= ��𝑓𝑓𝑖𝑖𝑔𝑔𝑗𝑗𝒜𝒜𝑖𝑖+𝑗𝑗
𝑙𝑙

𝑗𝑗=0

𝑘𝑘

𝑖𝑖=0

∈ 𝐹𝐹[𝒜𝒜]        [引理 2.1] 
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同理，𝑇𝑇 ∘ 𝑆𝑆 = ��𝑓𝑓𝑖𝑖𝑔𝑔𝑗𝑗𝒜𝒜𝑖𝑖+𝑗𝑗
𝑙𝑙

𝑗𝑗=0

𝑘𝑘

𝑖𝑖=0

 

于是 𝒯𝒯 ∘ 𝒮𝒮 = 𝒮𝒮 ∘ 𝒯𝒯 且 𝒮𝒮 ∘ 𝒯𝒯 ∈ 𝐹𝐹[𝒜𝒜] 

ℰ ∈ 𝐹𝐹[𝒜𝒜]  显然 

于是 𝐹𝐹[𝒜𝒜]是 ℒ(𝑉𝑉)的交换子环 

(𝑖𝑖𝑖𝑖)同理可证。       ∎ 

注：由多项式赋值定理，存在唯一的环同态 

𝜑𝜑:𝐹𝐹[𝑡𝑡] → 𝐹𝐹[𝒜𝒜] 满足 𝜑𝜑│𝐹𝐹 = 𝑖𝑖𝑖𝑖 

且 𝜑𝜑(𝑡𝑡) = 𝒜𝒜  换言之 

𝜑𝜑��𝑓𝑓𝑖𝑖𝑡𝑡𝑖𝑖
𝑑𝑑

𝑖𝑖=0

� = �𝑓𝑓𝑖𝑖𝒜𝒜𝑖𝑖
𝑑𝑑

𝑖𝑖=0

= 𝑓𝑓𝑑𝑑𝒜𝒜𝑑𝑑 + ⋯+ 𝑓𝑓1𝒜𝒜 + 𝑓𝑓0𝓔𝓔 

特别有 𝜑𝜑(1) = ℰ 

𝜓𝜓:𝐹𝐹[𝑡𝑡] → 𝐹𝐹[𝐴𝐴]类似 

 

【例 2.4.1】多项式作用矩阵例 

设 𝑓𝑓 = 𝑡𝑡2 − 1, 𝐴𝐴 = �1 1
0 1� 

𝑓𝑓(𝐴𝐴) = 𝐴𝐴2 − 𝐸𝐸 = �1 1
0 1�

2
− �1 0

0 1� = �1 2
0 1� − �1 0

0 1� = �0 2
0 0� 

注：设 𝒮𝒮 = �𝑓𝑓𝑖𝑖𝒜𝒜𝑖𝑖
𝑘𝑘

𝑖𝑖=0

, 𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹,𝒜𝒜 ∈ ℒ(𝑉𝑉) 

𝒮𝒮 = 𝒪𝒪 ⇏ 𝑓𝑓𝑘𝑘 = 𝑓𝑓𝑘𝑘−1 = ⋯ . = 𝑓𝑓0 = 0 

 

【例 2.4.2】多项式作用矩阵例 1 

𝐴𝐴 = ℰ, 𝑓𝑓 = 𝑡𝑡 − 1 

𝑓𝑓(𝐴𝐴) = ℰ − ℰ = 𝒪𝒪 
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【定义 2.4.1】零化多项式 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝑃𝑃 ∈ 𝐹𝐹[𝑡𝑡] 

如果 𝑃𝑃(𝒜𝒜) = 0,则称 𝑃𝑃 零化 𝒜𝒜 或 𝑃𝑃 是𝒜𝒜 的一个零化多项式 

当𝑃𝑃 ≠ 0 时，称 𝑃𝑃 是 𝒜𝒜 的非平凡的零化多项式 

关于 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)同样可以定义 𝐴𝐴 的零化多项式 

 

【例 2.4.3】求零化多项式例 

设 𝐴𝐴 = �1 0
0 1� ,𝐵𝐵 = �0 1

0 0� ,𝐶𝐶 = �0 1
1 0� 

求 𝐴𝐴,𝐵𝐵,𝐶𝐶 的非平凡的零化多项式 

𝐴𝐴0 = 𝐸𝐸,𝐴𝐴1 = 𝐸𝐸 ⇒ 𝐴𝐴1 − 𝐴𝐴0 = 𝑂𝑂, 𝑝𝑝(𝑡𝑡) = 𝑡𝑡 − 1 

𝐵𝐵0 = 𝐸𝐸,𝐵𝐵1 = �0 1
0 0� ,𝐵𝐵2 = �0 1

0 0� �
0 1
0 0� = �0 0

0 0� 

∴ 𝑞𝑞(𝑡𝑡) = 𝑡𝑡2 

𝐶𝐶0 = 𝐸𝐸,𝐶𝐶1 = �0 1
1 0� ,𝐶𝐶2 = �0 1

1 0� �
0 1
1 0� = �1 0

0 1� = 𝐸𝐸 

∴ 𝑟𝑟(𝑡𝑡) = 𝑡𝑡2 − 1 

dim𝐹𝐹[𝒜𝒜] ≤ 𝑛𝑛 

 

【定义 2.4.2】极小多项式 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝐹𝐹[𝑡𝑡] 中次数最低，首一的零化 𝒜𝒜 的非平凡多项式 

称为 𝒜𝒜 的极小多项式，记为𝜇𝜇𝒜𝒜 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),𝐹𝐹[𝑡𝑡]中次数最低，首一的零化 𝐴𝐴 的非平凡多项式 

称为𝐴𝐴的极小多项式，记为𝜇𝜇𝐴𝐴 
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【引理 2.2】极小多项式唯一存在性 

(𝑖𝑖)设 𝒜𝒜 = ℒ(𝑉𝑉),则𝒜𝒜 的极小多项式存在且唯一。 

(𝑖𝑖𝑖𝑖)设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),则 𝐴𝐴 的极小多项式存在且唯一。 

证：证明(ii), (i)类似 

∵ dim𝐹𝐹[𝐴𝐴] < ∞,∴ ∃𝑘𝑘 ∈ ℕ,使得 𝐴𝐴0, … ,𝐴𝐴𝑘𝑘  线性相关 

即∃𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝐹𝐹 不全为零，使得 

𝛼𝛼0𝐴𝐴0 + 𝛼𝛼1𝐴𝐴1 + ⋯+ 𝛼𝛼𝑘𝑘𝐴𝐴𝑘𝑘 = 𝑂𝑂 

由𝑘𝑘的极小性， 𝛼𝛼𝑘𝑘 ≠ 0 

于是 𝐴𝐴𝑘𝑘 +
𝛼𝛼𝑘𝑘−1
𝛼𝛼𝑘𝑘

𝐴𝐴𝑘𝑘−1 + ⋯+
𝛼𝛼1
𝛼𝛼𝑘𝑘

𝐴𝐴 +
𝛼𝛼0
𝛼𝛼𝑘𝑘

𝐸𝐸 = 𝑂𝑂 

令𝑃𝑃(𝑡𝑡) = 𝛼𝛼0 + 𝛼𝛼1𝑡𝑡 + ⋯+ 𝛼𝛼𝑘𝑘𝑡𝑡𝑘𝑘 ∈ 𝐹𝐹[𝑡𝑡] ∖ {0} 

满足 𝑃𝑃(𝐴𝐴) = 𝑂𝑂 且首一 

再由 𝑘𝑘 的极小性可知， 

不可能有 𝐴𝐴 次数比 𝑘𝑘 低的非平凡零化的多项式。      ∎ 

注：唯一性证明 

设 𝑞𝑞, 𝑞𝑞� 为 𝐴𝐴 的两个极小多项式，则由次数限制可知 

deg𝑞𝑞 = deg𝑞𝑞� 

又因为𝑞𝑞, 𝑞𝑞� 都首一， 所以deg𝑞𝑞 − 𝑞𝑞� < deg𝑞𝑞 

∵ 𝑞𝑞(𝐴𝐴)− 𝑞𝑞�(𝐴𝐴) = (𝑞𝑞 − 𝑞𝑞�)(𝐴𝐴) = 𝑂𝑂 

∴ 𝑞𝑞 − 𝑞𝑞� 零化 𝐴𝐴 ⇒ 𝑞𝑞 − 𝑞𝑞� = 𝑂𝑂 [因为次数限制] 
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【定理 2.2】极小多项式的性质 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 

(𝑖𝑖)如果𝑃𝑃 ∈ 𝐹𝐹[𝑡𝑡] 零化𝐴𝐴， 则𝜇𝜇𝐴𝐴 | 𝑃𝑃 

(𝑖𝑖𝑖𝑖) dim𝐹𝐹[𝐴𝐴] = deg𝜇𝜇𝐴𝐴 

(𝑖𝑖𝑖𝑖𝑖𝑖)𝐴𝐴 可逆⇔ 𝜇𝜇𝐴𝐴(𝑂𝑂) ≠ 𝑂𝑂 

(𝑖𝑖𝑖𝑖) 如果𝐴𝐴~𝑠𝑠𝐵𝐵,则𝜇𝜇𝐴𝐴 = 𝜇𝜇𝐵𝐵 

注：定理 2.2 中(𝑖𝑖), (𝑖𝑖𝑖𝑖), (𝑖𝑖𝑖𝑖𝑖𝑖)对线性算子也成立。 

证：(𝑖𝑖)设𝑃𝑃 ∈ 𝐹𝐹[𝑡𝑡] 使得 𝑃𝑃(𝐴𝐴) = 𝑂𝑂 

由多项式除法，𝑃𝑃(𝑡𝑡) = 𝑞𝑞(𝑡𝑡)𝜇𝜇𝐴𝐴(𝑡𝑡) + 𝑟𝑟(𝑡𝑡) 

其中𝑞𝑞, 𝑟𝑟 ∈ 𝐹𝐹[𝑡𝑡], deg 𝑟𝑟 < deg𝜇𝜇𝐴𝐴 

由多项式赋值定理 

𝑂𝑂 = 𝑃𝑃(𝐴𝐴) = 𝑞𝑞(𝐴𝐴)𝜇𝜇𝐴𝐴(𝐴𝐴) + 𝑟𝑟(𝐴𝐴) = 𝑟𝑟(𝐴𝐴) 

⇒ 𝑟𝑟(𝐴𝐴) = 𝑂𝑂 

∵ deg 𝑟𝑟 < deg𝜇𝜇𝐴𝐴   ∴ 𝑟𝑟(𝑡𝑡) = 0 ⇒ 𝜇𝜇𝐴𝐴│𝑃𝑃 

(𝑖𝑖𝑖𝑖)设 𝑑𝑑 = deg 𝐴𝐴 𝜇𝜇  ,则𝐸𝐸,𝐴𝐴, … ,𝐴𝐴𝑑𝑑−1在𝐹𝐹上线性无关， 

�否则存在零化𝐴𝐴 次数小于𝑑𝑑的非零多项式. � 

令 𝑆𝑆 = 𝑓𝑓0𝐴𝐴0 + 𝑓𝑓1𝐴𝐴 + ⋯+ 𝑓𝑓𝑘𝑘𝐴𝐴𝑘𝑘 ∈ 𝐹𝐹[𝐴𝐴] 

令 𝑠𝑠 = 𝑓𝑓0 + 𝑓𝑓1𝑡𝑡 + ⋯+ 𝑓𝑓𝑘𝑘𝑡𝑡𝑘𝑘 ∈ 𝐹𝐹[𝑡𝑡] 

由多项式除法， 

𝑠𝑠(𝑡𝑡) = 𝑞𝑞(𝑡𝑡)𝜇𝜇𝐴𝐴(𝑡𝑡) + 𝑟𝑟(𝑡𝑡),其中 𝑞𝑞, 𝑟𝑟 ∈ 𝐹𝐹[𝑡𝑡], deg 𝑟𝑟 < 𝑑𝑑 

𝑆𝑆 = 𝑠𝑠(𝐴𝐴) = 𝑞𝑞(𝐴𝐴)𝜇𝜇𝐴𝐴(𝐴𝐴) + 𝑟𝑟(𝐴𝐴) = 𝑟𝑟(𝐴𝐴) 

令 𝑟𝑟 = 𝑟𝑟𝑑𝑑−1𝑡𝑡𝑑𝑑−1 + 𝑟𝑟(𝑑𝑑−2)𝑡𝑡𝑑𝑑−2 + ⋯+ 𝑟𝑟0, 𝑟𝑟𝑖𝑖 ∈ 𝐹𝐹 

𝑆𝑆 = 𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑑𝑑−1𝐴𝐴𝑑𝑑−1 + 𝑟𝑟𝑑𝑑−2𝐴𝐴𝑑𝑑−2 + ⋯+ 𝑟𝑟0𝐴𝐴0 ∈ ⟨𝐴𝐴0,𝐴𝐴1, … ,𝐴𝐴𝑑𝑑−1⟩ 

于是 𝐴𝐴0,𝐴𝐴1, … ,𝐴𝐴𝑑𝑑−1 是𝐹𝐹[𝐴𝐴]的一组基 

⇒ dim𝐹𝐹[𝐴𝐴] = 𝑑𝑑 
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(𝑖𝑖𝑖𝑖𝑖𝑖)设 𝜇𝜇𝐴𝐴(𝑡𝑡) = 𝑡𝑡𝑑𝑑 + 𝛼𝛼𝑑𝑑−1𝑡𝑡𝑑𝑑−1 + ⋯+ 𝛼𝛼1𝑡𝑡 + 𝛼𝛼0, 𝛼𝛼𝑖𝑖 ∈ 𝐹𝐹 

𝜇𝜇𝐴𝐴(𝐴𝐴) = 𝐴𝐴𝑑𝑑 + 𝛼𝛼𝑑𝑑−1𝐴𝐴𝑑𝑑−1 +⋯+ 𝛼𝛼1𝐴𝐴 + 𝛼𝛼0𝐸𝐸 = 𝑂𝑂 

𝐴𝐴𝑑𝑑 + 𝛼𝛼𝑑𝑑−1𝐴𝐴𝑑𝑑−1 + ⋯+ 𝛼𝛼1𝐴𝐴 = −𝛼𝛼0𝐸𝐸 

𝐴𝐴(𝐴𝐴𝑑𝑑−1 + 𝛼𝛼𝑑𝑑−1𝐴𝐴𝑑𝑑−2 + ⋯+ 𝛼𝛼1𝐸𝐸) = −𝛼𝛼0𝐸𝐸    [∗] 

𝜇𝜇𝐴𝐴(𝑂𝑂) ≠ 𝑂𝑂 ⇒ 𝛼𝛼0 ≠ 0 ⇒ 𝛼𝛼0𝐸𝐸 可逆
[∗]
⇒𝐴𝐴满秩⇒ 𝐴𝐴可逆 

反之，设 𝐴𝐴 可逆，且 𝛼𝛼0 = 0 

则由[∗], 𝐴𝐴(𝐴𝐴𝑑𝑑−1 + 𝛼𝛼𝑑𝑑−1𝐴𝐴𝑑𝑑−2 + ⋯+ 𝛼𝛼1𝐸𝐸) = 𝑂𝑂 

𝐴𝐴−1 �𝐴𝐴(𝐴𝐴𝑑𝑑−1 + 𝛼𝛼𝑑𝑑−1𝐴𝐴𝑑𝑑−2 +⋯+ 𝛼𝛼1𝐸𝐸)� = 0 

⇒ 𝐴𝐴𝑑𝑑−1 + 𝛼𝛼𝑑𝑑−1𝐴𝐴𝑑𝑑−2 + ⋯+ 𝛼𝛼1𝐸𝐸 = 𝑂𝑂 

令 𝑝𝑝(𝑡𝑡) = 𝑡𝑡d−1 + 𝛼𝛼𝑑𝑑−1𝑡𝑡.
𝑑𝑑−2 +⋯+ 𝛼𝛼1 

𝑝𝑝(𝐴𝐴) = 𝑂𝑂 与deg𝑃𝑃 ≥ 𝑑𝑑 矛盾。 

(𝑖𝑖𝑖𝑖) 设𝐵𝐵 = 𝑃𝑃−1𝐴𝐴𝐴𝐴,其中 𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹), 

注意到 𝐵𝐵𝑖𝑖 = (𝑃𝑃−1𝐴𝐴𝐴𝐴)(𝑃𝑃−1𝐴𝐴𝐴𝐴)⋯ (𝑃𝑃−1𝐴𝐴𝐴𝐴)�������������������
𝑖𝑖组

 

= 𝑃𝑃−1𝐴𝐴(𝑃𝑃𝑃𝑃−1)A(𝑃𝑃𝑃𝑃−1)⋯ (𝑃𝑃𝑃𝑃−1)𝐴𝐴𝐴𝐴 = 𝑃𝑃−1𝐴𝐴𝑖𝑖𝑃𝑃 

𝜇𝜇𝐴𝐴(𝐵𝐵) = (𝑃𝑃−1𝐴𝐴𝐴𝐴)𝑑𝑑 + 𝛼𝛼𝑑𝑑−1(𝑃𝑃−1𝐴𝐴𝐴𝐴)𝑑𝑑−1 + ⋯+ 𝛼𝛼1𝑃𝑃−1𝐴𝐴𝐴𝐴 + 𝛼𝛼0𝐸𝐸 

= 𝑃𝑃−1𝐴𝐴𝑑𝑑𝑃𝑃 + 𝛼𝛼𝑑𝑑−1𝑃𝑃−1𝐴𝐴𝑑𝑑−1𝑃𝑃 + ⋯+ 𝛼𝛼1𝑃𝑃−1𝐴𝐴𝐴𝐴 + 𝛼𝛼0𝑃𝑃−1𝐸𝐸𝐸𝐸 

= 𝑃𝑃−1(𝐴𝐴𝑑𝑑 + 𝛼𝛼𝑑𝑑−1𝐴𝐴𝑑𝑑−1 + ⋯+ 𝛼𝛼1𝐴𝐴 + 𝐸𝐸)𝑃𝑃 

= 𝑃𝑃−1𝜇𝜇𝐴𝐴(𝐴𝐴)𝑃𝑃 = 𝑂𝑂 

由(i),𝜇𝜇𝐵𝐵�𝜇𝜇𝐴𝐴，同理  𝜇𝜇𝐴𝐴�𝜇𝜇𝐵𝐵  由 𝜇𝜇𝐴𝐴,𝜇𝜇𝐵𝐵  都首一,得 𝜇𝜇𝐴𝐴 = 𝜇𝜇𝐵𝐵       ∎ 

 

【例 2.4.4】简单矩阵的极小多项式 

𝜇𝜇𝑂𝑂 = 𝑡𝑡, 𝜇𝜇𝐸𝐸 = 𝑡𝑡 − 1 
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【例 2.4.5】幂等矩阵的极小多项式 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉)是幂等的，证明如果 𝒜𝒜 ≠ 0， 𝒜𝒜 ≠ 𝐸𝐸 

则𝒜𝒜的极小多项式是 𝑡𝑡2 − 𝑡𝑡 

证： ∵ 𝒜𝒜2 = 𝒜𝒜, ∴ 𝒜𝒜2 −𝒜𝒜 = 0 

于是 𝑝𝑝(𝑡𝑡) = 𝑡𝑡2 − 𝑡𝑡 零化 𝒜𝒜 

由定理 2.2(𝑖𝑖),𝜇𝜇𝒜𝒜为 𝑡𝑡 或 𝑡𝑡 − 1 或 𝑡𝑡(𝑡𝑡 − 1) 

如果 𝜇𝜇𝒜𝒜(𝑡𝑡) = 𝑡𝑡,𝜇𝜇𝒜𝒜(𝒜𝒜) = 𝒜𝒜 = 𝒪𝒪 

如果𝜇𝜇𝒜𝒜(𝑡𝑡) = 𝑡𝑡 − 1,𝜇𝜇𝒜𝒜(𝒜𝒜) = 𝒜𝒜 − ℰ = 𝑂𝑂 ⇒ 𝒜𝒜 = ℰ 

则由假设 𝜇𝜇𝒜𝒜 = 𝑡𝑡2 − 𝑡𝑡       ∎ 

 

【例 2.4.6】幂零算子的极小多项式 

证明：如果 𝒜𝒜 是幂零算子，则 𝜇𝜇𝒜𝒜 = 𝑡𝑡𝑘𝑘 , 

其中𝑘𝑘 是使得 𝒜𝒜𝑘𝑘 = 𝒪𝒪 成立的最小正整数 

证：由幂零的定义，∃𝑚𝑚 ∈ ℤ+,𝒜𝒜𝑚𝑚 = 𝒪𝒪 

于是 𝑡𝑡𝑚𝑚零化 𝒜𝒜 

由定理 2.2(𝑖𝑖),𝜇𝜇𝒜𝒜(𝑡𝑡) = 𝑡𝑡𝑘𝑘 ,𝑘𝑘 ≤ 𝑚𝑚,𝑘𝑘 ∈ ℤ+ 

由𝜇𝜇𝒜𝒜次数的极小性，𝑘𝑘 是使得𝒜𝒜𝑘𝑘 = 𝒪𝒪成立的最小正整数      ∎ 

 

【例 2.4.7】极小多项式判断矩阵不相似 

证明：�1 0
0 1������
𝐸𝐸

≁s �
1 1
0 1������
𝐴𝐴

 

证：𝜇𝜇𝐸𝐸 = 𝑡𝑡 − 1 

𝐴𝐴0 = 𝐸𝐸,𝐴𝐴 = �1 1
0 1� ,𝐴𝐴,𝐸𝐸 线性无关 

于是deg 𝜇𝜇𝐴𝐴 ≥ 2 ⇒ 𝜇𝜇𝐸𝐸 ≠ 𝜇𝜇𝐴𝐴 ⇒ 𝐸𝐸 ≁𝑠𝑠 𝐴𝐴 

由定理 2.2(𝑖𝑖𝑖𝑖),𝐸𝐸 ≁𝑠𝑠 𝐴𝐴       ∎ 
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§3 不变子空间 

§3.1 定义和性质 

【定义 3.1.1】不变子空间 

𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝑈𝑈 是 𝑉𝑉 的子空间, 如果 𝒜𝒜(𝑈𝑈) ⊂ 𝑈𝑈 

则称 𝑈𝑈 是关于 𝒜𝒜 的不变子空间, 简称 𝒜𝒜−子空间 

注：如果 𝑈𝑈 是 𝒜𝒜 −子空间，则 𝒜𝒜│𝑈𝑈 ∈ ℒ(𝑈𝑈) 

 

【目的】 

给定 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑉𝑉 = 𝑈𝑈1 ⊕…⊕𝑈𝑈𝑚𝑚, 𝑈𝑈𝑖𝑖是 𝒜𝒜−子空间 

令 𝒜𝒜𝑖𝑖 = 𝒜𝒜│𝑈𝑈𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚 

先研究 𝒜𝒜𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚,再拼出 𝒜𝒜 

 

【例 3.1.1】平凡情形 

平凡子空间 �0�⃗ �,𝑉𝑉; 

𝒜𝒜��0�⃗ �� = �0�⃗ �, 𝒜𝒜(𝑉𝑉) = im𝒜𝒜 ⊂ 𝑉𝑉 
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【例 3.1.2】核与像是不变子空间 

ker𝒜𝒜 , im𝒜𝒜  是 𝒜𝒜 −子空间 

证：𝒜𝒜(ker𝒜𝒜) = �0�⃗ � ⊂ ker(𝒜𝒜) 

𝒜𝒜(im𝒜𝒜) = 𝒜𝒜�𝒜𝒜(𝑉𝑉)� ⊂ im𝒜𝒜 

 

【引理 3.1】可交换复合的不变子空间 

设 𝒜𝒜,ℬ ∈ ℒ(𝑉𝑉) 且 𝒜𝒜 ∘ ℬ = ℬ ∘𝒜𝒜,则 

kerℬ , imℬ  都是 𝒜𝒜 −子空间。 

证：设 𝐾𝐾ℬ = kerℬ , 𝐼𝐼ℬ = imℬ 

 ∀𝑣⃗𝑣 ∈ kerℬ ,   ℬ ∘𝒜𝒜(𝑣⃗𝑣) = 𝒜𝒜 ∘ ℬ(𝑣⃗𝑣) = 𝒜𝒜�0�⃗ � = 0�⃗  

⇒ 𝒜𝒜(𝑣⃗𝑣) ∈ 𝐾𝐾ℬ , 于是 𝐾𝐾ℬ是 𝒜𝒜−子空间 

∀𝑣𝑣 ∈ 𝐼𝐼ℬ  则 ∃𝑢𝑢�⃗ ∈ 𝑉𝑉, 𝑣⃗𝑣 = ℬ(𝑢𝑢�⃗ ) 

𝒜𝒜(𝑣⃗𝑣) = 𝒜𝒜�ℬ(𝑢𝑢�⃗ )� = 𝒜𝒜 ∘ ℬ(𝑢𝑢�⃗ ) 

= ℬ ∘𝒜𝒜(𝑢𝑢�⃗ ) = ℬ�𝒜𝒜(𝑢𝑢�⃗ )� ∈ 𝐼𝐼ℬ 

∴ 𝐼𝐼ℬ是 𝒜𝒜−子空间       ∎ 

 

【推论 3.1】多项式作用的核与像是不变子空间 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),∀𝑓𝑓 ∈ 𝐹𝐹[𝑡𝑡], ker 𝑓𝑓(𝒜𝒜)  和 im 𝑓𝑓(𝒜𝒜)  都是 𝒜𝒜 −子空间. 

证:∵ 𝒜𝒜 ∘ 𝑓𝑓(𝒜𝒜) = 𝑓𝑓(𝒜𝒜) ∘ 𝐴𝐴    �𝐹𝐹[𝒜𝒜]是交换环� 

由引理 3.1, ker 𝑓𝑓(𝒜𝒜)和 im 𝑓𝑓(𝒜𝒜)  是 𝒜𝒜 −子空间     ∎ 
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【命题 3.1】不变子空间的和与交 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), 

(𝑖𝑖)设 𝑈𝑈,𝑊𝑊 是 𝒜𝒜 −子空间，则 𝑈𝑈 + 𝑊𝑊,𝑈𝑈 ∩𝑊𝑊 都是 𝒜𝒜−子空间 

证：设 𝑣⃗𝑣 ∈ 𝑈𝑈 ∩𝑊𝑊, 𝑣⃗𝑣 ∈ 𝑈𝑈 ⇒ 𝒜𝒜(𝑣⃗𝑣) ∈ 𝑈𝑈 

同理 𝒜𝒜(𝑣⃗𝑣) ∈ 𝑊𝑊 ⇒ 𝒜𝒜(𝑣⃗𝑣) ∈ 𝑈𝑈 ∩𝑊𝑊 

⇒ 𝑈𝑈 ∩𝑊𝑊 是 𝒜𝒜 −子空间  

设 𝑣⃗𝑣 ∈ 𝑈𝑈 + 𝑊𝑊,则 ∃ 𝑢𝑢�⃗ ∈ 𝑈𝑈,𝑤𝑤��⃗ ∈ 𝑊𝑊,使得 𝑣⃗𝑣 = 𝑢𝑢�⃗ + 𝑤𝑤��⃗  

𝒜𝒜(𝑣⃗𝑣) = 𝒜𝒜(𝑢𝑢�⃗ ) + 𝒜𝒜(𝑤𝑤��⃗ ) ∈ 𝑈𝑈 + 𝑊𝑊 

⇒ 𝑈𝑈 + 𝑊𝑊 是 𝒜𝒜 −子空间      ∎ 

 

【例 3.1.3】求不变子空间例 

设 𝒜𝒜:𝐹𝐹2 → 𝐹𝐹2, �
𝑥𝑥1
𝑥𝑥2� ↦ �𝛼𝛼1 0

0 𝛼𝛼2
� �
𝑥𝑥1
𝑥𝑥2�  

求 𝒜𝒜 的不变子空间 

2 维：𝐹𝐹2, 0 维：�0�⃗ � 

设 𝑣⃗𝑣 ≠ 0�⃗  且 𝑈𝑈 = ⟨𝑣⃗𝑣⟩是一维 𝒜𝒜−子空间 

𝒜𝒜(𝑣⃗𝑣) = 𝜆𝜆𝑣⃗𝑣, 𝜆𝜆 ∈ 𝐹𝐹 

设 𝑣⃗𝑣 = �
𝑣𝑣1
𝑣𝑣2� , 𝒜𝒜(𝑣⃗𝑣) = 𝜆𝜆𝑣⃗𝑣 ⇔ �𝛼𝛼1 0

0 𝛼𝛼2
� �
𝑣𝑣1
𝑣𝑣2� = 𝜆𝜆 �

𝑣𝑣1
𝑣𝑣2� 

�
(𝛼𝛼1 − 𝜆𝜆)𝑣𝑣1 = 0
(𝛼𝛼2 − 𝜆𝜆)𝑣𝑣2 = 0 

情形 1：𝛼𝛼1 ≠ 𝛼𝛼2 

当 𝜆𝜆 = 𝛼𝛼1 ⇒ 𝑣𝑣2 = 0, 𝑣⃗𝑣 可取 �1
0� 

153／363



§3 不变子空间 

 

当 𝜆𝜆 = 𝛼𝛼2 ⇒ 𝑣𝑣1 = 0, 𝑣⃗𝑣 可取 �0
1� 

情形 2   𝛼𝛼1 = 𝛼𝛼2 = 𝛼𝛼, 𝜆𝜆 = 𝛼𝛼  

𝑣⃗𝑣 可为任何非零向量，即任何一维子空间都是 𝒜𝒜−子空间 
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§3.2 不变子空间下的矩阵表示 

【定理 3.1】不变子空间的矩阵上三角分解 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), dim  𝑉𝑉 = 𝑛𝑛 

(𝑖𝑖)设 𝑈𝑈 是 𝑑𝑑 维 𝒜𝒜−子空间，则 𝒜𝒜 在 𝑉𝑉 的某组基下的矩阵是 

𝑀𝑀 = �𝐴𝐴11 𝐴𝐴12
𝑂𝑂 𝐴𝐴22

�
𝑛𝑛×𝑛𝑛

，其中 𝐴𝐴11 ∈ 𝑀𝑀𝑑𝑑(𝐹𝐹) 

(𝑖𝑖𝑖𝑖)设 𝒜𝒜 在 𝑉𝑉 的某组基下的矩阵是 𝑀𝑀，则 𝒜𝒜 必有 𝑑𝑑 维 𝒜𝒜 −子空间 

证：(𝑖𝑖)设 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗  是𝑈𝑈的基，扩充为𝑉𝑉的一组基  𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗ , 𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗  

∵ 𝒜𝒜│𝑈𝑈 ∈ ℒ(𝑈𝑈)     ∴ �𝒜𝒜(𝑒𝑒1���⃗ ),𝒜𝒜(𝑒𝑒2���⃗ ), … ,𝒜𝒜(𝑒𝑒𝑑𝑑����⃗ )� = (𝑒𝑒1���⃗   , … , 𝑒𝑒𝑑𝑑����⃗ )𝐴𝐴11 

其中 𝐴𝐴11 是 𝑀𝑀𝑑𝑑(𝐹𝐹)中某个矩阵。 

�𝒜𝒜(𝑒𝑒1���⃗ ),𝒜𝒜(𝑒𝑒2���⃗ ), … ,𝒜𝒜(𝑒𝑒𝑑𝑑����⃗ )� = (𝑒𝑒1���⃗   , … , 𝑒𝑒𝑑𝑑����⃗ , 𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ) �𝐴𝐴11 𝐴𝐴12
𝑂𝑂 𝐴𝐴22

 � 

其中 𝐴𝐴12 ∈ 𝐹𝐹𝑑𝑑×(𝑛𝑛−𝑑𝑑),𝐴𝐴22 ∈ 𝐹𝐹(𝑛𝑛−𝑑𝑑)×(𝑛𝑛−𝑑𝑑) 

(ii)设 𝒜𝒜 在基底  𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗  下的矩阵为 𝑀𝑀，即 

�𝒜𝒜(𝜀𝜀1���⃗ ), …𝒜𝒜(𝜀𝜀𝑑𝑑����⃗ ),𝒜𝒜(𝜀𝜀𝑑𝑑+1��������⃗ ), … ,𝒜𝒜(𝜀𝜀𝑛𝑛���⃗ )�

= (𝜀𝜀1���⃗  , . . . , 𝜀𝜀𝑑𝑑����⃗ , 𝜀𝜀𝑑𝑑+1��������⃗ , … , 𝜀𝜀𝑛𝑛���⃗ ) �𝐴𝐴11 𝐴𝐴12
𝑂𝑂 𝐴𝐴22

 � 

⇒  𝒜𝒜(𝜀𝜀1���⃗  , . . . , 𝜀𝜀𝑑𝑑����⃗ ) = (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑑𝑑����⃗ , 𝜀𝜀𝑑𝑑+1��������⃗ , … , 𝜀𝜀𝑛𝑛���⃗ ) �𝐴𝐴11𝑂𝑂 � = (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑑𝑑����⃗ )𝐴𝐴11 

⇒  𝒜𝒜(⟨𝜀𝜀1���⃗  , … , 𝜀𝜀𝑑𝑑����⃗ ⟩) ⊂ ⟨𝜀𝜀1���⃗  , … , 𝜀𝜀𝑑𝑑����⃗ ⟩  

即 ⟨𝜀𝜀1���⃗  , … , 𝜀𝜀𝑑𝑑����⃗ ⟩ 是 𝑑𝑑 维 𝒜𝒜 −子空间       ∎ 
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【定理 3.2】不变子空间对角分解 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), dim𝑉𝑉 = 𝑛𝑛 

(𝑖𝑖)如果 𝑈𝑈1, … ,𝑈𝑈𝑚𝑚是 𝒜𝒜−子空间 且 𝑈𝑈 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑚𝑚 

则 𝒜𝒜 在 𝑉𝑉 的某组基下的矩阵是 

𝑀𝑀 = diag(𝐴𝐴1, … ,𝐴𝐴𝑚𝑚) 

其中 𝐴𝐴𝑖𝑖 ∈ 𝑀𝑀𝑑𝑑𝑖𝑖(𝐹𝐹),𝑑𝑑𝑖𝑖 = dim𝑈𝑈𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚  

(𝑖𝑖𝑖𝑖)如果 𝒜𝒜 在 𝑉𝑉 的某组基下的矩阵是 𝑀𝑀，则 

存在 𝒜𝒜−子空间 𝑈𝑈1, … ,𝑈𝑈𝑚𝑚, 

使得 𝑉𝑉 = 𝑈𝑈1 ⊕…⊕𝑈𝑈𝑚𝑚 

且dim𝑈𝑈𝑖𝑖 = 𝑑𝑑𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚 

证：(𝑖𝑖)设 𝒜𝒜𝑖𝑖 = 𝒜𝒜│𝑈𝑈𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚 

则 𝒜𝒜𝑖𝑖 ∈ ℒ(𝑈𝑈𝑖𝑖) 

设 𝑒𝑒𝚤𝚤1�����⃗ , … . , 𝑒𝑒𝚤𝚤𝚤𝚤�����⃗  是 𝑈𝑈𝑖𝑖  的一组基， 𝒜𝒜𝑖𝑖  在该基下的矩阵是 𝐴𝐴𝑖𝑖 ∈ 𝑀𝑀𝑑𝑑𝑖𝑖(𝐹𝐹) 

∵ 𝑉𝑉 = 𝑈𝑈1 ⊕⋯𝑈𝑈𝑚𝑚 

∴ 𝑒𝑒11�����⃗ , … , 𝑒𝑒1𝑑𝑑1�������⃗ , … , 𝑒𝑒𝑚𝑚1�������⃗ , … , 𝑒𝑒𝑚𝑚𝑑𝑑𝑚𝑚����������⃗  是 𝑉𝑉 的一组基 

𝒜𝒜 在该基下的矩阵 

�𝒜𝒜(𝑒𝑒11�����⃗ ), … ,𝒜𝒜�𝑒𝑒1𝑑𝑑1�������⃗ �, … ,𝒜𝒜(𝑒𝑒𝑚𝑚1�������⃗ ), … ,𝒜𝒜�𝑒𝑒𝑚𝑚𝑑𝑑𝑚𝑚����������⃗ ��

= �𝑒𝑒11�����⃗ , … , 𝑒𝑒1𝑑𝑑1�������⃗ , … , 𝑒𝑒𝑚𝑚1�������⃗ , … , 𝑒𝑒𝑚𝑚𝑑𝑑𝑚𝑚����������⃗ � �
𝐴𝐴1 𝑂𝑂

⋱
𝑂𝑂 𝐴𝐴𝑚𝑚

�   [∗] 
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(𝑖𝑖𝑖𝑖)设 �𝜀𝜀11�����⃗ , … , 𝜀𝜀1𝑑𝑑1�������⃗ , … , 𝜀𝜀𝑚𝑚1�������⃗ , … , 𝜀𝜀𝑚𝑚𝑑𝑑𝑚𝑚����������⃗ � 是 𝑉𝑉 的一组基， 

且在该基下 𝒜𝒜 的矩阵为 𝑀𝑀  

令 𝑈𝑈𝑖𝑖 = �𝜀𝜀𝚤𝚤1����⃗ , … , 𝜀𝜀𝚤𝚤𝑑𝑑𝚤𝚤������⃗ �, 𝑖𝑖 = 1, … ,𝑚𝑚 

则 𝑉𝑉 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑚𝑚 

⇒ dim𝑈𝑈1 + ⋯+ dim𝑈𝑈𝑚𝑚 = 𝑑𝑑1 + ⋯+ 𝑑𝑑𝑚𝑚 = 𝑛𝑛 

�第一章命题 4.2� 

由 [∗]可知 

�𝒜𝒜(𝜀𝜀𝚤𝚤1����⃗ ), … ,𝒜𝒜�𝜀𝜀𝚤𝚤𝑑𝑑𝚤𝚤������⃗ �� = �𝜀𝜀𝚤𝚤1����⃗ , … , 𝜀𝜀𝚤𝚤𝑑𝑑𝚤𝚤������⃗ �𝐴𝐴𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚  

⇒ 𝑈𝑈𝑖𝑖  是 𝒜𝒜 −子空间      ∎ 
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§3.3 𝒜𝒜 −子空间与极小多项式 

【引理 3.2】算子和矩阵的零化多项式 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 是 𝒜𝒜 的某个矩阵，则 

(𝑖𝑖)∀𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡], 𝑝𝑝 零化  𝒜𝒜 ⇔  𝑝𝑝 零化 𝐴𝐴 

(𝑖𝑖𝑖𝑖)𝜇𝜇𝐴𝐴 = 𝜇𝜇𝒜𝒜 

证：由定理 2.1 

𝛷𝛷:ℒ(𝑉𝑉) → 𝑀𝑀𝑛𝑛(𝐹𝐹), 𝒜𝒜 ↦ 𝐴𝐴 是代数同构 

设 𝛹𝛹� = 𝛷𝛷│𝐹𝐹[𝒜𝒜],𝛹𝛹� :𝐹𝐹[𝒜𝒜] → 𝐹𝐹[𝐴𝐴], 𝒜𝒜 ↦ 𝐴𝐴  也是代数同构 

且 𝛹𝛹�│𝐹𝐹 = 𝑖𝑖𝑖𝑖,𝛹𝛹�(𝛼𝛼ℰ) = 𝛼𝛼𝛼𝛼 

⇒ ∀𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡],𝑝𝑝[𝒜𝒜] = 𝒪𝒪 ⇔ 𝛹𝛹��𝑝𝑝(𝒜𝒜)� = 0 ⇔ 𝑝𝑝(𝐴𝐴) = 0      (𝑖𝑖)成立 

(𝑖𝑖𝑖𝑖)𝜇𝜇𝒜𝒜(𝒜𝒜) = 𝒪𝒪
[𝑖𝑖]
⇒𝜇𝜇𝒜𝒜(𝐴𝐴) = 0 ⇒ 𝜇𝜇𝐴𝐴│𝜇𝜇𝒜𝒜 

同理𝜇𝜇𝒜𝒜│𝜇𝜇𝐴𝐴  

⇒ 𝜇𝜇𝐴𝐴 = 𝜇𝜇𝒜𝒜      ∎ 

 

【命题 3.2】对角矩阵的极小多项式 

设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 

(𝑖𝑖)如果 𝐴𝐴 = �𝐵𝐵 𝐶𝐶
𝑂𝑂 𝐷𝐷� ,则 𝜇𝜇𝐵𝐵│𝜇𝜇𝐴𝐴,   𝜇𝜇𝐷𝐷│𝜇𝜇𝐴𝐴 

(𝑖𝑖𝑖𝑖)如果 𝐴𝐴 = �
𝐴𝐴1 0

⋱
0 𝐴𝐴𝑚𝑚

� ,则 𝜇𝜇𝐴𝐴 = lcm�𝜇𝜇𝐴𝐴1 , … . , 𝜇𝜇𝐴𝐴𝑚𝑚� 
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证：(𝑖𝑖)设 𝐵𝐵 ∈ 𝑀𝑀𝑑𝑑(𝐹𝐹),则 𝐷𝐷 ∈ 𝑀𝑀𝑛𝑛−𝑑𝑑(𝐹𝐹) 

断言 𝐴𝐴𝑘𝑘 = �𝐵𝐵
𝑘𝑘 𝐶𝐶𝑘𝑘
𝑂𝑂 𝐷𝐷𝑘𝑘� ,𝐶𝐶𝑘𝑘 ∈ 𝐹𝐹𝑑𝑑×(𝑛𝑛−𝑑𝑑)  

断言的证明： 对𝑘𝑘 归纳, 𝑘𝑘 = 0 时成立 

设 𝐴𝐴𝑘𝑘−1 = �𝐵𝐵
𝑘𝑘−1 𝐶𝐶𝑘𝑘−1
𝑂𝑂 𝐷𝐷𝑘𝑘−1� 

则 𝐴𝐴𝑘𝑘 = �𝐵𝐵
𝑘𝑘−1 𝐶𝐶𝑘𝑘−1
𝑂𝑂 𝐷𝐷𝑘𝑘−1� �

𝐵𝐵 𝐶𝐶
𝑂𝑂 𝐷𝐷� = �𝐵𝐵

𝑘𝑘 𝐶𝐶𝑘𝑘
𝑂𝑂 𝐷𝐷𝑘𝑘� 

于是断言成立 

设 𝜇𝜇𝐴𝐴(𝑡𝑡) = 𝑡𝑡𝑚𝑚 + 𝛼𝛼𝑚𝑚−1𝑡𝑡𝑚𝑚−1 + ⋯+ 𝛼𝛼0 

𝜇𝜇𝐴𝐴(𝐴𝐴) = 𝑂𝑂

= 𝐴𝐴𝑚𝑚 + 𝛼𝛼𝑚𝑚−1𝐴𝐴𝑚𝑚−1 +⋯+ 𝛼𝛼0𝐸𝐸

= �𝐵𝐵
𝑚𝑚 𝐶𝐶𝑚𝑚
𝑂𝑂 𝐷𝐷𝑚𝑚� + 𝛼𝛼𝑚𝑚−1 �

𝐵𝐵𝑚𝑚−1 𝐶𝐶𝑚𝑚−1
𝑂𝑂 𝐷𝐷𝑚𝑚−1� + ⋯+ 𝛼𝛼0 �

𝐵𝐵0 𝐶𝐶0
𝑂𝑂 𝐷𝐷0�

= �𝐵𝐵
𝑚𝑚 + 𝛼𝛼𝑚𝑚−1𝐵𝐵𝑚𝑚−1 + ⋯+ 𝛼𝛼0𝐸𝐸𝑑𝑑 ∗

𝑂𝑂 𝐷𝐷𝑚𝑚 + 𝛼𝛼𝑚𝑚−1𝐷𝐷𝑚𝑚−1 + ⋯+ 𝛼𝛼0𝐸𝐸𝑛𝑛−𝑑𝑑
�

= �𝜇𝜇𝐴𝐴
(𝐵𝐵) ∗
𝑂𝑂 𝜇𝜇𝐴𝐴(𝐷𝐷)�

 

[∗代表某个 𝑑𝑑 × (𝑛𝑛 − 𝑑𝑑) 矩阵] 

⇒ 𝜇𝜇𝐴𝐴(𝐵𝐵) = 0 且 𝜇𝜇𝐴𝐴(𝐷𝐷) = 0 

⇒ 𝜇𝜇𝐵𝐵│𝜇𝜇𝐴𝐴 且 𝜇𝜇𝐷𝐷│𝜇𝜇𝐴𝐴  �定理 2.2(𝑖𝑖)� 

(𝑖𝑖𝑖𝑖)由(𝑖𝑖)可知  𝜇𝜇𝒜𝒜𝑖𝑖│𝜇𝜇𝐴𝐴, 𝑖𝑖 = 1, … ,𝑚𝑚 

于是 𝜇𝜇𝐴𝐴 是 𝜇𝜇𝐴𝐴1 , … , 𝜇𝜇𝐴𝐴𝑚𝑚  的公倍式 

设 𝑙𝑙 = lcm�𝜇𝜇𝐴𝐴1 , … ,𝜇𝜇𝐴𝐴𝑚𝑚�  �首一�, 则 𝑙𝑙 = 𝑞𝑞𝑖𝑖𝜇𝜇𝐴𝐴𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚 

𝑙𝑙(𝐴𝐴) = �
𝑙𝑙(𝐴𝐴1) 0

⋱
0 𝑙𝑙(𝐴𝐴𝑚𝑚)

�      [见(𝑖𝑖)的断言] 
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𝑙𝑙(𝐴𝐴𝑖𝑖) = �𝑞𝑞𝑖𝑖𝜇𝜇𝐴𝐴𝑖𝑖�(𝐴𝐴𝑖𝑖) = 𝑞𝑞𝑖𝑖(𝐴𝐴𝑖𝑖)𝜇𝜇𝐴𝐴𝑖𝑖(𝐴𝐴𝑖𝑖) = 𝑂𝑂 

于是 𝑙𝑙(𝐴𝐴𝑖𝑖) = 𝑂𝑂, 𝑖𝑖 = 1, … ,𝑚𝑚 

⇒ 𝑙𝑙(𝐴𝐴) = 𝑂𝑂 ⇒ 𝜇𝜇𝐴𝐴│𝑙𝑙  �定理 2.2(𝑖𝑖)� 

⇒ 𝜇𝜇𝐴𝐴 = 𝑙𝑙        ∎ 

  

【命题 3.3】命题 3.2 的线性算子版 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉) 

(𝑖𝑖)如果 𝑈𝑈 是 𝒜𝒜−子空间,ℬ = 𝒜𝒜│𝑈𝑈  则 𝜇𝜇ℬ│𝜇𝜇𝒜𝒜 

(𝑖𝑖𝑖𝑖)设 𝑈𝑈1, … ,𝑈𝑈𝑚𝑚 是 𝒜𝒜−子空间,且 𝑉𝑉 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑚𝑚 

令 𝒜𝒜𝑖𝑖 = 𝒜𝒜│𝑈𝑈𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚,则  𝜇𝜇𝒜𝒜 = lcm�𝜇𝜇𝒜𝒜1 , … ,𝜇𝜇𝒜𝒜𝑚𝑚� 

证：(𝑖𝑖) 设 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗  是 𝑈𝑈 的一组基，ℬ 在该基下的矩阵是 𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 

由定理 3.1 及其证明,  

𝒜𝒜在扩充基 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗ , 𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵是�𝐵𝐵 𝐶𝐶
𝑂𝑂 𝐷𝐷� 

由命题 3.2(𝑖𝑖),𝜇𝜇𝐵𝐵│𝜇𝜇𝐴𝐴, 由引理 3.2,𝜇𝜇ℬ│𝜇𝜇𝒜𝒜       

(𝑖𝑖𝑖𝑖)设 𝜇𝜇𝒜𝒜𝑖𝑖  在 𝑈𝑈𝑖𝑖  的某组基下的矩阵为 𝐴𝐴𝑖𝑖 

由定理 3.2 及其证明，𝒜𝒜 在 𝑉𝑉 的某组基下的矩阵为 

𝐴𝐴 = �
𝐴𝐴1 0

⋱
0 𝐴𝐴𝑚𝑚

� ,其中 𝐴𝐴𝑖𝑖  是 𝒜𝒜𝑖𝑖  的某个矩阵 

由引理 3.2, 𝜇𝜇𝒜𝒜𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚 

于是由命题 3.2,𝜇𝜇𝒜𝒜 = lcm�𝜇𝜇𝒜𝒜1 , … , 𝜇𝜇𝒜𝒜𝑚𝑚�        ∎ 
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§4 特征子空间 

§4.1 特征向量 

【定义 4.1.1】特征向量 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝑣⃗𝑣 ∈ 𝑉𝑉 ∖ �0�⃗ �.   

如果 𝑣⃗𝑣 与 𝒜𝒜(𝑣⃗𝑣) 线性相关，则称 𝑣⃗𝑣 是 𝒜𝒜 的特征向量 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

 

【引理 4.1】特征向量的判定和性质 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝑣⃗𝑣 ∈ 𝑉𝑉 ∖ �0�⃗ � 

𝑣⃗𝑣 是 𝒜𝒜 的特征向量⇔ ∃𝜆𝜆 ∈ 𝐹𝐹,使得 𝒜𝒜(𝑣⃗𝑣) = 𝜆𝜆𝑣⃗𝑣 

证： ⇒:设𝑣⃗𝑣 是 𝒜𝒜 的特征向量， 

则∃𝛼𝛼1,𝛼𝛼2 不全为零，使得 𝛼𝛼1𝑣⃗𝑣 + 𝛼𝛼2𝒜𝒜(𝑣⃗𝑣) = 0�⃗  

∵ 𝑣𝑣 ≠ 0�⃗    ∴ 𝛼𝛼2 ≠ 0     𝒜𝒜(𝑣⃗𝑣) = −
𝛼𝛼1
𝛼𝛼2
𝑣⃗𝑣 

 令 𝜆𝜆 = −
𝛼𝛼1
𝛼𝛼2

 即可 

⇐:显然     ∎  

 

【命题 4.1】特征向量生成不变子空间 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝑣⃗𝑣 ∈ 𝑉𝑉,  

𝑣⃗𝑣是 𝒜𝒜 的特征向量⇔ ⟨𝑣⃗𝑣⟩是 𝒜𝒜 的一维不变子空间 

证： ⇒:由引理 4.1,∃𝜆𝜆 ∈ 𝐹𝐹,使得 𝒜𝒜(𝑣⃗𝑣) = 𝜆𝜆𝑣⃗𝑣. 

∀𝑢𝑢�⃗ ∈ ⟨𝑣⃗𝑣⟩,∃𝛼𝛼 ∈ 𝐹𝐹,使得 𝑢𝑢�⃗ = 𝛼𝛼𝑣⃗𝑣 

𝒜𝒜(𝑢𝑢�⃗ ) = 𝒜𝒜(𝛼𝛼𝑣⃗𝑣) = 𝛼𝛼𝒜𝒜(𝑣⃗𝑣) = 𝛼𝛼𝛼𝛼𝑣⃗𝑣 ∈ ⟨𝑣⃗𝑣⟩ 
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⇒ ⟨𝑣⃗𝑣⟩ 是𝒜𝒜−子空间 

∵ 𝑣⃗𝑣 ≠ 0�⃗    ∴ dim⟨𝑣⃗𝑣⟩ = 1 

⇐:设 ⟨𝑣⃗𝑣⟩是一维 𝒜𝒜−子空间,  

则 𝑣⃗𝑣 ≠ 0�⃗ ,𝒜𝒜(𝑣⃗𝑣) ∈ ⟨𝑣⃗𝑣⟩ 

即 ∃𝜆𝜆 ∈ 𝐹𝐹,使得 𝒜𝒜(𝑣⃗𝑣) = 𝜆𝜆𝑣⃗𝑣 

由引理 4.1, 𝑣⃗𝑣 是 𝒜𝒜 的特征向量       ∎ 
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§4.2 特征向量的计算 

【方法】计算所有特征向量 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),在 𝑉𝑉 的基底  𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  下的矩阵是 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 

设 𝑣⃗𝑣 = 𝑣𝑣1𝑒𝑒1���⃗ + ⋯+ 𝑣𝑣𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ≠ 0�⃗  

𝑣⃗𝑣 是 𝒜𝒜 的特征向量⇔ ∃𝜆𝜆 ∈ 𝐹𝐹,𝒜𝒜(𝑣⃗𝑣) = 𝜆𝜆𝑣⃗𝑣    �引理 4.1� 

⇔ ∃𝜆𝜆 ∈ 𝐹𝐹, 𝐴𝐴�
𝑣𝑣1
⋮
𝑣𝑣𝑛𝑛
� = 𝜆𝜆 �

𝑣𝑣1
⋮
𝑣𝑣𝑛𝑛
� 

⇔ ∃𝜆𝜆 ∈ 𝐹𝐹, (𝜆𝜆𝜆𝜆 − 𝐴𝐴)�
𝑣𝑣1
⋮
𝑣𝑣𝑛𝑛
� = �

0
⋮
0
�        [∗] 

[∗]有非平凡解⇔ |𝜆𝜆𝜆𝜆 − 𝐴𝐴| = 0 

① 求 𝜆𝜆 ∈ 𝐹𝐹,使得|𝜆𝜆𝜆𝜆 − 𝐴𝐴| = 0  [∗∗] 

② 对满足[∗∗]的每个𝜆𝜆,求[∗]的解空间 𝑉𝑉𝜆𝜆 

③ 所有𝑉𝑉𝜆𝜆中的非零向量即为 𝒜𝒜 的特征向量 

 

【定义 4.2.1】特征多项式 

设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹), 𝑡𝑡 是未定元, 

多项式 |𝑡𝑡𝑡𝑡 − 𝐴𝐴| ∈ 𝐹𝐹[𝑡𝑡]称为 𝐴𝐴 的特征多项式,记为 𝒳𝒳𝐴𝐴(𝑡𝑡)        

(𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

𝒳𝒳𝐴𝐴(𝑡𝑡)在 𝐹𝐹 中的根称为 𝐴𝐴 的特征根�值�  

(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

 

【例 4.2.1】特征多项式的简单性质 

设 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
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𝒳𝒳𝐴𝐴(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = �

𝑡𝑡 − 𝑎𝑎11 −𝑎𝑎12 ⋯ −𝑎𝑎1𝑛𝑛
−𝑎𝑎21 𝑡𝑡 − 𝑎𝑎22 ⋯ −𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

−𝑎𝑎𝑛𝑛1 −𝑎𝑎𝑛𝑛2 ⋯ 𝑡𝑡 − 𝑎𝑎𝑛𝑛𝑛𝑛

� 

𝒳𝒳𝐴𝐴(𝑡𝑡)是 𝑛𝑛 次多项式且首一 

𝒳𝒳𝐴𝐴(0) = |−𝐴𝐴| = (−1)𝑛𝑛|𝐴𝐴| 

|𝜆𝜆𝜆𝜆 − 𝐴𝐴| = �

𝜆𝜆 − 𝑎𝑎11 −𝑎𝑎12 ⋯ −𝑎𝑎1𝑛𝑛
−𝑎𝑎21 𝜆𝜆 − 𝑎𝑎22 ⋯ −𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

−𝑎𝑎𝑛𝑛1 −𝑎𝑎𝑛𝑛2 ⋯ 𝜆𝜆 − 𝑎𝑎𝑛𝑛𝑛𝑛

� 

⇒ |𝜆𝜆𝜆𝜆 − 𝐴𝐴| = 𝒳𝒳𝐴𝐴(𝜆𝜆) 

⇒ |𝜆𝜆𝜆𝜆 − 𝐴𝐴| = 0 ⇔ 𝜆𝜆 是 𝒳𝒳𝐴𝐴(𝑡𝑡)的根，即特征值 

 

【命题 4.2】特征多项式相似不变性 

设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),则 𝒳𝒳𝐴𝐴是相似不变量 

证：设 𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)且 𝐵𝐵 ~𝑠𝑠𝐴𝐴,  

则∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹)使得 𝐵𝐵 = 𝑃𝑃−1𝐴𝐴𝐴𝐴 

𝒳𝒳𝐵𝐵(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐵𝐵| = |𝑡𝑡𝑡𝑡 − 𝑃𝑃−1𝐴𝐴𝐴𝐴| = |𝑡𝑡𝑃𝑃−1𝐸𝐸𝐸𝐸 − 𝑃𝑃−1𝐴𝐴𝐴𝐴| 

= |𝑃𝑃−1(𝑡𝑡𝑡𝑡 − 𝐴𝐴)𝑃𝑃| = |𝑃𝑃−1||𝑡𝑡𝑡𝑡 − 𝐴𝐴||𝑃𝑃| = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = 𝒳𝒳𝐴𝐴(𝑡𝑡) 

注：设𝒜𝒜 ∈ ℒ(𝑉𝑉),𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)是 𝒜𝒜 在 𝑉𝑉 的两组不同基下的矩阵  

则 𝐴𝐴~𝑠𝑠𝐵𝐵 ⇒ 𝒳𝒳𝐴𝐴 = 𝒳𝒳𝐵𝐵     ∎ 

 

【定义 4.2.2】线性算子的特征多项式 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝐴𝐴 是 𝒜𝒜 的某个矩阵 

则 𝒳𝒳𝐴𝐴(𝑡𝑡)也称为 𝒜𝒜 的特征多项式，记为 𝒳𝒳𝒜𝒜(𝑡𝑡)   �特征根同理� 

注：deg𝒳𝒳𝐴𝐴 = 𝑛𝑛 ,且首一 

注：设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),则 𝐴𝐴 可以看成线性算子 
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𝒜𝒜:𝐹𝐹𝑛𝑛 → 𝐹𝐹𝑛𝑛, �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦ 𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

从而 𝐴𝐴 也有特征向量的概念.   

 

【例 4.2.1】二维求特征根和特征向量例 

𝒜𝒜:ℝ2 → ℝ2,𝑒𝑒1���⃗ , 𝑒𝑒2���⃗  为 ℝ2 的一组基 

满足 𝒜𝒜(𝑒𝑒1���⃗ ) = 𝑒𝑒1���⃗ + 𝑒𝑒2���⃗ ,𝒜𝒜(𝑒𝑒2���⃗ ) = 𝑒𝑒1���⃗ − 𝑒𝑒2���⃗ ,𝒜𝒜 ∈ ℒ(ℝ2) 

求 𝒜𝒜 的所有特征根和特征向量 

解：�𝒜𝒜(𝑒𝑒1���⃗ ),𝒜𝒜(𝑒𝑒2���⃗ )� = (𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ) �1 1
1 −1��������

𝐴𝐴

 

𝒳𝒳𝒜𝒜(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = �𝑡𝑡 − 1 −1
𝑡𝑡 + 1 𝑡𝑡 + 1� = (𝑡𝑡 − 1)(𝑡𝑡 + 1)− 1 = 𝑡𝑡2 − 2 

特征值 𝜆𝜆1 = √2,𝜆𝜆2 = −√2 

𝜆𝜆1 = √2 ⇒ �√2− 1 −1
−1 √2 + 1

� �
𝑥𝑥1
𝑥𝑥2� = �0

0� 

�因为矩阵行列式为零，两行线性相关，所以只要解一个就行� 

�√2− 1�𝑥𝑥1 − 𝑥𝑥2 = 0 ⇒ �
𝑥𝑥1 = 𝛼𝛼

𝑥𝑥2 = 𝛼𝛼�√2− 1� ,𝛼𝛼 ∈ 𝐹𝐹 

𝜆𝜆1 对应的特征向量为 𝛼𝛼�𝑒𝑒1���⃗ + �√2− 1�𝑒𝑒2���⃗ �,𝛼𝛼 ≠ 0 

类似地, 𝜆𝜆2对应的特征向量为 𝛼𝛼�𝑒𝑒1���⃗ − �√2− 1�𝑒𝑒2���⃗ �,𝛼𝛼 ≠ 0 

 

【例 4.2.2】三维求特征根和特征向量例 

𝒜𝒜 ∈ ℒ(ℂ3), 𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗  是 ℂ3 的一组基  

𝒜𝒜(𝑒𝑒1���⃗ ) = 𝑒𝑒1���⃗ ,𝒜𝒜(𝑒𝑒2���⃗ ) = 𝑒𝑒2���⃗ ,𝒜𝒜(𝑒𝑒3���⃗ ) = 𝑒𝑒2���⃗ + 𝑒𝑒3���⃗  

求 𝒜𝒜 的特征根和特征向量 
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解：�𝒜𝒜(𝑒𝑒1���⃗ ),𝒜𝒜(𝑒𝑒2���⃗ ),𝒜𝒜(𝑒𝑒3���⃗ )� = (𝑒𝑒1���⃗ ,𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ )�
1 0 0
0 1 1
0 0 1

�
�������

𝐴𝐴

 

𝒳𝒳𝒜𝒜(𝑡𝑡) = det�
𝑡𝑡 − 1 0 0

0 𝑡𝑡 − 1 −1
0 0 𝑡𝑡 − 1

� = (𝑡𝑡 − 1)3 

特征根 𝜆𝜆 = 1 

(𝜆𝜆𝜆𝜆 − 𝐴𝐴)�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = �

0
0
0
� ,�

0 0 0
0 0 −1
0 0 0

��
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = �

0
0
0
� 

解为 �
𝑥𝑥1
𝑥𝑥2
0
� , 𝑥𝑥1,𝑥𝑥2 ∈ 𝐹𝐹 

特征向量为 𝛼𝛼1𝑒𝑒1���⃗ + 𝛼𝛼2𝑒𝑒2���⃗ ,𝛼𝛼1,𝛼𝛼2 ∈ 𝐹𝐹 不全为零 
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§4.3 特征子空间 

【定义 4.3.1】关于特征根的特征子空间 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝜆𝜆 是 𝒜𝒜 在 𝐹𝐹 中的特征根 

𝑉𝑉𝜆𝜆 ≔ {𝑣⃗𝑣 ∈ 𝑉𝑉|𝒜𝒜(𝑣⃗𝑣) = 𝜆𝜆(𝑣⃗𝑣)} 

称 𝑉𝑉𝜆𝜆是 𝒜𝒜 关于 𝜆𝜆 的特征子空间 

 

【命题 4.3】特征子空间是不变的 

设 𝜆𝜆 是线性算子 𝒜𝒜 在 𝐹𝐹 中的特征值 

则𝑉𝑉𝜆𝜆 是 𝒜𝒜−子空间 

证：验证  𝑉𝑉𝜆𝜆 是子空间 

设 𝛼𝛼1,𝛼𝛼2 ∈ 𝐹𝐹,𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ∈ 𝑉𝑉𝜆𝜆 

𝒜𝒜(𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ) = 𝛼𝛼1𝒜𝒜(𝑣𝑣1����⃗ ) + 𝛼𝛼2𝒜𝒜(𝑣𝑣2����⃗ ) = 𝛼𝛼1𝜆𝜆𝑣𝑣1����⃗ + 𝑎𝑎2𝜆𝜆𝑣𝑣2����⃗  

= 𝜆𝜆(𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ) ⇒ 𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ∈ 𝑉𝑉𝜆𝜆 ⇒ 𝑉𝑉𝜆𝜆是子空间  

验证:𝑉𝑉𝜆𝜆是 𝒜𝒜−不变的 

设 𝑣⃗𝑣 ∈ 𝑉𝑉𝜆𝜆,𝒜𝒜(𝑣⃗𝑣) = 𝜆𝜆𝑣⃗𝑣 ∈ 𝑉𝑉𝜆𝜆 ⇒ 𝑉𝑉𝜆𝜆是 𝒜𝒜−不变的       ∎ 

 

【定理 4.1】特征子空间交零 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝜆𝜆1, … , 𝜆𝜆𝑚𝑚 ∈ 𝐹𝐹 是 𝒜𝒜 的若干个互不相同的特征根， 

则𝑉𝑉𝜆𝜆1 + ⋯+ 𝑉𝑉𝜆𝜆𝑚𝑚是直和 

证：对 𝑚𝑚 归纳,𝑚𝑚 = 1 时定理成立 

设 𝑚𝑚− 1 时定理成立 

于是 𝑉𝑉𝜆𝜆1 +⋯+ 𝑉𝑉𝜆𝜆𝑚𝑚−1  是直和 

设 𝑣𝑣1����⃗ ∈ 𝑉𝑉𝜆𝜆1 , … , 𝑣𝑣𝑚𝑚−1����������⃗ ∈ 𝑉𝑉𝜆𝜆𝑚𝑚−1 ,𝑣𝑣𝑚𝑚�����⃗ ∈ 𝑉𝑉𝜆𝜆𝑚𝑚 
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使得 𝑣𝑣1����⃗ + ⋯+ 𝑣𝑣𝑚𝑚−1����������⃗ + 𝑣𝑣𝑚𝑚�����⃗ = 0�⃗       �①� 

𝒜𝒜 作用于①可得 

𝒜𝒜(𝑣𝑣1����⃗ ) + ⋯+ 𝒜𝒜(𝑣𝑣𝑚𝑚−1����������⃗ ) + 𝒜𝒜(𝑣𝑣𝑚𝑚�����⃗ ) = 𝒜𝒜�0�⃗ � 

即 𝜆𝜆1𝑣𝑣1����⃗ + ⋯+ 𝜆𝜆𝑚𝑚−1𝑣𝑣𝑚𝑚−1����������⃗ + 𝜆𝜆𝑚𝑚𝑣𝑣𝑚𝑚�����⃗ = 0�⃗        �②� 

�𝜆𝜆𝑚𝑚 × ①−②�得    

 (𝜆𝜆𝑚𝑚 − 𝜆𝜆1)𝑣𝑣1����⃗ +⋯+ (𝜆𝜆𝑚𝑚 − 𝜆𝜆𝑚𝑚−1)𝑣𝑣𝑚𝑚−1����������⃗ = 0�⃗  

由归纳假设及第一章命题 4.1 

(𝜆𝜆𝑚𝑚 − 𝜆𝜆1)𝑣𝑣1����⃗ = ⋯ = (𝜆𝜆𝑚𝑚 − 𝜆𝜆𝑚𝑚−1)𝑣𝑣𝑚𝑚−1����������⃗ = 0�⃗  

∵ 𝜆𝜆𝑚𝑚 − 𝜆𝜆𝑖𝑖 ≠ 0, 𝑖𝑖 = 1, … ,𝑚𝑚− 1 

∴ 𝑣𝑣1����⃗ = ⋯ = 𝑣𝑣𝑚𝑚−1����������⃗ = 0�⃗  

再由 ①，𝑣𝑣𝑚𝑚�����⃗ = 0�⃗  

由第一章命题 4.1, 𝑉𝑉𝜆𝜆1 + ⋯+ 𝑉𝑉𝜆𝜆𝑚𝑚−1  是直和 

 

【定义 4.3.2】几何重数 代数重数 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝜆𝜆 ∈ 𝐹𝐹 是 𝒜𝒜 的特征根 

dim𝑉𝑉𝜆𝜆称为 𝜆𝜆 的几何重数 

因子 (𝑡𝑡 − 𝜆𝜆)在 𝒳𝒳𝒜𝒜(𝑡𝑡)中的重数称为 𝜆𝜆 的代数重数 

 

【命题 4.4】几何重数不超过代数重数 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝜆𝜆 ∈ 𝐹𝐹是 𝒜𝒜 的特征值 

则 𝜆𝜆 的几何重数 ≤ 𝜆𝜆 的代数重数 

证：设 𝑑𝑑 = dim𝑉𝑉𝜆𝜆 , 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗是 𝑉𝑉𝜆𝜆的一组基 

把它扩充为 𝑉𝑉 的一组基 𝑒𝑒1���⃗  , … 𝑒𝑒𝑑𝑑����⃗ ,𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗  

𝒜𝒜(𝑒𝑒𝚤𝚤��⃗ ) = 𝜆𝜆𝑒𝑒𝚤𝚤��⃗ , 𝑖𝑖 = 1, … ,𝑑𝑑 
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⇒ �𝒜𝒜(𝑒𝑒1���⃗ ), … ,𝒜𝒜(𝑒𝑒𝑑𝑑����⃗ ),𝒜𝒜(𝑒𝑒𝑑𝑑+1��������⃗ ), … ,𝒜𝒜(𝑒𝑒𝑛𝑛����⃗ )� 

= (𝑒𝑒1���⃗ , … . , 𝑒𝑒𝑑𝑑����⃗ ,𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ) �𝜆𝜆𝐸𝐸𝑑𝑑 𝐵𝐵
𝑂𝑂 𝐶𝐶��������

𝐴𝐴

 

𝒳𝒳𝒜𝒜(𝑡𝑡) = |𝑡𝑡𝐸𝐸𝑛𝑛 − 𝐴𝐴| = �𝑡𝑡 �𝐸𝐸𝑑𝑑 𝑂𝑂
𝑂𝑂 𝐸𝐸𝑛𝑛−𝑑𝑑

� − �𝜆𝜆𝐸𝐸𝑑𝑑 𝐵𝐵
𝑂𝑂 𝐶𝐶�� 

= �𝑡𝑡𝐸𝐸𝑑𝑑 − 𝜆𝜆𝐸𝐸𝑑𝑑 −𝐵𝐵
𝑂𝑂 𝑡𝑡𝐸𝐸𝑛𝑛−𝑑𝑑 − 𝐶𝐶� = (𝑡𝑡 − 𝜆𝜆)𝑑𝑑|𝑡𝑡𝐸𝐸𝑛𝑛−𝑑𝑑 − 𝐶𝐶| 

⇒ 𝑑𝑑 ≤ 𝜆𝜆 的代数重数      ∎ 

 

【例 4.3.1】几何与代数重数例 

在§4.2 节的两个例子中， 

𝜆𝜆1 = √2, 𝑉𝑉𝜆𝜆1 = �𝑒𝑒1���⃗ + �√2− 1�𝑒𝑒2���⃗ � 

𝜆𝜆2 = −√2, 𝑉𝑉𝜆𝜆2 = �𝑒𝑒1���⃗ − �√2− 1�𝑒𝑒2���⃗ � 

𝜆𝜆1, 𝜆𝜆2 的几何和代数重数都是 1 

𝑉𝑉𝜆𝜆1 + 𝑉𝑉𝜆𝜆2 = 𝑉𝑉𝜆𝜆1 ⊕ 𝑉𝑉𝜆𝜆2 = ℝ2    

𝜆𝜆 = 1,𝑉𝑉𝜆𝜆 = ⟨𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ⟩ 

𝑉𝑉𝜆𝜆 ⊂ ℂ3,𝑉𝑉𝜆𝜆 ≠ ℂ3 

𝜆𝜆的几何重数是 2，代数重数是 3 
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§4.4 特征多项式中的相似不变量 

【命题 4.5】特征多项式的相似不变量 

设 𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),𝐴𝐴~𝑠𝑠𝐵𝐵 ⇒ 𝒳𝒳𝐴𝐴(𝑡𝑡) = 𝒳𝒳𝐵𝐵(𝑡𝑡)  [命题 4.2] 

𝐴𝐴 的特征根是相似不变量 

𝒳𝒳𝐴𝐴(𝑡𝑡)的系数是相似不变量 

设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
, 𝒳𝒳𝐴𝐴(𝑡𝑡) = �

𝑡𝑡 − 𝑎𝑎11 −𝑎𝑎12 ⋯ −𝑎𝑎1𝑛𝑛
−𝑎𝑎21 𝑡𝑡 − 𝑎𝑎22 ⋯ −𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

−𝑎𝑎𝑛𝑛1 −𝑎𝑎𝑛𝑛2 ⋯ 𝑡𝑡 − 𝑎𝑎𝑛𝑛𝑛𝑛

� 

𝒳𝒳𝒜𝒜(𝑡𝑡) = 𝑡𝑡𝑛𝑛 + 𝛼𝛼𝑛𝑛−1𝑡𝑡𝑛𝑛−1 + ⋯+ 𝛼𝛼1𝑡𝑡 + 𝛼𝛼0 ,𝛼𝛼𝑖𝑖 ∈ 𝐹𝐹 

𝛼𝛼𝑛𝑛−1 = − tr𝐴𝐴 

𝛼𝛼𝑛𝑛−2 是所有二阶主子式之和 

𝛼𝛼𝑛𝑛−𝑖𝑖 = (−1)𝑖𝑖 × 所有 𝑖𝑖 阶主子式之和 

𝛼𝛼0 = (−1)𝑛𝑛 det𝐴𝐴  

于是 𝐴𝐴 的各阶主子式之和也是相似不变量. 

特别地,𝐴𝐴 可逆⇔𝒳𝒳𝐴𝐴(0) ≠ 0, 即 0 不是 𝐴𝐴 的特征根 

 

【例 4.4.1】秩 1 矩阵的特征值 

设 𝐴𝐴 = �
𝛼𝛼1
⋮
𝛼𝛼𝑛𝑛
� (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛), 𝛼𝛼𝑖𝑖 ∈ 𝐹𝐹,求 𝐴𝐴 的特征值 

解： ∵ rank𝐴𝐴 ≤ 1  ∴当 𝑘𝑘 > 2 时， 𝐴𝐴的所有主子式都为零 

于是 𝒳𝒳𝐴𝐴 = 𝑡𝑡𝑛𝑛 − (tr𝐴𝐴)𝑡𝑡𝑛𝑛−1 

𝐴𝐴 有两个特征根 0 和 tr𝐴𝐴 

其中 tr𝐴𝐴 = 𝛼𝛼12 + ⋯+ 𝛼𝛼𝑛𝑛2  
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§5 特征子空间的应用 

§5.1 线性算子和矩阵的对角化 

【定义 5.1.1】谱 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉)， 𝒜𝒜 在 𝐹𝐹 中互不相同的特征根的集合 

称为 𝒜𝒜 在 𝐹𝐹 上的谱(spectrum)， 记为 spec𝐹𝐹(𝒜𝒜) 

类似地可定义 spec𝐹𝐹 𝐴𝐴， 其中 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 

 

【例 5.1.1】不同基域下的谱 

设 𝐴𝐴 = �

0 1 0 0
0 0 1 0
0 0 0 1
0 0 −1 0

� ∈ 𝑀𝑀4(ℚ) ⊂ 𝑀𝑀4(ℝ) 

𝒳𝒳𝐴𝐴(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = �

𝑡𝑡 −1 0 0
0 𝑡𝑡 −1 0
0 0 𝑡𝑡 −1
0 0 1 𝑡𝑡

� = 𝑡𝑡2(𝑡𝑡2 + 1) 

specℚ 𝐴𝐴 = {0}， specℝ 𝐴𝐴 = {0}， specℂ 𝐴𝐴 = �0，√−1，− √−1� 

 

【定义 5.1.2】可对角化 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉)， 如果 𝒜𝒜 在 𝑉𝑉 的某组基下的矩阵是对角矩阵 

则称 𝒜𝒜 是可对角化的 

设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)，如果 𝐴𝐴 相似于某个 𝐹𝐹 上的对角矩阵 

则称 𝐴𝐴 在 𝐹𝐹 上是可对角化的 

注：𝐴𝐴 在 𝐹𝐹 上可对角化⇔ ∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹),对角的𝐷𝐷 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 

使得 𝐴𝐴 = 𝑃𝑃−1𝐷𝐷𝐷𝐷 
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【定理 5.1】可对角化的判定 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉)， 则下列断言等价 

(𝑖𝑖) 𝒜𝒜 可对角化 

(𝑖𝑖𝑖𝑖) 𝒜𝒜 有 𝑛𝑛 个线性无关的特征向量 [𝑛𝑛 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉] 

(𝑖𝑖𝑖𝑖𝑖𝑖) 𝑉𝑉 = � 𝑉𝑉𝜆𝜆
λ∈spec𝐴𝐴

 

证：(𝑖𝑖) ⇒ (𝑖𝑖𝑖𝑖)： 

设 𝒜𝒜 在 𝑉𝑉 的基底 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗  下的矩阵是�
𝛼𝛼1 𝑂𝑂

⋱
𝑂𝑂 𝛼𝛼𝑛𝑛

� 

则�𝒜𝒜(𝜀𝜀1���⃗ ), … ,𝒜𝒜(𝜀𝜀𝑛𝑛���⃗ )� = (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ )�
𝛼𝛼1 𝑂𝑂

⋱
𝑂𝑂 𝛼𝛼𝑛𝑛

� 

𝒜𝒜�𝜀𝜀𝚥𝚥��⃗ � = 𝛼𝛼𝑖𝑖𝜀𝜀𝚥𝚥��⃗，  𝑗𝑗 = 1, … ,𝑛𝑛 

于是 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗  是 𝒜𝒜 的特征向量 

(𝑖𝑖𝑖𝑖) ⇒ (𝑖𝑖𝑖𝑖𝑖𝑖)：设 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑛𝑛����⃗  是 𝒜𝒜 的 𝑛𝑛 个线性无关的特征向量 

不妨设 𝑣𝑣1����⃗ , … , 𝑣𝑣𝚤𝚤1����⃗  对应特征根 𝜆𝜆1 

𝑣𝑣𝚤𝚤1+1���������⃗ , … , 𝑣𝑣𝚤𝚤2����⃗  对应特征根 𝜆𝜆2 ⋯ 

𝑣𝑣𝚤𝚤𝑚𝑚−1+1���������������⃗ , … ,𝑣𝑣𝚤𝚤𝑚𝑚������⃗  对应特征根 𝜆𝜆𝑚𝑚 

且 𝑖𝑖𝑚𝑚 = 𝑛𝑛, 𝜆𝜆1，… , 𝜆𝜆𝑚𝑚 ∈ 𝐹𝐹  两两不同 

设 spec𝐹𝐹 𝒜𝒜 = {𝜆𝜆1, … , 𝜆𝜆𝑚𝑚, 𝜆𝜆𝑚𝑚+1, … , 𝜆𝜆𝑘𝑘} 

令 𝑈𝑈1 = �𝑣𝑣1����⃗ , … , 𝑣𝑣𝚤𝚤1����⃗ �，𝑈𝑈2 = �𝑣𝑣𝚤𝚤1+1 ����������⃗ , … , 𝑣𝑣𝚤𝚤2����⃗ �，…，𝑈𝑈𝑚𝑚 = �𝑣𝑣𝚤𝚤𝑚𝑚+1�����������⃗ , … ,𝑣𝑣𝚤𝚤𝑚𝑚������⃗ � 

则 𝑈𝑈𝑖𝑖 ⊂ 𝑉𝑉𝜆𝜆𝑖𝑖，  𝑖𝑖 = 1, … ,𝑚𝑚 

∵ 𝑉𝑉𝜆𝜆1 + ⋯+ 𝑉𝑉𝜆𝜆𝑚𝑚是直和   ∴ 𝑈𝑈1 +⋯+ 𝑈𝑈𝑚𝑚 是直和 �第一章命题 4.1� 

dim(𝑈𝑈1 + ⋯+ 𝑈𝑈𝑚𝑚) = dim𝑈𝑈1 + ⋯+ dim𝑈𝑈𝑚𝑚  �第一章命题 4.2� 

= 𝑖𝑖1 + 𝑖𝑖2 − 𝑖𝑖1 + ⋯+ 𝑖𝑖𝑚𝑚 − 𝑖𝑖𝑚𝑚−1 = 𝑖𝑖𝑚𝑚 = 𝑛𝑛 

172／363



李子明老师的线性代数讲义 

 

∵ 𝑛𝑛 = dim𝑉𝑉    ∴ 𝑈𝑈1 +⋯𝑈𝑈𝑚𝑚 = 𝑉𝑉 ⇒ 𝑉𝑉𝜆𝜆1 + ⋯+ 𝑉𝑉𝜆𝜆𝑚𝑚 = 𝑉𝑉 

若 𝑘𝑘 > 𝑚𝑚,则dim𝑉𝑉𝜆𝜆𝑚𝑚+1 > 0 

由定理 4.1， 𝑉𝑉𝜆𝜆1 + ⋯+ 𝑉𝑉𝜆𝜆𝑚𝑚 + 𝑉𝑉𝜆𝜆𝑚𝑚+1  是直和 

⇒ dim𝑉𝑉 > 𝑛𝑛,矛盾 

于是 spec𝐹𝐹 𝒜𝒜 = {𝜆𝜆1, … , 𝜆𝜆𝑚𝑚} 

(𝑖𝑖𝑖𝑖𝑖𝑖) ⇒ (𝑖𝑖) 

设 spec𝐹𝐹 𝒜𝒜 = {𝜆𝜆1, … , 𝜆𝜆𝑚𝑚} 且 𝑉𝑉 = 𝑉𝑉𝜆𝜆1 ⊕⋯⊕𝑉𝑉𝜆𝜆𝑚𝑚    [∗]  

设𝑒𝑒𝚥𝚥1�����⃗ , … , 𝑒𝑒𝚥𝚥𝑘𝑘𝚥𝚥������⃗   是 𝑉𝑉𝜆𝜆𝑗𝑗的基，其中 𝑗𝑗 = 1, … ,𝑚𝑚 

由[∗]， 𝑒𝑒11�����⃗ , … , 𝑒𝑒𝑘𝑘1�����⃗ , … , 𝑒𝑒𝑚𝑚1�������⃗ , … , 𝑒𝑒𝑚𝑚𝑘𝑘𝑚𝑚����������⃗  是 𝑉𝑉 的一组基 

∀𝑗𝑗 ∈ {1, … ,𝑚𝑚},𝑘𝑘 ∈ �1, … , 𝑘𝑘𝑗𝑗�,𝒜𝒜�𝑒𝑒𝚥𝚥𝚥𝚥�����⃗ � = 𝜆𝜆𝑗𝑗𝑒𝑒𝚥𝚥𝚥𝚥�����⃗  

于是在该基下 𝒜𝒜 的矩阵是 

�
𝜆𝜆1𝐸𝐸𝑘𝑘1 𝑂𝑂

⋱
𝑂𝑂 𝜆𝜆𝑚𝑚𝐸𝐸𝑚𝑚

�        ∎ 

 

【推论 5.1】n 个不同特征根即可对角化 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉)，dim𝑉𝑉 = 𝑛𝑛  

如果 𝒜𝒜 在 𝐹𝐹 中有  𝑛𝑛 个互不相同的特征根 

则 𝒜𝒜 可对角化 

证：设 spec𝐹𝐹 𝒜𝒜 = {𝜆𝜆1, … , 𝜆𝜆𝑛𝑛} 

∵ 𝜆𝜆1, … , 𝜆𝜆𝑛𝑛 互不相同， 

由定理 4.1,𝑉𝑉𝜆𝜆1 + ⋯+ 𝑉𝑉𝜆𝜆𝑛𝑛是直和 

∵ dim𝑉𝑉𝜆𝜆𝑖𝑖 ≥ 1，  𝑖𝑖 = 1, … ,𝑛𝑛 

∴ dim�𝑉𝑉𝜆𝜆1 +⋯+ 𝑉𝑉𝜆𝜆𝑛𝑛� ≥ 𝑛𝑛 

∵ 𝑉𝑉𝜆𝜆1 + ⋯+ 𝑉𝑉𝜆𝜆𝑛𝑛 ⊂ 𝑉𝑉, dim𝑉𝑉 = 𝑛𝑛 
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∴ 𝑉𝑉 = 𝑉𝑉𝜆𝜆1 + ⋯+ 𝑉𝑉𝜆𝜆𝑛𝑛 = �𝑉𝑉𝜆𝜆𝑖𝑖
𝑛𝑛

𝑖𝑖=1

 

由定理 5.1，推论成立      ∎ 

 

注：𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 

𝐴𝐴 可对角化⇔ 𝐴𝐴 有 𝑛𝑛 个线性无关的特征向量 

如果 card(spec𝐹𝐹 𝐴𝐴) = 𝑛𝑛， 则 𝐴𝐴 可对角化 

 

【例 5.1.2】对角化矩阵例 

𝒜𝒜：ℝ3 → ℝ3 由下列关系确定 

�𝒜𝒜(𝑒𝑒1���⃗ )，𝒜𝒜(𝑒𝑒2���⃗ )，𝒜𝒜(𝑒𝑒3���⃗ )� = �𝑒𝑒1���⃗，𝑒𝑒2���⃗，𝑒𝑒3���⃗ � �
2 1 1
1 2 1
1 1 2

�
�������

𝐴𝐴

 

其中 𝑒𝑒1���⃗，𝑒𝑒2���⃗，𝑒𝑒3���⃗  是标准基 

问 𝒜𝒜 能否对角化？如果能，求 ℝ3的一组基， 

使 𝒜𝒜 在该基下的矩阵是对角矩阵。 

𝒳𝒳𝒜𝒜(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = �
𝑡𝑡 − 2 −1 −1
−1 𝑡𝑡 − 2 −1
−1 −1 𝑡𝑡 − 2

� = (𝑡𝑡 − 4)(𝑡𝑡 − 1)2 

𝒜𝒜 有两个特征根， 𝜆𝜆1 = 4，𝜆𝜆2 = 1 

由命题 4.1, dim𝑉𝑉𝜆𝜆1 = 1，  1 ≤ dim𝑉𝑉𝜆𝜆2 ≤ 2  

求 𝑉𝑉𝜆𝜆1的基 

�
2 −1 −1
−1 2 −1
−1 −1 2

��
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = �

0
0
0
�， 𝑉𝑉𝜆𝜆1 = ��

0
0
0
�� ≔ ⟨𝜀𝜀1���⃗ ⟩ 

求 𝑉𝑉𝜆𝜆2的基 

�
−1 −1 −1
−1 −1 −1
−1 −1 −1

��
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = �

0
0
0
�， 𝑉𝑉𝜆𝜆2 = ��

1
−1
0
�，�

0
1
−1

�� ≔ �𝜀𝜀2���⃗，𝜀𝜀3���⃗ � 
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3 = dim𝑉𝑉𝜆𝜆1 + dim𝑉𝑉𝜆𝜆2 = dim�𝑉𝑉𝜆𝜆1 + 𝑉𝑉𝜆𝜆2� ⇒ 𝑉𝑉𝜆𝜆1 + 𝑉𝑉𝜆𝜆2 = ℝ3 

于是 𝒜𝒜 可对角化，在 𝜀𝜀1���⃗，𝜀𝜀2���⃗，𝜀𝜀3���⃗  下的矩阵是 �
4 0 0
0 1 0
0 0 1

�    ∎ 

 

【例 5.1.2】零约当块不能被对角化 

证明 

𝐴𝐴 =

⎝

⎜
⎛

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮  ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 1
0 0 0 0 0⎠

⎟
⎞

𝑛𝑛×𝑛𝑛

 当 𝑛𝑛 > 1 时不能被对角化 

𝒳𝒳𝒜𝒜(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = �
�

𝑡𝑡 −1 0 ⋯ 0
0 𝑡𝑡 −1 ⋯ 0
⋮ ⋮  ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ −1
0 0 0 0 𝑡𝑡

�
� = 𝑡𝑡𝑛𝑛 

特征根 𝜆𝜆 = 0，   

𝑉𝑉𝜆𝜆是

⎝

⎜
⎛

0 −1 0 ⋯ 0
0 0 −1 ⋯ 0
⋮ ⋮  ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ −1
0 0 0 0 0 ⎠

⎟
⎞

�����������������
𝐵𝐵

�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = �

0
⋮
0
�  的解空间 

rank𝐵𝐵 = 𝑛𝑛 − 1 ⇒ dim𝑉𝑉𝜆𝜆 = 𝑛𝑛 − rank𝐵𝐵 = 1 

∵ 𝑛𝑛 > 1    ∴ dim𝑉𝑉𝜆𝜆 < dim𝑉𝑉 = 𝑛𝑛,  

𝐴𝐴 不能对角化     ∎  

注：二维例子 �0 1
0 0�   
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【定理 5.2】可对角化的判定 2 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉)， 则 𝐴𝐴 可对角化⇔ 

(𝑖𝑖)𝒳𝒳𝐴𝐴(𝑡𝑡)在𝐹𝐹[𝑡𝑡] 中可以分解为一次因子之积 

(𝑖𝑖𝑖𝑖)∀𝜆𝜆 ∈ spec𝐹𝐹 𝐴𝐴， 𝜆𝜆 的几何重数 = 𝜆𝜆 的代数重数 

注：𝒳𝒳𝐴𝐴(𝑡𝑡) = (𝑡𝑡 − 𝜆𝜆1)𝑚𝑚1 ⋯ (𝑡𝑡 − 𝜆𝜆𝑘𝑘)𝑚𝑚𝑘𝑘，  

𝜆𝜆1，…，𝜆𝜆𝑘𝑘 ∈ 𝐹𝐹， 两两不同 

证： ⇒：设 𝒜𝒜 在某组基下矩阵为�
𝛼𝛼1 𝑂𝑂

⋱
𝑂𝑂 𝛼𝛼𝑛𝑛

 �
�����������

𝐵𝐵

 

𝒳𝒳𝒜𝒜(𝑡𝑡) = �𝑡𝑡𝑡𝑡 − �
𝛼𝛼1 𝑂𝑂

⋱
𝑂𝑂 𝛼𝛼𝑛𝑛

 �� = �
𝑡𝑡 − 𝛼𝛼1 𝑂𝑂

⋱
𝑂𝑂 𝑡𝑡 − 𝛼𝛼𝑛𝑛

� 

= (𝑡𝑡 − 𝛼𝛼1)⋯ (𝑡𝑡 − 𝛼𝛼𝑛𝑛) 

于是 (𝑖𝑖) 成立 

设 𝜆𝜆 在 𝛼𝛼1，…，𝛼𝛼𝑛𝑛 中出现了正好 𝑘𝑘次 

则 (𝑡𝑡 − 𝜆𝜆)𝑘𝑘│𝒳𝒳𝒜𝒜(𝑡𝑡) 且 (𝑡𝑡 − 𝜆𝜆)𝑘𝑘+1不整除𝒳𝒳𝒜𝒜(𝑡𝑡) 

于是 𝜆𝜆 的代数重数是 𝑘𝑘 

而 𝑉𝑉𝜆𝜆是 (𝜆𝜆𝜆𝜆 − 𝐵𝐵)�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = �

0
⋮
0
�的解空间 

𝜆𝜆 的几何重数 = dim𝑉𝑉𝜆𝜆 

∵ 𝜆𝜆 在 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 中出现 𝑘𝑘 次  

∴ rank  (𝜆𝜆𝜆𝜆 − 𝐵𝐵) = 𝑛𝑛 − 𝑘𝑘 ⇒ dim𝑉𝑉𝜆𝜆 = 𝑘𝑘 

�∵ 𝜆𝜆𝜆𝜆 − 𝐵𝐵 是对角阵，且在对角线上有 𝑘𝑘 个零� 

⇒ 𝜆𝜆 的几何重数 =  𝜆𝜆 的代数重数 

⇐：设 𝒳𝒳𝒜𝒜(𝑡𝑡) = (𝑡𝑡 − 𝜆𝜆1)𝑚𝑚1 ⋯ (𝑡𝑡 − 𝜆𝜆𝑘𝑘)𝑚𝑚𝑘𝑘， 

其中 𝜆𝜆1, . . , 𝜆𝜆𝑘𝑘 ∈ 𝐹𝐹 两两不同 
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𝑚𝑚1, . . ,𝑚𝑚𝑘𝑘 ∈ ℤ+ 且dim𝑉𝑉𝑖𝑖 = 𝑚𝑚𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑘𝑘 

dim�𝑉𝑉𝜆𝜆1 + ⋯+ 𝑉𝑉𝜆𝜆𝑘𝑘� = dim𝑉𝑉𝜆𝜆1 +⋯+ dim𝑉𝑉𝜆𝜆𝑘𝑘 

= 𝑚𝑚1 + ⋯+𝑚𝑚𝑘𝑘 = 𝑛𝑛 ⇒ 𝑉𝑉𝜆𝜆1 + ⋯+ 𝑉𝑉𝜆𝜆𝑘𝑘 = 𝑉𝑉       

�定理 4.1 和第一章命题 4.3�       ∎ 

 

【例 5.2.3】对角化的应用：求斐波那契数列 

第一卷 P72 例 3  设𝐴𝐴 = �0 1
1 1�， 求 𝐴𝐴𝑚𝑚 

解：设 𝑓𝑓0 = 0，𝑓𝑓1 = 1，  𝑓𝑓𝑚𝑚+1 = 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑚𝑚−1  �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹序列� 

𝑓𝑓2 = 0 + 1 = 1，𝑓𝑓3 = 1 + 1 = 2，𝑓𝑓4 = 1 + 2 = 3 

𝐴𝐴 = �𝑓𝑓0 𝑓𝑓1
𝑓𝑓1 𝑓𝑓2

�， 断言 𝐴𝐴𝑚𝑚 = �𝑓𝑓𝑚𝑚−1 𝑓𝑓𝑚𝑚
𝑓𝑓𝑚𝑚 𝑓𝑓𝑚𝑚+1

�，  𝑚𝑚 ≥ 1 

归纳，当𝑚𝑚 = 1 时断言成立 

设 𝑚𝑚− 1 时断言成立 

𝐴𝐴𝑚𝑚 = 𝐴𝐴𝑚𝑚−1𝐴𝐴 = �𝑓𝑓𝑚𝑚−2 𝑓𝑓𝑚𝑚−1
𝑓𝑓𝑚𝑚−1 𝑓𝑓𝑚𝑚

��0 1
1 1� 

= �𝑓𝑓𝑚𝑚−1 𝑓𝑓𝑚𝑚−2 + 𝑓𝑓𝑚𝑚−1
𝑓𝑓𝑚𝑚 𝑓𝑓𝑚𝑚−1 + 𝑓𝑓𝑚𝑚

� 

= �𝑓𝑓𝑚𝑚−1 𝑓𝑓𝑚𝑚
𝑓𝑓𝑚𝑚 𝑓𝑓𝑚𝑚+1

�  ,断言成立 

𝒳𝒳𝐴𝐴(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = � 𝑡𝑡 −1
−1 𝑡𝑡 − 1� = 𝑡𝑡2 − 𝑡𝑡 − 1，  △= 5 > 0 

∴ 𝐴𝐴 有两个不同的实根 ⇒ 𝐴𝐴 可对角化 

𝜆𝜆1 =
1 + √5

2
，𝜆𝜆2 =

1 −√5
2

 

𝑉𝑉𝜆𝜆1 = �� 1
𝜆𝜆1
��，𝑉𝑉𝜆𝜆2 = �� 1

𝜆𝜆2
�� 

𝐵𝐵 = � 1 1
𝜆𝜆1 𝜆𝜆2

� 

𝐵𝐵−1𝐴𝐴𝐴𝐴 = 𝐵𝐵−1𝐴𝐴 �𝐵𝐵(1)�������⃗，𝐵𝐵(2)�������⃗ � = 𝐵𝐵−1 �𝐴𝐴𝐵𝐵(1)�������⃗，𝐴𝐴𝐵𝐵(2)�������⃗ � 
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= 𝐵𝐵−1 �𝜆𝜆1𝐵𝐵(1)�������⃗，𝜆𝜆2𝐵𝐵(2)�������⃗ � = �𝐵𝐵−1𝜆𝜆1𝐵𝐵(1)�������⃗，𝐵𝐵−1𝜆𝜆2𝐵𝐵(2)�������⃗ � 

= �𝜆𝜆1𝐵𝐵−1𝐵𝐵(1)�������⃗，𝜆𝜆2𝐵𝐵−1𝐵𝐵(2)�������⃗ � 

= �λ1 �
1
0�，λ2 �

0
1�� = �𝜆𝜆1 0

0 𝜆𝜆2
� 

𝐵𝐵−1𝐴𝐴𝐴𝐴 = �𝜆𝜆1 0
0 𝜆𝜆2

� 

⇒ 𝐴𝐴 = 𝐵𝐵 �𝜆𝜆1 0
0 𝜆𝜆2

�𝐵𝐵−1 

∴ 𝐴𝐴𝑚𝑚 = 𝐵𝐵 �𝜆𝜆1
𝑚𝑚 0
0 𝜆𝜆2𝑚𝑚

�𝐵𝐵−1 

= � 1 1
𝜆𝜆1 𝜆𝜆2

� �𝜆𝜆1
𝑚𝑚 0
0 𝜆𝜆2𝑚𝑚

�

⎝

⎜
⎛

𝜆𝜆2
𝜆𝜆2 − 𝜆𝜆1

−1
𝜆𝜆2 − 𝜆𝜆1

−𝜆𝜆1
𝜆𝜆2 − 𝜆𝜆1

1
𝜆𝜆2 − 𝜆𝜆1⎠

⎟
⎞

 

= �𝑓𝑓𝑚𝑚−1 𝑓𝑓𝑚𝑚
𝑓𝑓𝑚𝑚 𝑓𝑓𝑚𝑚+1

� 

𝑓𝑓𝑚𝑚 =
𝜆𝜆1𝑚𝑚 − 𝜆𝜆2𝑚𝑚

𝜆𝜆1 − 𝜆𝜆2
=

1
√5

��
1 + √5

2
�
𝑚𝑚

− �
1 − √5

2
�
𝑚𝑚

� 

𝑓𝑓𝑚𝑚~
1
√5

�
1 + √5

2
�
𝑚𝑚

,𝑚𝑚 → ∞ 

 

【Lemma】整系数矩阵的特征值不同则为整数 

Given a symmetric matrix with integer entries if the eigenvalues have 

distinct multiplicities then they are integer(s) 

如果整系数对称矩阵的特征值的重数两两不同，则它们都是整数。 

证：设该矩阵为 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℤ),则 𝒳𝒳𝐴𝐴(𝑡𝑡)为 𝑛𝑛 次整系数多项式且首一 

设 𝒳𝒳𝐴𝐴(𝑡𝑡) = 𝑝𝑝1(𝑡𝑡)𝑚𝑚1 ⋯𝑝𝑝𝑠𝑠(𝑡𝑡)𝑚𝑚𝑠𝑠  为 𝒳𝒳𝐴𝐴(𝑡𝑡) 在 ℚ[𝑡𝑡]中的不可约分解 

因为 𝒳𝒳𝐴𝐴(𝑡𝑡) 首一，可假设所有的 𝑝𝑝𝑖𝑖(𝑡𝑡) 都首一 

如果deg𝑝𝑝1 > 1,则 𝑝𝑝1(𝑡𝑡)在 ℂ 上有两个不同根 𝛼𝛼1,𝛼𝛼2 
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它们是 𝐴𝐴 在 ℂ 上的特征值，且有同样的重数 ,矛盾 

于是所有的 𝑝𝑝𝑖𝑖  都是一次的，即 𝒳𝒳𝐴𝐴(𝑡𝑡)的所有根都是有理数 

𝒳𝒳𝐴𝐴(𝑡𝑡) = (𝑡𝑡 − 𝛼𝛼1)𝑚𝑚1 ⋯ (𝑡𝑡 − 𝛼𝛼𝑠𝑠)𝑚𝑚𝑠𝑠 ,   

𝛼𝛼1, … ,𝛼𝛼𝑠𝑠 ∈ ℚ 两两不同，且 𝑚𝑚1, … ,𝑚𝑚𝑠𝑠 两两不同 

因为 𝒳𝒳𝐴𝐴(𝑡𝑡) ∈ ℤ 且首一，所以 𝛼𝛼1, … ,𝛼𝛼𝑠𝑠 ∈ ℤ        ∎ 

注：该引理不需要对称这个条件 

注：设 𝑓𝑓 ∈ ℤ[𝑥𝑥]首一，则 𝑓𝑓的有理根必为整根 

证：设 𝑓𝑓 = 𝑥𝑥𝑚𝑚 + 𝑓𝑓𝑚𝑚−1𝑥𝑥𝑚𝑚−1 + ⋯+ 𝑓𝑓1𝑥𝑥 + 𝑓𝑓0,  

其中 𝑓𝑓𝑖𝑖 ∈ ℤ, 𝑖𝑖 = 0,1, … ,𝑚𝑚 − 1 

设 𝑟𝑟 ∈ ℚ 且 𝑓𝑓(𝑟𝑟) = 0,设 𝑟𝑟 =
𝑝𝑝
𝑞𝑞

,其中 𝑝𝑝, 𝑞𝑞 ∈ ℤ且 gcd(𝑝𝑝, 𝑞𝑞) = 1,𝑞𝑞 > 0 

0 = 𝑓𝑓 �
𝑝𝑝
𝑞𝑞
� =

𝑝𝑝𝑚𝑚

𝑞𝑞𝑚𝑚
+ 𝑓𝑓𝑚𝑚−1

𝑝𝑝𝑚𝑚−1

𝑞𝑞𝑚𝑚−1 + ⋯+ 𝑓𝑓1
𝑝𝑝
𝑞𝑞

+ 𝑓𝑓0 

=
𝑝𝑝𝑚𝑚 + 𝑓𝑓𝑚𝑚−1𝑞𝑞𝑝𝑝𝑚𝑚−1 +⋯+ 𝑓𝑓1𝑞𝑞𝑚𝑚−1𝑝𝑝 + 𝑓𝑓0𝑞𝑞𝑚𝑚

𝑞𝑞𝑚𝑚
 

⇒ 𝑝𝑝𝑚𝑚 = −𝑞𝑞(𝑓𝑓𝑚𝑚−1𝑝𝑝𝑚𝑚−1 + ⋯+ 𝑓𝑓1𝑞𝑞𝑚𝑚−2𝑝𝑝 + 𝑓𝑓0𝑞𝑞𝑚𝑚−1) 

∵ gcd(𝑝𝑝,𝑞𝑞) = 1   ∴ 𝑞𝑞 = 1 ⇒ 𝑟𝑟 ∈ ℤ       ∎ 
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§5.2 复数方阵的三角化 

【引理 5.2】复算子有 n-1 维不变子空间 

设 𝑉𝑉 是 ℂ 上的 𝑛𝑛 维线性空间,𝑛𝑛 > 0,𝒜𝒜 ∈ ℒ(𝑉𝑉) 

则 𝒜𝒜 有 𝑛𝑛 − 1 维不变子空间 

证：回忆 𝒜𝒜 的对偶算子 

𝒜𝒜∗:𝑉𝑉∗ → 𝑉𝑉∗,𝑓𝑓 ↦ 𝑓𝑓 ∘ 𝒜𝒜, 𝒜𝒜∗ ∈ ℒ(𝑉𝑉∗) 

𝒳𝒳𝒜𝒜∗ ∈ ℂ[𝑡𝑡],次数为正， 由代数学基本定理 𝒜𝒜∗ 至少有一个特征根  𝜆𝜆 

设 𝑔𝑔 ∈ 𝑉𝑉∗ 是 𝜆𝜆 所对应的特征向量,则 ⟨𝑔𝑔⟩是 𝒜𝒜∗的一维不变子空间 

⟨𝑔𝑔⟩° = �𝑣⃗𝑣 ∈ 𝑉𝑉�𝑔𝑔(𝑣⃗𝑣) = 0�⃗ �  则dim  ⟨𝑔𝑔⟩° = 𝑛𝑛 − 1 

只要验证： ⟨𝑔𝑔⟩° 是𝒜𝒜−子空间即可 

设 𝑣⃗𝑣 ∈ ⟨𝑔𝑔⟩°,𝑔𝑔�𝒜𝒜(𝑣⃗𝑣)� = 𝑔𝑔 ∘ 𝒜𝒜(𝑣⃗𝑣) = 𝒜𝒜∗(𝑔𝑔)(𝑣⃗𝑣) = (𝜆𝜆𝜆𝜆)(𝑣⃗𝑣) 

= 𝜆𝜆𝜆𝜆(𝑣⃗𝑣) = 𝜆𝜆 · 0 = 0 ⇒ 𝒜𝒜(𝑣⃗𝑣) ∈ ⟨𝑔𝑔⟩° 

于是 ⟨𝑔𝑔⟩° 是 𝒜𝒜−子空间   ∎ 

 

【定理 5.3】复线性算子可上三角化 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),其中 𝑉𝑉 是 ℂ 上的 𝑛𝑛 维线性空间，则存在 𝑉𝑉 中的一组基 

使得 𝒜𝒜 在该基下的矩阵是上三角型的. 

证：对 𝑛𝑛 归纳，当 𝑛𝑛 = 1 时是显然的 

设 𝑛𝑛 − 1 时定理成立， 设  𝑛𝑛 = dim𝑉𝑉 

由引理 5.2,𝑉𝑉 有 𝑛𝑛 − 1 维 𝒜𝒜 −子空间 𝑈𝑈,设 𝒜𝒜│𝑈𝑈 = 𝒜𝒜𝑈𝑈 

则 𝒜𝒜𝑈𝑈 ∈ ℒ(𝑈𝑈).   由归纳假设,∃𝑈𝑈中的一组基 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛−1��������⃗  

使得 𝒜𝒜𝑈𝑈在该基下的矩阵 𝑇𝑇𝑛𝑛−1 ∈ 𝑀𝑀𝑛𝑛−1(ℂ)是上三角型 

设 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛−1��������⃗ ,𝑒𝑒𝑛𝑛����⃗  是𝑉𝑉 的一组基， 
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�𝒜𝒜(𝑒𝑒1���⃗ ), … ,𝒜𝒜(𝑒𝑒𝑛𝑛−1��������⃗ ),𝒜𝒜(𝑒𝑒𝑛𝑛����⃗ )� = �𝒜𝒜(𝑒𝑒1���⃗ ), … ,𝒜𝒜(𝑒𝑒𝑛𝑛−1��������⃗ ),𝒜𝒜(𝑒𝑒𝑛𝑛����⃗ )� 

= (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛−1��������⃗ , 𝑒𝑒𝑛𝑛����⃗ )� 𝑇𝑇𝑛𝑛−1
𝛼𝛼1
⋮

𝛼𝛼𝑛𝑛−1
0 ⋯ 0 𝛼𝛼𝑛𝑛

�

�������������
𝑇𝑇𝑛𝑛

 

其中 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛−1,𝛼𝛼𝑛𝑛 ∈ ℂ,显然  𝑇𝑇 是上三角型.    ∎ 

 

【推论 5.2】复方阵可上三角化 

设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ),则 𝐴𝐴相似于一个上三角矩阵 

证：设 𝒜𝒜:ℂ𝑛𝑛 → ℂ𝑛𝑛, �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦ 𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�, 

则 𝐴𝐴 是 𝒜𝒜 在标准基下的矩阵 

由定理 5.3,∃ℂ𝑛𝑛的一组基，使得 𝒜𝒜 在该基下的矩阵为上三角矩阵 𝑇𝑇 

则 𝐴𝐴~𝑠𝑠𝑇𝑇         ∎ 

 

【例 5.2.1】实方阵可能无法上三角化 

𝐵𝐵 = � 0 1
−1 0� ∈ 𝑀𝑀2(ℝ),𝒳𝒳𝐵𝐵 = �𝑡𝑡 −1

1 𝑡𝑡 � = 𝑡𝑡2 + 1, 

𝐵𝐵~𝑠𝑠 �
𝛼𝛼 𝛽𝛽
0 𝛾𝛾������
𝐴𝐴

, 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ∈ ℝ 

𝒳𝒳𝐴𝐴(𝑡𝑡) = �𝑡𝑡 − 𝛼𝛼 −𝛽𝛽
0 𝑡𝑡 − 𝛾𝛾� = (𝑡𝑡 − 𝛼𝛼)(𝑡𝑡 − 𝛾𝛾) 

  

181／363



§5 特征子空间的应用 

 

§5.3 商映射 循环子空间和 Cayley-Hamilton定理 

【引理 5.3】商映射是线性算子 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑈𝑈 是 𝒜𝒜−子空间 

定义   𝒜̅𝒜:𝑉𝑉/𝑈𝑈→ 𝑉𝑉/𝑈𝑈 , 𝑣⃗𝑣 + 𝑈𝑈 ↦ 𝒜𝒜(𝑣⃗𝑣) + 𝑈𝑈 

则 𝒜̅𝒜 ∈ ℒ(𝑉𝑉/𝑈𝑈) 

证：验证 𝒜̅𝒜是良定义的 

设 𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ∈ 𝑉𝑉,使得 𝑢𝑢1����⃗ + 𝑈𝑈 = 𝑢𝑢2����⃗ + 𝑈𝑈 

即 𝑢𝑢1����⃗ − 𝑢𝑢2����⃗ ∈ 𝑈𝑈 �~𝑈𝑈的定义� 

则 𝒜𝒜(𝑢𝑢1����⃗ − 𝑢𝑢2����⃗ ) ∈ 𝑈𝑈 �𝑈𝑈是 𝒜𝒜 −子空间� 

⇒ 𝒜𝒜(𝑢𝑢1����⃗ ) −𝒜𝒜(𝑢𝑢2����⃗ ) ∈ 𝑈𝑈  �𝒜𝒜线性� 

⇒ 𝒜𝒜(𝑢𝑢1����⃗ ) + 𝑈𝑈 = 𝒜𝒜(𝑢𝑢2����⃗ ) + 𝑈𝑈  �~𝑈𝑈的定义� 

⇒ 𝒜̅𝒜(𝑢𝑢1����⃗ + 𝑈𝑈) = 𝒜̅𝒜(𝑢𝑢2����⃗ + 𝑈𝑈) �𝒜̅𝒜的定义� 

于是 𝒜̅𝒜是良定义的  

再验证 𝒜̅𝒜是线性的.设 𝛼𝛼1,𝛼𝛼2 ∈ 𝐹𝐹, 𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ∈ 𝑉𝑉 

𝒜̅𝒜�𝛼𝛼1(𝑣𝑣1����⃗ + 𝑈𝑈) + 𝛼𝛼2(𝑣𝑣2����⃗ + 𝑈𝑈)� 

= 𝒜̅𝒜�(𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ) + 𝑈𝑈� �商空间中线性运算� 

= 𝒜𝒜(𝛼𝛼1𝑣𝑣1����⃗ + 𝛼𝛼2𝑣𝑣2����⃗ ) + 𝑈𝑈  �𝒜̅𝒜的定义� 

= �𝛼𝛼1𝒜𝒜(𝑣𝑣1����⃗ ) + 𝛼𝛼2(𝑣𝑣2����⃗ )�+ 𝑈𝑈  �𝒜𝒜线性� 

= 𝛼𝛼1(𝒜𝒜(𝑣𝑣1����⃗ ) + 𝑈𝑈) + 𝛼𝛼2(𝒜𝒜(𝑣𝑣2����⃗ ) + 𝑈𝑈) �商空间中线性运算� 

= 𝛼𝛼1𝒜̅𝒜(𝑣𝑣1����⃗ + 𝑈𝑈) + 𝛼𝛼2𝒜̅𝒜(𝑣𝑣2����⃗ + 𝑈𝑈) �𝒜𝒜的定义� 

⇒ 𝒜̅𝒜 ∈ ℒ(𝑉𝑉/𝑈𝑈)      ∎ 
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【定义 5.3.1】商算子 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑈𝑈是 𝒜𝒜−子空间,  

则 𝒜̅𝒜:𝑉𝑉/𝑈𝑈→ 𝑉𝑉/𝑈𝑈 , 𝑣⃗𝑣 + 𝑈𝑈 ↦ 𝒜𝒜(𝑣⃗𝑣) + 𝑈𝑈 

称为 𝒜𝒜 关于 𝑈𝑈 的商算子 

 

【命题 5.1】商算子基本性质 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑈𝑈是𝒜𝒜−子空间,𝜋𝜋:𝑉𝑉 → 𝑉𝑉/𝑈𝑈是自然投射，则 

(𝑖𝑖)𝜋𝜋 ∘ 𝒜𝒜 = 𝒜̅𝒜 ∘ 𝜋𝜋 

(𝑖𝑖𝑖𝑖)设 𝜑𝜑:𝑉𝑉/𝑈𝑈→ 𝑉𝑉/𝑈𝑈  使得 𝜋𝜋 ∘ 𝒜𝒜 = 𝜑𝜑 ∘ 𝜋𝜋,则 𝜑𝜑 = 𝒜̅𝒜  

  

证: (𝑖𝑖) ∀ 𝑣⃗𝑣 ∈ 𝑉𝑉 

𝜋𝜋 ∘ 𝒜𝒜(𝑣⃗𝑣) = 𝜋𝜋(𝒜𝒜(𝑣⃗𝑣)) = 𝒜𝒜(𝑣⃗𝑣) + 𝑈𝑈 

𝒜̅𝒜 ∘ 𝜋𝜋(𝑣⃗𝑣) = 𝒜̅𝒜(𝑣⃗𝑣 + 𝑈𝑈) = 𝒜𝒜(𝑣⃗𝑣) + 𝑈𝑈 

∴ 𝜋𝜋 ∘ 𝒜𝒜(𝑣⃗𝑣) = 𝒜̅𝒜 ∘ 𝜋𝜋(𝑣⃗𝑣), 𝜋𝜋 ∘ 𝒜𝒜 = 𝒜̅𝒜 ∘ 𝜋𝜋 

(𝑖𝑖𝑖𝑖)∀𝑣⃗𝑣 ∈ 𝑉𝑉,𝜋𝜋 ∘ 𝒜𝒜(𝑣⃗𝑣) = 𝜑𝜑 ∘ 𝜋𝜋(𝑣⃗𝑣) 

𝒜𝒜(𝑣⃗𝑣) + 𝑈𝑈 = 𝜑𝜑(𝑣⃗𝑣 + 𝑈𝑈) 

⇒ 𝜑𝜑 = 𝒜̅𝒜         ∎ 
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【例 5.3.1】恒同映射的商映射 

设 𝑈𝑈 是 𝑉𝑉 的子空间，则 𝑈𝑈 关于恒同映射 ℰ 是不变的 

ℰ̅ = 𝑉𝑉/𝑈𝑈→ 𝑉𝑉/𝑈𝑈 , 𝑣⃗𝑣 + 𝑈𝑈 ↦ ℰ(𝑣⃗𝑣) + 𝑈𝑈 = 𝑣⃗𝑣 + 𝑈𝑈 

于是商映射 ℰ̅ 是  𝑉𝑉/𝑈𝑈 上的恒同映射 

同理 𝒪𝒪�是 𝑉𝑉/𝑈𝑈 的零映射 

 

【定理 5.4】商算子矩阵上三角化 

设 𝑉𝑉 是 𝑛𝑛 维线性空间， 𝑛𝑛 > 1,设 𝒜𝒜 ∈ ℒ(𝑉𝑉) 

𝑈𝑈 是𝒜𝒜 −子空间,𝑑𝑑 ≔ dim𝑈𝑈 > 0 

设 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗  是 𝑈𝑈的基,𝑒𝑒1���⃗ , … , 𝑒𝑒𝑑𝑑����⃗ , 𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗  是 𝑉𝑉 的基 

令 𝒜𝒜𝑈𝑈 = 𝒜𝒜│𝑈𝑈 , 𝒜̅𝒜 是 𝒜𝒜 关于 𝑈𝑈的商算子 

令 𝐴𝐴𝑈𝑈 为 𝒜𝒜𝑈𝑈 在 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗下的矩阵  [𝐴𝐴𝑈𝑈 ∈ 𝑀𝑀𝑑𝑑(𝐹𝐹)] 

𝐴̅𝐴为𝒜̅𝒜 在 𝑒𝑒𝑑𝑑+1��������⃗ + 𝑈𝑈, … , 𝑒𝑒𝑛𝑛����⃗ + 𝑈𝑈 下的矩阵 [𝐴̅𝐴 ∈ 𝑀𝑀𝑛𝑛−𝑑𝑑(𝐹𝐹)] 

则 𝒜𝒜 在 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑 ,�����⃗ 𝑒𝑒𝑑𝑑+1��������⃗   , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵是 

𝐴𝐴 = �𝐴𝐴𝑈𝑈 𝐵𝐵
𝑂𝑂 𝐴̅𝐴

� ,其中 𝐵𝐵 ∈ 𝐹𝐹𝑑𝑑×(𝑛𝑛−𝑑𝑑) 

注： ∵ 𝒜𝒜𝑈𝑈 ∈ ℒ(𝑈𝑈)   ∴ 𝐴𝐴𝑈𝑈 ∈ 𝑀𝑀𝑑𝑑(𝐹𝐹) 存在且唯一 

𝒜̅𝒜 ∈ ℒ(𝑉𝑉/𝑈𝑈)   而 𝑒𝑒𝑑𝑑+1��������⃗ + 𝑈𝑈, … , 𝑒𝑒𝑛𝑛����⃗ + 𝑈𝑈 是𝑉𝑉/𝑈𝑈的一组基 

�见第一章命题 5.1 的证明� 

证：∀𝑗𝑗 ∈ {1, … ,𝑑𝑑}, 𝑒𝑒𝚥𝚥��⃗ ∈ 𝑈𝑈 ⇒ 𝒜𝒜�𝑒𝑒𝚥𝚥��⃗ � ∈ 𝑈𝑈 

𝒜𝒜�𝑒𝑒𝚥𝚥��⃗ � = 𝒜𝒜𝑈𝑈�𝑒𝑒𝚥𝚥��⃗ � = (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑑𝑑����⃗ )𝐴𝐴𝑈𝑈
(𝚥𝚥)�������⃗

 

= (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑑𝑑����⃗ )𝐴𝐴𝑈𝑈
(𝚥𝚥)�������⃗ + (𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )�

0
⋮
0
�  
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= (𝑒𝑒1���⃗  , . . . , 𝑒𝑒𝑛𝑛����⃗ )

⎝

⎜
⎛
𝐴𝐴𝑈𝑈

(𝚥𝚥)�������⃗

0
⋮
0 ⎠

⎟
⎞

= (𝑒𝑒1���⃗ , . . . , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴(𝚥𝚥)�������⃗     

∀𝑗𝑗 ∈ {𝑑𝑑 + 1, … ,𝑛𝑛} 

𝒜𝒜�𝑒𝑒𝚥𝚥��⃗ �+ 𝑈𝑈 = 𝒜̅𝒜�𝑒𝑒𝚥𝚥��⃗ + 𝑈𝑈� = (𝑒𝑒𝑑𝑑+1��������⃗ + 𝑈𝑈, … , 𝑒𝑒𝑛𝑛����⃗ + 𝑈𝑈)𝐴̅𝐴(𝚥𝚥)�������⃗  

𝒜𝒜�𝑒𝑒𝚥𝚥��⃗ �+ 𝑈𝑈 = (𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴̅𝐴(𝚥𝚥)�������⃗ + 𝑈𝑈 

𝒜𝒜�𝑒𝑒𝚥𝚥��⃗ � = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗ )�
𝑏𝑏1𝑗𝑗
⋮
𝑏𝑏𝑑𝑑𝑑𝑑

�+ (𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴̅𝐴(𝚥𝚥)�������⃗     �𝑏𝑏1𝑗𝑗 , … , 𝑏𝑏𝑑𝑑𝑑𝑑 ∈ 𝐹𝐹� 

= (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗ , 𝑒𝑒𝑑𝑑+1��������⃗   , … , 𝑒𝑒𝑛𝑛����⃗ ) �𝐵𝐵
(𝑗𝑗)

𝐴̅𝐴(𝚥𝚥)�������⃗ � = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴 

其中 𝐵𝐵 = �
𝑏𝑏1,𝑑𝑑+1 ⋯ 𝑏𝑏1𝑛𝑛
⋮ ⋱ ⋮

𝑏𝑏𝑑𝑑,𝑑𝑑+1 ⋯ 𝑏𝑏𝑑𝑑,𝑛𝑛

�       ∎ 

 

【推论 5.3】商算子特征多项式分解 

沿用定理 5.4 的记号，则 

𝒳𝒳𝒜𝒜(𝑡𝑡) = 𝒳𝒳𝒜̅𝒜(𝑡𝑡)𝒳𝒳𝒜𝒜𝑈𝑈
(𝑡𝑡) 

证:𝒳𝒳𝒜𝒜(𝑡𝑡) = |𝑡𝑡𝐸𝐸𝑛𝑛 − 𝐴𝐴| = �𝑡𝑡 �𝐸𝐸𝑑𝑑 𝑂𝑂
𝑂𝑂 𝐸𝐸𝑛𝑛−𝑑𝑑

� − �𝐴𝐴𝑈𝑈 𝐵𝐵
𝑂𝑂 𝐴̅𝐴

 �� 

= �
𝑡𝑡𝐸𝐸𝑑𝑑 − 𝐴𝐴𝑈𝑈 −𝐵𝐵

𝑂𝑂 𝑡𝑡𝐸𝐸𝑛𝑛−𝑑𝑑 − 𝐴̅𝐴� = |𝑡𝑡𝐸𝐸𝑑𝑑 − 𝐴𝐴𝑈𝑈||𝑡𝑡𝐸𝐸𝑛𝑛−𝑑𝑑 − 𝐴̅𝐴| 

= 𝒳𝒳𝒜̅𝒜(𝑡𝑡)𝒳𝒳𝒜𝒜𝑈𝑈
(𝑡𝑡)       ∎ 

 

【命题 5.2】商算子可穿透多项式 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑈𝑈是 𝒜𝒜−子空间,𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡],则 

 (𝑖𝑖)𝑈𝑈是 𝑝𝑝(𝒜𝒜)−子空间 

(𝑖𝑖𝑖𝑖)设 𝒜̅𝒜和 𝑝𝑝(𝒜𝒜)�������是 𝒜𝒜 和 𝑝𝑝(𝒜𝒜)关于 𝑈𝑈 的商算子，则 𝑝𝑝(𝒜𝒜)������� =  𝑝𝑝(𝒜̅𝒜) 
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证: (𝑖𝑖) 𝑢𝑢�⃗ ∈ 𝑈𝑈 ⇒ 𝒜𝒜(𝑢𝑢�⃗ ) ∈ 𝑈𝑈 ⇒ 𝒜𝒜2(𝑢𝑢�⃗ ) ∈ 𝑈𝑈 ⇒ ⋯ 

简单归纳可知 ∀𝑘𝑘 ∈ ℕ,𝐴𝐴𝑘𝑘(𝑢𝑢�⃗ ) ∈ 𝑈𝑈 

即 𝑈𝑈 也是 𝒜𝒜𝑘𝑘 −子空间      �引理 3.1� 

设 ℬ ∈ ℒ(𝑉𝑉) 如果 𝑈𝑈 也是 ℬ −子空间 

则 ∀𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹,𝑢𝑢�⃗ ∈ 𝑈𝑈,  

(𝛼𝛼𝛼𝛼 + 𝛽𝛽ℬ)(𝑢𝑢�⃗ ) = 𝛼𝛼𝛼𝛼(𝑢𝑢�⃗ ) + 𝛽𝛽ℬ(𝑢𝑢�⃗ ) ∈ 𝑈𝑈     [∵ 𝒜𝒜(𝑢𝑢�⃗ ),ℬ(𝑢𝑢�⃗ ) ∈ 𝑈𝑈] 

⇒ 𝑈𝑈 是 (𝛼𝛼𝛼𝛼 + 𝛽𝛽ℬ)−子空间   

由上述结论可知 𝑝𝑝(𝒜𝒜)(𝑢𝑢�⃗ ) ∈ 𝑈𝑈,即 𝑈𝑈 是 𝑝𝑝(𝒜𝒜) −子空间     

(ii)𝒜𝒜0���� = ℰ̅ = (𝒜̅𝒜)0 , (𝒜̅𝒜)1 = 𝒜̅𝒜 = 𝒜𝒜1���� 

设 𝒜𝒜𝑘𝑘���� = 𝒜̅𝒜𝑘𝑘 

∀𝑣𝑣 ∈ 𝑉𝑉, 𝒜𝒜𝑘𝑘+1�������(𝑣⃗𝑣 + 𝑈𝑈) = 𝒜𝒜𝑘𝑘+1(𝑣⃗𝑣) + 𝑈𝑈 = 𝒜𝒜�𝒜𝒜𝑘𝑘(𝑣⃗𝑣)�+ 𝑈𝑈 

= 𝒜̅𝒜(𝒜𝒜𝑘𝑘(𝑣⃗𝑣) + 𝑈𝑈)    �𝒜̅𝒜的定义� 

= 𝒜̅𝒜 �𝒜𝒜𝑘𝑘����(𝑣⃗𝑣 + 𝑈𝑈)�   �𝒜𝒜𝑘𝑘����的定义� 

= 𝒜̅𝒜 �𝒜̅𝒜𝑘𝑘(𝑣⃗𝑣 + 𝑈𝑈)�   �归纳假设� 

= 𝒜̅𝒜𝑘𝑘+1(𝑣⃗𝑣 + 𝑈𝑈) 

⇒ 𝒜𝒜𝑘𝑘+1������� = 𝒜̅𝒜𝑘𝑘+1     

⇒ 𝒜𝒜𝑘𝑘���� = 𝒜̅𝒜𝑘𝑘,∀𝑘𝑘 ∈ ℕ 

∀𝑣⃗𝑣 ∈ 𝑉𝑉, 𝜋𝜋 ∘ (𝛼𝛼𝛼𝛼 + 𝛽𝛽ℬ)(𝑣⃗𝑣 + 𝑈𝑈) = 𝜋𝜋 �𝛼𝛼�𝒜𝒜(𝑣⃗𝑣)�+ 𝛽𝛽�ℬ(𝑣⃗𝑣)�� 

= [𝛼𝛼𝒜𝒜(𝑣⃗𝑣) + 𝛽𝛽ℬ(𝑣⃗𝑣)] + 𝑈𝑈 

(𝛼𝛼𝒜̅𝒜 + 𝛽𝛽ℬ�) ∘ 𝜋𝜋(𝑣⃗𝑣) = (𝛼𝛼𝒜̅𝒜 + 𝛽𝛽ℬ�)(𝑣⃗𝑣 + 𝑈𝑈) = 𝛼𝛼𝛼𝛼(𝑣⃗𝑣) + 𝛽𝛽ℬ(𝑣⃗𝑣) + 𝑈𝑈 

由命题 5.1(𝑖𝑖𝑖𝑖)  𝛼𝛼𝛼𝛼 + 𝛽𝛽ℬ������������ = 𝛼𝛼𝒜̅𝒜 + 𝛽𝛽ℬ� 

由上述两个结论  𝑝𝑝(𝒜̅𝒜) = 𝑝𝑝(𝒜𝒜)�������        ∎ 
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【定义 5.3.2】循环子空间 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝑣⃗𝑣 ∈ 𝑉𝑉,由 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣),𝒜𝒜2(𝑣⃗𝑣), …生成的子空间 

称为由 𝒜𝒜 和 𝑣⃗𝑣 生成的循环子空间 

记为 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 

 

【命题 5.3】循环子空间的基本性质 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝑣⃗𝑣 ∈ 𝑉𝑉 

(𝑖𝑖)𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 是 𝒜𝒜−子空间 

(𝑖𝑖𝑖𝑖)𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = {𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣)|𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡]} 

(𝑖𝑖𝑖𝑖𝑖𝑖) dim𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = 𝑑𝑑 

⇔ 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑑𝑑−1(𝑣⃗𝑣)是 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 的一组基  (𝑣⃗𝑣 ≠ 0) 

证: (𝑖𝑖)设 𝑢𝑢�⃗ ∈ 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣  

则∃𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝐹𝐹,𝑢𝑢�⃗ = 𝛼𝛼0𝑣⃗𝑣 + 𝛼𝛼1𝒜𝒜(𝑣⃗𝑣) + 𝛼𝛼𝑘𝑘𝒜𝒜𝑘𝑘(𝑣⃗𝑣) 

𝒜𝒜(𝑢𝑢�⃗ ) = 𝒜𝒜�𝛼𝛼0𝑣⃗𝑣 + 𝛼𝛼1𝒜𝒜(𝑣⃗𝑣) + 𝛼𝛼𝑘𝑘𝒜𝒜𝑘𝑘(𝑣⃗𝑣)� 

= 𝛼𝛼0𝒜𝒜(𝑣⃗𝑣) + 𝛼𝛼1𝒜𝒜2(𝑣⃗𝑣) + ⋯+ 𝛼𝛼𝑘𝑘𝒜𝒜𝑘𝑘+1(𝑣⃗𝑣)  ∈ 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 

∴ (𝑖𝑖)成立 

(𝑖𝑖𝑖𝑖)设 𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡],把 𝑝𝑝写成 𝑝𝑝(𝑡𝑡) = 𝛽𝛽𝑚𝑚𝑡𝑡𝑚𝑚 + 𝛽𝛽𝑚𝑚−1𝑡𝑡𝑚𝑚−1 + ⋯+ 𝛽𝛽1𝑡𝑡 + 𝛽𝛽0 

其中 𝛽𝛽𝑖𝑖 ∈ 𝐹𝐹, 𝑖𝑖 = 0, … ,𝑚𝑚  

𝑝𝑝(𝒜𝒜) = 𝛽𝛽𝑚𝑚𝒜𝒜𝑚𝑚 + 𝛽𝛽𝑚𝑚−1𝒜𝒜𝑚𝑚−1 + ⋯+ 𝛽𝛽1𝒜𝒜 + 𝛽𝛽0ℰ 

𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) = 𝛽𝛽𝑚𝑚𝒜𝒜𝑚𝑚(𝑣⃗𝑣) + 𝛽𝛽𝑚𝑚−1𝒜𝒜𝑚𝑚−1(𝑣⃗𝑣) +⋯+ 𝛽𝛽1𝒜𝒜(𝑣⃗𝑣) + 𝛽𝛽0𝑣⃗𝑣 

∴ 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) ∈ 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 

反之，设 𝑢𝑢�⃗  如 (𝑖𝑖)中给出 

令 𝑝𝑝(𝑡𝑡) = 𝛼𝛼0 + 𝛼𝛼1𝑡𝑡 + ⋯+ 𝛼𝛼𝑘𝑘𝑡𝑡𝑘𝑘 

则 𝑢𝑢�⃗ = 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) 
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⇒ 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = {𝑝𝑝[𝒜𝒜](𝑣⃗𝑣)|𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡]} , (𝑖𝑖𝑖𝑖)成立 

(𝑖𝑖𝑖𝑖𝑖𝑖) ⇐由定义显然 

⇒:设 𝑘𝑘为使得 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑘𝑘−1(𝑣⃗𝑣)线性无关的最大正整数 

则𝒜𝒜𝑘𝑘(𝑣⃗𝑣) ∈ ⟨𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑘𝑘−1(𝑣⃗𝑣)⟩ 

并且 ∃𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑘𝑘−1 ∈ 𝐹𝐹  

使得 𝒜𝒜𝑘𝑘(𝐹𝐹) = 𝛼𝛼0𝑣⃗𝑣 + 𝛼𝛼1𝒜𝒜(𝑣⃗𝑣) + ⋯+ 𝛼𝛼𝑘𝑘−1𝒜𝒜𝑘𝑘−1(𝑣⃗𝑣) 

令 𝑓𝑓[𝑡𝑡] = 𝑡𝑡𝑘𝑘 − 𝛼𝛼𝑘𝑘−1𝑡𝑡𝑘𝑘−1 − ⋯− 𝛼𝛼1𝑡𝑡 − 𝛼𝛼0,则 𝑓𝑓[𝒜𝒜](𝑣⃗𝑣) = 0 

设 𝑢𝑢�⃗ ∈ 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣,由(𝑖𝑖𝑖𝑖) ∃𝑝𝑝(𝑡𝑡) ∈ 𝐹𝐹[𝑡𝑡],使得 𝑢𝑢�⃗ = 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) 

由一元多项式带余除法 

𝑝𝑝(𝑡𝑡) = 𝑞𝑞(𝑡𝑡)𝑓𝑓(𝑡𝑡) + 𝑟𝑟(𝑡𝑡)  其中 𝑞𝑞, 𝑟𝑟 ∈ 𝐹𝐹[𝑡𝑡], deg 𝑟𝑟 < deg𝑓𝑓 = 𝑘𝑘 

∴ 𝑝𝑝(𝒜𝒜) = 𝑞𝑞(𝒜𝒜)𝑓𝑓(𝒜𝒜) + 𝑟𝑟(𝒜𝒜) 

𝑢𝑢�⃗ = 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) = 𝑞𝑞(𝒜𝒜)𝑓𝑓(𝒜𝒜)(𝑣⃗𝑣) + 𝑟𝑟(𝒜𝒜)(𝑣⃗𝑣) = 𝑟𝑟(𝒜𝒜)(𝑣⃗𝑣) 

∵ deg 𝑟𝑟 < 𝑘𝑘  

∴ 𝑢𝑢�⃗ ∈ ⟨𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑘𝑘−1(𝑣⃗𝑣)⟩ 

⇒ 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑘𝑘−1(𝑣⃗𝑣)是 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣的一组基 

∴ dim𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = 𝑘𝑘  

∵ 𝑑𝑑 = dim𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣    ∴ 𝑘𝑘 = 𝑑𝑑 

∴ 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑑𝑑−1(𝑣⃗𝑣)是 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣的一组基 

 

【例 5.3.2】求循环子空间例 

设 𝒜𝒜:ℝ2 → ℝ2, �
𝑥𝑥1
𝑥𝑥2� ↦ �0 1

0 0������
𝐴𝐴

�
𝑥𝑥1
𝑥𝑥2� 

设 𝑣⃗𝑣 = �1
1� ,𝑤𝑤��⃗ = �1

0� ,求 ℝ[𝒜𝒜] ⋅ 𝑣⃗𝑣 和 ℝ[𝒜𝒜] ⋅ 𝑤𝑤��⃗  的维数 

解:𝒜𝒜0(𝑣⃗𝑣) = 𝑣⃗𝑣 = �1
1� ,𝒜𝒜1(𝑣⃗𝑣) = �0 1

0 0��
1
1� = �1

0� 
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⇒ dimℝ[𝒜𝒜] ⋅ 𝑣⃗𝑣 = 2 

𝒜𝒜0(𝑤𝑤��⃗ ) = 𝑤𝑤��⃗ = �1
0� ,𝒜𝒜1(𝑤𝑤��⃗ ) = �0 1

0 0��
1
0� = �0

0� 

⇒ dimℝ[𝒜𝒜] ⋅ 𝑤𝑤��⃗ = 1 

 

【定义 5.3.3】关于线性算子和向量的极小多项式 

设𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝑣⃗𝑣 ∈ 𝑉𝑉,𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡] 

(𝑖𝑖)如果𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) = 0,则称 𝑝𝑝(𝑡𝑡)是关于 𝒜𝒜 和 𝑣⃗𝑣 的零化多项式�零化子� 

(𝑖𝑖𝑖𝑖)在关于 𝒜𝒜 和 𝑣⃗𝑣的所有零化子中，非零、次数最低且首一的多项式 

称为关于 𝒜𝒜 和 𝑣⃗𝑣 的极小多项式，记为𝜇𝜇𝒜𝒜,𝑣𝑣�⃗  

 

【命题 5.4】线性算子向量极小多项式基本性质 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝑣⃗𝑣 ∈ 𝑉𝑉 

(𝑖𝑖)𝜇𝜇𝒜𝒜,𝑣𝑣�⃗存在且唯一 

(𝑖𝑖𝑖𝑖)如果 𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡] 是关于 𝒜𝒜 和 𝑣⃗𝑣 的零化子，则 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ |𝑝𝑝 

特别地,𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ │𝜇𝜇𝒜𝒜  

(𝑖𝑖𝑖𝑖𝑖𝑖) dim𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = deg𝜇𝜇𝒜𝒜,𝑣𝑣�⃗  

证: (𝑖𝑖) ∵ 𝜇𝜇𝒜𝒜 ∈ 𝐹𝐹[𝑡𝑡] ∖ 𝐹𝐹 零化 𝒜𝒜   ∴ 𝜇𝜇𝒜𝒜是关于 𝒜𝒜和 𝑣⃗𝑣 的零化子 

于是 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗存在 

设 𝑓𝑓,𝑔𝑔 ∈ 𝐹𝐹[𝑡𝑡] 是关于 𝒜𝒜, 𝑣⃗𝑣 的极小多项式,则deg𝑓𝑓 = deg𝑔𝑔 

∵ 𝑓𝑓 ,𝑔𝑔首一    ∴ deg(𝑓𝑓 − 𝑔𝑔) < deg𝑓𝑓 

∵ (𝑓𝑓 − 𝑔𝑔)(𝒜𝒜)(𝑣⃗𝑣) = 𝑓𝑓(𝒜𝒜) 𝑣⃗𝑣 − 𝑔𝑔(𝒜𝒜)𝑣⃗𝑣 = 0�⃗  

∴ 𝑓𝑓 − 𝑔𝑔也是关于 𝒜𝒜和 𝑣⃗𝑣 的零化子，由极小性可知 𝑓𝑓 − 𝑔𝑔 = 0 

∴ 𝑓𝑓 = 𝑔𝑔    唯一性成立 

(𝑖𝑖𝑖𝑖)设 𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡] 是关于 𝒜𝒜 和 𝑣⃗𝑣 的零化子 
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由多项式除法,𝑝𝑝(𝑡𝑡) = 𝑞𝑞(𝑡𝑡)𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝑡𝑡) + 𝑟𝑟(𝑡𝑡),𝑞𝑞, 𝑟𝑟 ∈ 𝐹𝐹[𝑡𝑡] 

deg 𝑟𝑟 < deg𝜇𝜇𝒜𝒜,𝑣𝑣�⃗  

∴ 𝑝𝑝(𝒜𝒜) = 𝑞𝑞(𝒜𝒜)𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝒜𝒜) + 𝑟𝑟(𝒜𝒜) 

∴ 0 = 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) = 𝑞𝑞(𝒜𝒜)𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝒜𝒜)(𝑣⃗𝑣) + 𝑟𝑟(𝒜𝒜)(𝑣⃗𝑣) = 0 + 𝑟𝑟(𝒜𝒜)(𝑣⃗𝑣) 

⇒ 𝑟𝑟(𝒜𝒜)(𝑣⃗𝑣) = 0 ⇒ 𝑟𝑟是关于 𝒜𝒜,𝑤𝑤��⃗  的零化子⇒ 𝑟𝑟 = 0 

 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ | 𝜇𝜇𝒜𝒜 →柯 𝐼𝐼𝐼𝐼,𝑃𝑃56,9(𝑖𝑖) 

(𝑖𝑖𝑖𝑖𝑖𝑖)设 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝑡𝑡) = 𝑡𝑡𝑑𝑑 + 𝛽𝛽𝑑𝑑−1𝑡𝑡𝑑𝑑−1 + ⋯+ 𝛽𝛽0 ,𝛽𝛽𝑖𝑖 ∈ 𝐹𝐹, 𝑖𝑖 = 0, … ,𝑑𝑑 − 1 

𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝒜𝒜)(𝑣⃗𝑣) = 𝒜𝒜𝑑𝑑(𝑣⃗𝑣) + 𝛽𝛽𝑑𝑑−1𝒜𝒜𝑑𝑑−1(𝑣⃗𝑣) + ⋯+ 𝛽𝛽0𝑣⃗𝑣 = 0�⃗  

于是 𝑣⃗𝑣,𝒜𝒜1(𝑣⃗𝑣), … ,𝒜𝒜𝑑𝑑−1(𝑣⃗𝑣),𝒜𝒜𝑑𝑑(𝑣⃗𝑣)线性相关 

但 ∵ deg𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ = 𝑑𝑑   ∴ 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑑𝑑−1(𝑣⃗𝑣) 线性无关 �由极小性� 

由命题 5.3(𝑖𝑖𝑖𝑖𝑖𝑖), dim𝐹𝐹[𝒜𝒜]𝑣⃗𝑣 = 𝑑𝑑         ∎ 

 

【例 5.3.3】求线性算子向量极小多项式例 

设 𝒜𝒜:ℝ2 → ℝ2 

�
𝑥𝑥1
𝑥𝑥2� → �0 1

0 0� �
𝑥𝑥1
𝑥𝑥2� , 𝑣⃗𝑣 = �1

1� ,𝑤𝑤��⃗ = �1
0� 

计算 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ ,𝜇𝜇𝒜𝒜,𝑤𝑤��⃗  

𝒜𝒜0(𝑣⃗𝑣) = �1
1� ,𝒜𝒜1(𝑣⃗𝑣) = �1

0� ,𝒜𝒜2(𝑣⃗𝑣) = �0
0� 

1 �0
0� + 0 �1

0� + 0 �1
1� = �0

0� 

∴ 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ = 𝑡𝑡2 

𝒜𝒜0(𝑤𝑤��⃗ ) = �1
0� ,𝒜𝒜1(𝑤𝑤��⃗ ) = �0

0� 

𝒜𝒜1(𝑤𝑤��⃗ ) + 0𝒜𝒜0(𝑤𝑤��⃗ ) = �0
0� 

∴ 𝜇𝜇𝒜𝒜,𝑤𝑤��⃗ = 𝑡𝑡 
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【引理 5.4】极小多项式等于特征多项式的条件 

设𝒜𝒜 ∈ ℒ(𝑉𝑉) 且 𝑣⃗𝑣 ∈ 𝑉𝑉  

如果 𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣,则 𝜇𝜇𝒜𝒜 = 𝒳𝒳𝒜𝒜     

特别地,𝒳𝒳𝒜𝒜(𝑡𝑡) 零化 𝒜𝒜 

证:设 𝑛𝑛 = dim𝑉𝑉 ,由命题 3.3 (𝑖𝑖𝑖𝑖𝑖𝑖) 

𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑛𝑛−1(𝑣⃗𝑣) 是 𝑉𝑉 的一组基 

设𝜇𝜇𝒜𝒜(𝑡𝑡) = 𝑡𝑡𝑛𝑛 + 𝛼𝛼𝑛𝑛−1𝑡𝑡𝑛𝑛−1 +⋯+ 𝛼𝛼0 

⇒ 𝒜𝒜𝑛𝑛 + 𝛼𝛼𝑛𝑛−1𝒜𝒜𝑛𝑛−1 + ⋯+ 𝛼𝛼0ℰ = 𝒪𝒪 

⇒ 𝒜𝒜𝑛𝑛(𝑣⃗𝑣) = −𝛼𝛼0𝑣⃗𝑣 − 𝛼𝛼1𝒜𝒜(𝑣⃗𝑣)−⋯− 𝛼𝛼𝑛𝑛−1𝒜𝒜𝑛𝑛−1(𝑣⃗𝑣) 

�𝒜𝒜(𝑣⃗𝑣),𝒜𝒜2(𝑣⃗𝑣), … ,𝒜𝒜𝑛𝑛(𝑣⃗𝑣)� 

= �𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑛𝑛−1(𝑣⃗𝑣)�

⎝

⎜
⎜
⎛

0 0 ⋯ 0 0 −𝛼𝛼0
1 0 ⋯ 0 0 −𝛼𝛼1
0 1 ⋯ 0 0 −𝛼𝛼2
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 ⋯ 1 0 −𝛼𝛼𝑛𝑛−2
0 0 ⋯ 0 1 −𝛼𝛼𝑛𝑛−1⎠

⎟
⎟
⎞

 

由定义 ，右端矩阵为 𝒜𝒜 在基 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑛𝑛−1(𝑣⃗𝑣) 下的矩阵，记为 𝐴𝐴 

𝒳𝒳𝒜𝒜(𝑡𝑡) = 𝒳𝒳𝐴𝐴(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| =
�

�

𝑡𝑡 0 ⋯ 0 0 𝛼𝛼0
−1 𝑡𝑡 ⋯ 0 0 𝛼𝛼1
0 −1 ⋯ 0 0 𝛼𝛼2
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 ⋯ −1 𝑡𝑡 𝛼𝛼𝑛𝑛−2
0 0 ⋯ 0 −1 𝑡𝑡 + 𝛼𝛼𝑛𝑛−1

�

�
 

通过对 𝑛𝑛 归纳可得  

𝒳𝒳𝒜𝒜(𝑡𝑡) = 𝑡𝑡𝑛𝑛 + 𝛼𝛼𝑛𝑛−1𝑡𝑡𝑛𝑛−1 + ⋯+ 𝛼𝛼1𝑡𝑡 + 𝛼𝛼0 = 𝜇𝜇𝒜𝒜(𝑡𝑡)       ∎ 

 

【定理 5.5】Cayley-Hamilton 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉) 则 𝒳𝒳𝒜𝒜(𝒜𝒜) = 𝒪𝒪 

证:设𝑛𝑛 = dim𝑉𝑉 ,对 𝑛𝑛归纳  

𝑛𝑛 = 1 时 设 𝒜𝒜的某个矩阵为 (𝑎𝑎) ,𝑎𝑎 ∈ 𝐹𝐹 
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即 ∀𝑣⃗𝑣 ∈ 𝑉𝑉,𝒜𝒜𝑣⃗𝑣 = 𝑎𝑎𝑣⃗𝑣 

𝒳𝒳𝒜𝒜(𝑡𝑡) = |𝑡𝑡(1)− (𝑎𝑎)| = 𝑡𝑡 − 𝑎𝑎, 𝒳𝒳𝒜𝒜(𝒜𝒜) = 𝒜𝒜 − 𝑎𝑎ℰ 

∀𝑣⃗𝑣 ∈ 𝑉𝑉,𝒳𝒳𝒜𝒜(𝒜𝒜)(𝑣⃗𝑣) = 𝒜𝒜(𝑣⃗𝑣)− 𝑎𝑎ℰ(𝑣⃗𝑣) = 𝑎𝑎𝑣⃗𝑣 − 𝑎𝑎𝑣⃗𝑣 = 0�⃗  

于是 𝒳𝒳𝒜𝒜(𝒜𝒜) = 𝒪𝒪 

设 1 ≤ dim𝑉𝑉 < 𝑛𝑛 时定理成立 

在dim𝑉𝑉 = 𝑛𝑛 时 

情形 1   𝑉𝑉有非平凡 𝒜𝒜−子空间 𝑈𝑈  

则dim𝑈𝑈 , dim𝑉𝑉/𝑈𝑈 ∈ {1,2, … ,𝑛𝑛 − 1} 

令𝒜𝒜𝑈𝑈 = 𝒜𝒜│𝑈𝑈 , 𝒜̅𝒜为𝒜𝒜 关于 𝑈𝑈的商算子 

由推论 5.2 ,𝒳𝒳𝒜𝒜(𝑡𝑡) = 𝒳𝒳𝒜𝒜𝑈𝑈
(𝑡𝑡)𝒳𝒳𝒜̅𝒜(𝑡𝑡) 

于是 𝒳𝒳𝒜𝒜(𝒜𝒜) = 𝒳𝒳𝒜𝒜𝑈𝑈
(𝒜𝒜)𝒳𝒳𝒜̅𝒜(𝒜𝒜) 

设 𝑣⃗𝑣 ∈ 𝑉𝑉,𝒳𝒳𝒜𝒜(𝒜𝒜)(𝑣⃗𝑣) = 𝒳𝒳𝒜𝒜𝑈𝑈
(𝒜𝒜)𝒳𝒳𝒜̅𝒜(𝒜𝒜)(𝑣⃗𝑣) 

令 ℬ = 𝒳𝒳𝒜̅𝒜(𝒜𝒜) ,由命题 5.2(𝑖𝑖),𝑈𝑈是 ℬ −子空间 

设 ℬ�是 ℬ 关于 𝑈𝑈 的商算子,则 

ℬ�(𝑣⃗𝑣 + 𝑈𝑈) = 𝒳𝒳𝒜̅𝒜(𝒜𝒜)����������(𝑣⃗𝑣 + 𝑈𝑈) = 𝒳𝒳𝒜̅𝒜(𝒜̅𝒜)(𝑣⃗𝑣 + 𝑈𝑈)     �命题 5.2(𝑖𝑖𝑖𝑖)� 

由归纳假设 𝒳𝒳𝒜̅𝒜(𝒜̅𝒜) = 𝒪𝒪� ⇒ 𝒳𝒳𝒜̅𝒜(𝒜𝒜)����������(𝑣⃗𝑣 + 𝑈𝑈) = 0�⃗ + 𝑈𝑈 

⇒ 𝒳𝒳𝒜̅𝒜(𝒜𝒜)(𝑣⃗𝑣) ∈ 𝑈𝑈    

令 𝑤𝑤��⃗ = 𝒳𝒳𝒜̅𝒜(𝒜𝒜)(𝑣⃗𝑣),则 𝑤𝑤��⃗ ∈ 𝑈𝑈 

𝒳𝒳𝒜𝒜(𝒜𝒜)(𝑣⃗𝑣) = 𝒳𝒳𝒜𝒜𝑈𝑈
(𝒜𝒜) �𝒳𝒳𝒜𝒜�𝒜𝒜(𝑣⃗𝑣)�� = 𝒳𝒳𝒜𝒜𝑈𝑈

(𝒜𝒜)(𝑤𝑤��⃗ ) 

= 𝒳𝒳𝒜𝒜𝑈𝑈
(𝒜𝒜𝑈𝑈)(𝑤𝑤��⃗ ) = 𝒪𝒪𝑈𝑈(𝑤𝑤��⃗ ) = 0�⃗       �归纳假设� 

由此可知 𝒳𝒳𝒜𝒜(𝒜𝒜) = 𝒪𝒪     定理成立 
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情形 2    𝑉𝑉中没有非平凡𝒜𝒜−子空间 

取 𝑣⃗𝑣 ∈ 𝑉𝑉 ∖ {0},则由命题 5.3(𝑖𝑖),𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 

由引理 5.4,𝜇𝜇𝒜𝒜(𝑡𝑡) = 𝒳𝒳𝒜𝒜(𝑡𝑡) 

⇒ 𝒳𝒳𝒜𝒜(𝒜𝒜) = 𝜇𝜇𝒜𝒜(𝒜𝒜) = 𝒪𝒪   定理成立   ∎     

 

【推论 5.4】极小多项式次数限制 

设 𝑛𝑛 = dim𝑉𝑉 ,𝒜𝒜 ∈ ℒ(𝑉𝑉),则deg𝜇𝜇𝐴𝐴 ≤ 𝑛𝑛 

证:𝜇𝜇𝒜𝒜|𝒳𝒳𝒜𝒜(𝐶𝐶 − 𝐻𝐻定理,定理 2.2(𝑖𝑖)) 

⇒ deg𝜇𝜇𝒜𝒜 ≤ deg𝒳𝒳𝒜𝒜 = 𝑛𝑛   ∎  

 

【推论 5.5】方阵版 C-H 定理 

设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 

(𝑖𝑖)𝒳𝒳𝐴𝐴(𝑡𝑡)零化 𝐴𝐴 

(𝑖𝑖𝑖𝑖)𝜇𝜇𝐴𝐴|𝒳𝒳𝐴𝐴   从而deg𝜇𝜇𝐴𝐴 ≤ 𝑛𝑛 

证:把 𝐴𝐴 看成 𝐹𝐹𝑛𝑛 → 𝐹𝐹𝑛𝑛 的线性算子，或利用定理 2.1 中的代数同构 
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【例 5.3.4】C-H 定理的伪证 

C − H 定理的伪证 

𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)         𝒳𝒳𝐴𝐴(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| 

𝒳𝒳𝐴𝐴(𝐴𝐴) = |𝐴𝐴𝐴𝐴 − 𝐴𝐴| = |𝐴𝐴 − 𝐴𝐴| = 0  ∎ 

𝒳𝒳𝐴𝐴(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = � ��𝑡𝑡𝛿𝛿𝑘𝑘𝑘𝑘(𝑘𝑘) − 𝑎𝑎𝑘𝑘𝑘𝑘(𝑘𝑘)�
𝑛𝑛

𝑘𝑘=1𝜎𝜎∈𝑆𝑆𝑛𝑛

 

𝒳𝒳𝐴𝐴(𝐴𝐴) = |"𝐴𝐴" 𝐸𝐸 − 𝐴𝐴| = � ��𝐴𝐴𝛿𝛿𝑘𝑘𝑘𝑘(𝑘𝑘) − 𝑎𝑎𝑘𝑘𝑘𝑘(𝑘𝑘)�
𝑛𝑛

𝑘𝑘=1𝜎𝜎∈𝑆𝑆𝑛𝑛

 

 

|𝐴𝐴𝐸𝐸 − 𝐴𝐴| = � ���𝑎𝑎𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖(𝑘𝑘)

𝑛𝑛

𝑖𝑖=1

− 𝑎𝑎𝑘𝑘𝑘𝑘(𝑘𝑘)�
𝑛𝑛

𝑘𝑘=1𝜎𝜎∈𝑆𝑆𝑛𝑛

 

一方面，两个零不同：一个是零矩阵，一个是代数零 

另一方面，多项式的表达中若有𝑡𝑡乘矩阵， 

切不可先代入𝐴𝐴将𝐴𝐴与矩阵相乘。  
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§6 各种类型的直和分解 

§6.1 预备引理 

【引理 6.1】乘积多项式的简单数论 

设 𝑝𝑝1, … , 𝑝𝑝𝑘𝑘 ,𝑞𝑞 ∈ 𝐹𝐹[𝑡𝑡] ∖ {0} 

(𝑖𝑖)如果 ∀𝑖𝑖 ∈ {𝑖𝑖, … , 𝑘𝑘}, gcd(𝑝𝑝𝑖𝑖 ,𝑞𝑞) = 1,则 gcd(𝑝𝑝1⋯𝑝𝑝𝑘𝑘 ,𝑞𝑞) = 1 

(𝑖𝑖𝑖𝑖)如果 𝑝𝑝1, … ,𝑝𝑝𝑘𝑘  两两互素且 𝑝𝑝𝑖𝑖│𝑞𝑞, 𝑖𝑖 = 1, … ,𝑘𝑘,则 (𝑝𝑝1⋯𝑝𝑝𝑘𝑘)│𝑞𝑞 

证: (𝑖𝑖) ∵ gcd(𝑝𝑝𝑖𝑖 ,𝑞𝑞) = 1    

∴ ∃𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖 ∈ 𝐹𝐹[𝑡𝑡] 使得 𝑎𝑎𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑞𝑞 = 1, 𝑖𝑖 = 1, … 𝑘𝑘  [Bezout 关系] 

�(𝑎𝑎𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑞𝑞)
𝑘𝑘

𝑖𝑖=1

= 1 ⇒ ��𝑎𝑎𝑖𝑖

𝑘𝑘

𝑖𝑖=1

���𝑝𝑝𝑖𝑖

𝑘𝑘

𝑖𝑖=1

�+ 𝑐𝑐𝑐𝑐 = 1, 𝑐𝑐 ∈ 𝐹𝐹[𝑡𝑡] 

于是 gcd��𝑝𝑝𝑖𝑖

𝑘𝑘

𝑖𝑖=1

,𝑞𝑞� = 1    (𝑖𝑖)成立 

(𝑖𝑖𝑖𝑖)对𝑘𝑘归纳 ,𝑘𝑘 = 1 显然 

设 𝑘𝑘 − 1 时断言成立，考虑 𝑘𝑘 时 

令 𝑝𝑝 = 𝑝𝑝1⋯𝑝𝑝𝑘𝑘−1  由归纳假设,𝑝𝑝│𝑞𝑞 

由(𝑖𝑖), gcd(𝑝𝑝,𝑝𝑝𝑘𝑘) = 1 

∴ ∃𝑎𝑎,𝑏𝑏 ∈ 𝐹𝐹[𝑡𝑡],使得 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑝𝑝𝑘𝑘 = 1 

由归纳假设  𝑝𝑝│𝑞𝑞    即 ∃𝑓𝑓 ∈ 𝐹𝐹[𝑡𝑡],𝑞𝑞 = 𝑓𝑓𝑓𝑓 

∵  𝑝𝑝𝑘𝑘│𝑞𝑞    ∴ ∃𝑔𝑔 ∈ 𝐹𝐹[𝑡𝑡],𝑞𝑞 = 𝑔𝑔𝑝𝑝𝑘𝑘 

∵ 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑝𝑝𝑘𝑘𝑞𝑞 = 𝑞𝑞  ∴ 𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑘𝑘 + 𝑏𝑏𝑝𝑝𝑘𝑘𝑓𝑓𝑓𝑓 = 𝑞𝑞 

⇒ (𝑝𝑝1⋯𝑝𝑝𝑘𝑘)(𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏) = 𝑞𝑞 

⇒ (𝑝𝑝1⋯𝑝𝑝𝑘𝑘)│𝑞𝑞       ∎ 
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【引理 6.2】互素多项式的最小公倍式 

设 𝑝𝑝1, … , 𝑝𝑝𝑘𝑘 ∈ 𝐹𝐹[𝑡𝑡] ∖ {0} 两两互素 

则 lcm(𝑝𝑝1, … , 𝑝𝑝𝑘𝑘) = 𝑝𝑝1 ⋯𝑝𝑝𝑘𝑘 

证:∵ 𝑝𝑝𝑖𝑖│ lcm(𝑝𝑝1, … , 𝑝𝑝𝑘𝑘) , 𝑖𝑖 = 1, … ,𝑘𝑘 

∴ (𝑝𝑝1⋯𝑝𝑝𝑘𝑘)│ lcm(𝑝𝑝1, … , 𝑝𝑝𝑘𝑘)       �引理 6.1(𝑖𝑖𝑖𝑖)� 

另一方面， lcm(𝑝𝑝1, … , 𝑝𝑝𝑘𝑘)│(𝑝𝑝1⋯𝑝𝑝𝑘𝑘) 

∴ (𝑝𝑝1⋯𝑝𝑝𝑘𝑘) = lcm(𝑝𝑝1⋯𝑝𝑝𝑘𝑘) 

严格地讲，它们在 𝐹𝐹上相伴        ∎ 

 

【引理 6.3】直和分解基本引理 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑓𝑓 ∈ 𝐹𝐹[𝑡𝑡]零化 𝒜𝒜 

设𝑓𝑓 = 𝑝𝑝𝑝𝑝,其中 𝑝𝑝, 𝑞𝑞 ∈ 𝐹𝐹[𝑡𝑡] ∖ 𝐹𝐹且gcd(𝑝𝑝,𝑞𝑞) = 1 

令𝐾𝐾𝑝𝑝 = ker𝑝𝑝(𝒜𝒜) ,𝐾𝐾𝑞𝑞 = ker 𝑞𝑞(𝒜𝒜)则 

(𝑖𝑖)𝐾𝐾𝑝𝑝,𝐾𝐾𝑞𝑞  是𝒜𝒜−子空间,且 𝑉𝑉 = 𝐾𝐾𝑝𝑝 ⊕𝐾𝐾𝑞𝑞 

(𝑖𝑖𝑖𝑖)𝑝𝑝(𝒜𝒜)│𝐾𝐾𝑞𝑞和  𝑞𝑞(𝒜𝒜)│𝐾𝐾𝑝𝑝  都是双射 

(𝑖𝑖𝑖𝑖𝑖𝑖)设 𝑓𝑓 = 𝜇𝜇𝒜𝒜 且 𝑝𝑝,𝑞𝑞首一,则𝑝𝑝, 𝑞𝑞分别是𝒜𝒜│𝐾𝐾𝑝𝑝 ,𝒜𝒜│𝐾𝐾𝑞𝑞的极小多项式 

证:由命题 3.1(𝑖𝑖𝑖𝑖),𝐾𝐾𝑝𝑝,𝐾𝐾𝑞𝑞是𝒜𝒜−子空间 

∵ gcd(𝑝𝑝,𝑞𝑞) = 1   ∴ ∃𝑎𝑎,𝑏𝑏 ∈ 𝐹𝐹[𝑡𝑡] 使得 𝑎𝑎(𝑡𝑡)𝑝𝑝(𝑡𝑡) + 𝑏𝑏(𝑡𝑡)𝑞𝑞(𝑡𝑡) = 1 

于是 𝑎𝑎(𝒜𝒜)𝑝𝑝(𝒜𝒜) + 𝑏𝑏(𝒜𝒜)𝑞𝑞(𝒜𝒜) = ℰ 
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设 𝑣⃗𝑣 ∈ 𝑉𝑉,我们有 𝑎𝑎(𝒜𝒜) ∘ 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣)�����������
𝑣𝑣𝑞𝑞����⃗

+ 𝑏𝑏(𝒜𝒜) ∘ 𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣)�����������
𝑣𝑣𝑝𝑝����⃗

= ℰ(𝑣⃗𝑣) = 𝑣⃗𝑣    [∗] 

𝑞𝑞(𝒜𝒜)�𝑣𝑣𝑞𝑞����⃗ � = 𝑞𝑞(𝒜𝒜) ∘ 𝑎𝑎(𝒜𝒜) ∘ 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣)

= 𝑎𝑎(𝒜𝒜) ∘ 𝑞𝑞(𝒜𝒜) ∘ 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣)

= 𝑎𝑎(𝒜𝒜) ∘ 𝑓𝑓(𝒜𝒜)(𝑣⃗𝑣)

= 𝑎𝑎 ∘ 𝒪𝒪(𝑣⃗𝑣) = 0�⃗

 

⇒ 𝑣𝑣𝑞𝑞����⃗ ∈ 𝐾𝐾𝑞𝑞 

同理,𝑣𝑣𝑝𝑝����⃗ ∈ 𝐾𝐾𝑝𝑝  由此可知  𝑉𝑉 = 𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑞𝑞 

设 𝑤𝑤��⃗ ∈ 𝐾𝐾𝑝𝑝 ∩ 𝐾𝐾𝑞𝑞 ,由[∗] 

𝑤𝑤��⃗ = 𝑎𝑎(𝒜𝒜) ∘ 𝑝𝑝(𝒜𝒜)(𝑤𝑤��⃗ ) + 𝑏𝑏(𝒜𝒜) ∘ 𝑞𝑞(𝒜𝒜)(𝑤𝑤��⃗ ) = 0�⃗  

⇒ 𝐾𝐾𝑝𝑝 ∩ 𝐾𝐾𝑞𝑞 = �0�⃗ � 

于是 𝑉𝑉 = 𝐾𝐾𝑝𝑝 ⊕𝐾𝐾𝑞𝑞 

(𝑖𝑖𝑖𝑖)由命题 5.2(𝑖𝑖),𝐾𝐾𝑞𝑞是 𝑝𝑝(𝒜𝒜)−子空间 

令 ℬ = 𝑝𝑝(𝒜𝒜)│𝐾𝐾𝑞𝑞     则 ℬ ∈ ℒ�𝐾𝐾𝑞𝑞� 

要证 ℬ是双射，只需证 ℬ是单射,即 kerℬ = �0�⃗ � 

设 𝑣⃗𝑣 ∈ kerℬ ⇒ 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) = 0�⃗ ⇒ 𝑎𝑎(𝒜𝒜) ∘ 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) = 0�⃗  

𝑣⃗𝑣 ∈ 𝐾𝐾𝑞𝑞 ⇒ 𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) = 0�⃗ ⇒ 𝑏𝑏(𝒜𝒜) ∘ 𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) = 0�⃗  

0�⃗ = 𝑎𝑎(𝒜𝒜) ∘ 𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) + 𝑏𝑏(𝒜𝒜) ∘ 𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) = 𝑣⃗𝑣    �由 ∗式� 

⇒ ker𝐵𝐵 = �0�⃗ � 

(𝑖𝑖𝑖𝑖𝑖𝑖)设 𝒜𝒜𝑝𝑝 = 𝒜𝒜│𝐾𝐾𝑝𝑝 , 𝒜𝒜𝑞𝑞 = 𝒜𝒜│𝐾𝐾𝑞𝑞    

∵ 𝐾𝐾𝑝𝑝 = ker𝑝𝑝(𝒜𝒜)    ∴ ∀𝑣⃗𝑣 ∈ 𝐾𝐾𝑝𝑝,𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) = 𝑝𝑝�𝒜𝒜𝑝𝑝�(𝑣⃗𝑣) = 0�⃗  

于是 𝑝𝑝零化 𝒜𝒜𝑝𝑝,由定理 2.2 可知 𝜇𝜇𝒜𝒜𝑝𝑝│𝑝𝑝,同理,𝜇𝜇𝒜𝒜𝑞𝑞│𝑞𝑞 

∵ gcd(𝑝𝑝,𝑞𝑞) = 1   ∴ gcd �𝜇𝜇𝒜𝒜𝑝𝑝 ,𝜇𝜇𝒜𝒜𝑞𝑞� = 1 
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𝜇𝜇𝒜𝒜 = lcm�𝜇𝜇𝒜𝒜𝑝𝑝 ,𝜇𝜇𝒜𝒜𝑞𝑞�    �命题 3.3(𝑖𝑖𝑖𝑖)� 

= 𝜇𝜇𝒜𝒜𝑝𝑝𝜇𝜇𝒜𝒜𝑞𝑞     �引理 6.2� 

另一方面，𝜇𝜇𝒜𝒜 = 𝑝𝑝𝑝𝑝 = 𝜇𝜇𝒜𝒜𝑝𝑝𝜇𝜇𝒜𝒜𝑞𝑞 

⇒ 𝑝𝑝 = 𝜇𝜇𝒜𝒜𝑝𝑝 ,𝑞𝑞 = 𝜇𝜇𝒜𝒜𝑞𝑞         ∎ 
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§6.2 广义特征子空间 

【定义 6.2.1】广义特征子空间 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝜇𝜇𝒜𝒜 在 𝐹𝐹[𝑡𝑡]中不可约分解为  𝜇𝜇𝒜𝒜 = 𝑝𝑝1
𝑚𝑚1 ⋯𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠 

其中 𝑝𝑝1, … ,𝑝𝑝𝑠𝑠 ∈ 𝐹𝐹[𝑡𝑡] ∖ 𝐹𝐹 首一 ,不可约 ,两两互素,𝑚𝑚1, … ,𝑚𝑚𝑠𝑠 ∈ ℤ+ 

则称ker𝑝𝑝𝑖𝑖
𝑚𝑚𝑖𝑖 (𝒜𝒜)为 𝒜𝒜 关于因子𝑝𝑝𝑖𝑖的广义特征子空间，记为 𝑉𝑉(𝑝𝑝𝑖𝑖) 

𝑖𝑖 = 1, … , 𝑠𝑠 

注：书中定义的根子空间是广义特征子空间的特例 

 

【定理 6.1】广义特征子空间分解 

利用上述记号，我们有 

𝑉𝑉 = 𝑉𝑉(𝑝𝑝1)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑠𝑠) 

且 (𝑖𝑖)  𝑝𝑝𝑖𝑖
𝑚𝑚𝑖𝑖  是 𝒜𝒜│𝑉𝑉(𝑝𝑝𝑖𝑖)的极小多项式 

(𝑖𝑖𝑖𝑖)  𝑝𝑝𝑖𝑖(𝒜𝒜)在 𝑉𝑉(𝑝𝑝1)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑖𝑖−1)⊕𝑉𝑉(𝑝𝑝𝑖𝑖+1)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑠𝑠) 上可逆 

𝑖𝑖 = 1, … , 𝑠𝑠 

证:对 𝑠𝑠归纳.  𝑠𝑠 = 1 时 𝜇𝜇𝒜𝒜 = 𝑝𝑝1 
𝑚𝑚1 

𝑉𝑉(𝑝𝑝1) = ker𝑝𝑝1
𝑚𝑚1(𝒜𝒜) = ker 𝜇𝜇𝒜𝒜(𝒜𝒜) = ker(𝒪𝒪) = 𝑉𝑉 

性质 (𝑖𝑖)(𝑖𝑖𝑖𝑖)自然满足  

设 𝑠𝑠 > 1 且定理对 𝑠𝑠 − 1 成立 

令 𝑝𝑝 = 𝑝𝑝1
𝑚𝑚1 ⋯𝑝𝑝𝑠𝑠−1𝑚𝑚−1,𝑞𝑞 = 𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠 ,由引理 6.1(𝑖𝑖), gcd(𝑝𝑝,𝑞𝑞) = 1 

由引理 6.3,𝑉𝑉 = 𝑈𝑈⊕𝑉𝑉(𝑝𝑝𝑠𝑠),其中 𝑈𝑈 = ker𝑝𝑝(𝒜𝒜) 

且 𝒜𝒜│𝑈𝑈  的极小多项式是 𝑝𝑝, 𝑞𝑞(𝒜𝒜)│𝑈𝑈 是双射 

令 𝒜𝒜𝑈𝑈 = 𝒜𝒜│𝑈𝑈 ,对 𝒜𝒜𝑈𝑈,𝑝𝑝 = 𝑝𝑝1
𝑚𝑚1 ⋯𝑝𝑝𝑠𝑠−1𝑚𝑚−1,和 𝑈𝑈用归纳假设得到 

𝑈𝑈 = 𝑈𝑈(𝑝𝑝1)⊕⋯⊕𝑈𝑈(𝑝𝑝𝑠𝑠−1) 
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其中 𝑈𝑈�𝑝𝑝𝑗𝑗� = ker𝑝𝑝𝑗𝑗
𝑚𝑚𝑗𝑗(𝒜𝒜𝑈𝑈) , 𝑗𝑗 = 1, … , 𝑠𝑠 − 1 

且 𝒜𝒜𝑈𝑈 限制在 𝑈𝑈�𝑝𝑝𝑗𝑗�上的极小多项式为 𝑝𝑝𝑗𝑗
𝑚𝑚𝑗𝑗 , 𝑗𝑗 = 1, … , 𝑠𝑠 − 1 

下面验证:𝑈𝑈(𝑝𝑝𝑗𝑗) = 𝑉𝑉�𝑝𝑝𝑗𝑗�, 𝑗𝑗 = 1, … , 𝑠𝑠 − 1 

不妨只验证 𝑈𝑈(𝑝𝑝1) = 𝑉𝑉(𝑝𝑝1). 

𝑈𝑈(𝑝𝑝1) = �𝑢𝑢�⃗ ∈ 𝑈𝑈�𝑝𝑝1
𝑚𝑚1(𝒜𝒜𝑈𝑈)(𝑢𝑢�⃗ ) = 0�⃗ � 

𝑉𝑉(𝑝𝑝1) = �𝑣⃗𝑣 ∈ 𝑉𝑉�𝑝𝑝1
𝑚𝑚1(𝒜𝒜)(𝑣⃗𝑣) = 0�⃗ � 

由定义可知,𝑈𝑈(𝑝𝑝1) ⊂ 𝑉𝑉(𝑝𝑝1) 

设 𝑣⃗𝑣 ∈ 𝑉𝑉(𝑝𝑝1) 

∵ 𝑉𝑉 = 𝑈𝑈⊕ 𝑉𝑉(𝑝𝑝𝑠𝑠)    ∴ ∃!𝑢𝑢�⃗ ∈ 𝑈𝑈,𝑣𝑣𝑠𝑠���⃗ ∈ 𝑉𝑉(𝑝𝑝𝑠𝑠), 𝑣⃗𝑣 = 𝑢𝑢�⃗ + 𝑣𝑣𝑠𝑠���⃗     [∗∗],  

𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) = 𝑞𝑞(𝒜𝒜)(𝑢𝑢�⃗ ) + 𝑞𝑞(𝒜𝒜)(𝑣𝑣𝑠𝑠���⃗ ) = 𝑞𝑞(𝒜𝒜)(𝑢𝑢�⃗ ) 

𝑝𝑝1
𝑚𝑚1(𝒜𝒜) ∘ 𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) = 𝑝𝑝1

𝑚𝑚1(𝒜𝒜) ∘ 𝑞𝑞(𝒜𝒜)(𝑢𝑢�⃗ ) 

𝑞𝑞(𝒜𝒜) ∘ 𝑝𝑝1
𝑚𝑚1(𝒜𝒜)(𝑢𝑢�⃗ ) = 𝑞𝑞(𝒜𝒜) ∘ 𝑝𝑝1

𝑚𝑚1(𝒜𝒜)(𝑣⃗𝑣) = 0�⃗     [𝑣𝑣 ∈ 𝑉𝑉(𝑝𝑝1)] 

∵ 𝑝𝑝1
𝑚𝑚1(𝒜𝒜)(𝑢𝑢�⃗ ) ∈ 𝑈𝑈且 𝑞𝑞(𝒜𝒜)│𝑈𝑈可逆  

∴ 𝑝𝑝1
𝑚𝑚1(𝒜𝒜)(𝑢𝑢�⃗ ) = 0�⃗ ⇒ 𝑢𝑢�⃗ ∈ 𝑈𝑈(𝑝𝑝1)  

∴ 𝑢𝑢�⃗ ∈ 𝑉𝑉(𝑝𝑝1),由[∗∗],𝑣𝑣𝑠𝑠���⃗ ∈ 𝑉𝑉(𝑝𝑝1) 

∵ gcd�𝑝𝑝1
𝑚𝑚1 ,𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠� = 1   ∴ ∃𝑓𝑓,𝑔𝑔 ∈ 𝐹𝐹[𝑡𝑡],使得 𝑓𝑓𝑝𝑝1
𝑚𝑚1 + 𝑔𝑔𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠 = 1 

⇒ 𝑓𝑓(𝒜𝒜)𝑝𝑝1
𝑚𝑚1(𝒜𝒜) + 𝑔𝑔(𝒜𝒜)𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠(𝒜𝒜) = ℰ 

𝑓𝑓(𝒜𝒜)𝑝𝑝1
𝑚𝑚1(𝒜𝒜)(𝑣𝑣𝑠𝑠���⃗ ) + 𝑔𝑔(𝒜𝒜)𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠(𝒜𝒜)(𝑣𝑣𝑠𝑠���⃗ ) = 𝑣𝑣𝑠𝑠���⃗   

∵ 𝑣𝑣𝑠𝑠���⃗ ∈ 𝑉𝑉(𝑝𝑝1) ∩ 𝑉𝑉(𝑝𝑝𝑠𝑠)   ∴ 𝑣𝑣𝑠𝑠���⃗ = 0   �证明见下 �  

⇒ 𝑣⃗𝑣 = 𝑢𝑢�⃗    

∴ 𝑣⃗𝑣 ∈ 𝑈𝑈(𝑝𝑝1) ⇒ 𝑉𝑉(𝑝𝑝1) = 𝑈𝑈(𝑝𝑝1) 

于是 𝑉𝑉(𝑝𝑝𝑖𝑖) = 𝑈𝑈(𝑝𝑝𝑖𝑖), 𝑖𝑖 = 1, … , 𝑠𝑠 

⇒ 𝑉𝑉 = 𝑉𝑉(𝑝𝑝1)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑠𝑠−1)⊕𝑉𝑉(𝑝𝑝𝑠𝑠) 
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令 𝒜𝒜𝑖𝑖 = 𝒜𝒜│𝑉𝑉(𝑝𝑝𝑖𝑖), 𝑖𝑖 = 1, … , 𝑠𝑠   

 𝒜𝒜𝑗𝑗是𝒜𝒜𝑈𝑈限制在 𝑉𝑉�𝑝𝑝𝑗𝑗�上, 𝑗𝑗 = 1, … , 𝑠𝑠 − 1 

于是 𝜇𝜇𝒜𝒜𝑗𝑗 = 𝑝𝑝𝑗𝑗
𝑚𝑚𝑗𝑗(𝑡𝑡), 𝑗𝑗 = 1, … , 𝑠𝑠 − 1 

�𝒜𝒜𝑈𝑈限制下 𝑈𝑈(𝑝𝑝𝑖𝑖) 上的极小多项式是 𝑝𝑝𝑖𝑖
𝑚𝑚𝑖𝑖(𝑡𝑡)� 

且 𝑝𝑝𝑠𝑠在 𝑉𝑉(𝑝𝑝1)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑠𝑠−1)上可逆 

适当调整下标后，可得  

∀𝑘𝑘 ∈ {1, … , 𝑠𝑠}, 

𝑝𝑝𝑘𝑘(𝒜𝒜)在 𝑉𝑉(𝑝𝑝1)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑘𝑘−1)⊕𝑉𝑉(𝑝𝑝𝑘𝑘+1)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑠𝑠)上可逆    ∎ 

 

【例 6.2.1】不同广义特征子空间交零 

在定理 6.1 中，𝑣𝑣𝑠𝑠���⃗ ∈ 𝑉𝑉(𝑝𝑝1) ∩ 𝑉𝑉(𝑝𝑝𝑠𝑠),补证 𝑣𝑣𝑠𝑠���⃗ = 0 

证： ∵ 1 ≠ 𝑠𝑠   ∴ gcd(𝑝𝑝1,𝑝𝑝𝑠𝑠) = 1   ∴ gcd�𝑝𝑝1
𝑚𝑚1 ,𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠� = 1  

∴ ∃𝑎𝑎,𝑏𝑏 ∈ 𝐹𝐹[𝑡𝑡],𝑎𝑎(𝑡𝑡)𝑝𝑝1
𝑚𝑚1(𝑡𝑡) + 𝑏𝑏(𝑡𝑡)𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠(𝑡𝑡) = 1 

⇒ 𝑎𝑎(𝒜𝒜) ∘ 𝑝𝑝1
𝑚𝑚1(𝒜𝒜) + 𝑏𝑏(𝒜𝒜) ∘ 𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠(𝒜𝒜) = ℰ 

⇒ 𝑎𝑎(𝒜𝒜) ∘ 𝑝𝑝1
𝑚𝑚1(𝒜𝒜)(𝑣𝑣𝑠𝑠���⃗ ) + 𝑏𝑏(𝒜𝒜) ∘ 𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠(𝒜𝒜)(𝑣𝑣𝑠𝑠���⃗ ) = 𝑣𝑣𝑠𝑠���⃗  

∵ 𝑣𝑣𝑠𝑠���⃗ ∈ 𝑉𝑉(𝑝𝑝1)   ∴ 𝑝𝑝1
𝑚𝑚1(𝒜𝒜)(𝑣𝑣𝑠𝑠���⃗ ) = 0�⃗ ,同理𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠(𝒜𝒜)(𝑣𝑣𝑠𝑠���⃗ ) = 0�⃗  

∴ 𝑣𝑣𝑠𝑠���⃗ = 0�⃗        ∎ 

注：两个不同特征的广义特征子空间的交只有零向量 

 

【推论 6.1】可对角化的判定 3 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉)则 

𝒜𝒜 可对角化⇔ 𝜇𝜇𝒜𝒜(𝑡𝑡) = (𝑡𝑡 − 𝛼𝛼1)⋯ (𝑡𝑡 − 𝛼𝛼𝑠𝑠) 

其中 𝛼𝛼1, … ,𝛼𝛼𝑠𝑠 ∈ 𝐹𝐹 ,两两不同 
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证： ⇒设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是 𝑉𝑉的一组基,且 𝒜𝒜 在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  下的矩阵是 

𝐴𝐴 = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) 

𝜇𝜇𝒜𝒜 = lcm(𝑡𝑡 − 𝜆𝜆1, 𝑡𝑡 − 𝜆𝜆2, … , 𝑡𝑡 − 𝜆𝜆𝑛𝑛) = (𝑡𝑡 − 𝛼𝛼1)⋯ (𝑡𝑡 − 𝛼𝛼𝑠𝑠) 

其中 𝛼𝛼1, … ,𝛼𝛼𝑠𝑠 是 𝜆𝜆1, … , 𝜆𝜆𝑛𝑛 中互不相同的元素 

⇐:由定理 6.1  

𝑉𝑉 = 𝑉𝑉(𝑡𝑡 − 𝛼𝛼1)⊕⋯⊕𝑉𝑉(𝑡𝑡 − 𝛼𝛼𝑠𝑠) 

且 𝒜𝒜𝑖𝑖│𝑉𝑉(𝑡𝑡−𝛼𝛼𝑖𝑖)的极小多项式是 𝑡𝑡 − 𝛼𝛼𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑠𝑠  

即 ∀𝑖𝑖 = 1, … , 𝑠𝑠, 𝒜𝒜𝑖𝑖 − 𝛼𝛼𝑖𝑖ℰ𝑖𝑖 = 𝒪𝒪𝑖𝑖 

其中 ℰ𝑖𝑖  是 𝑉𝑉(𝑡𝑡 − 𝛼𝛼𝑖𝑖)上的恒同算子,𝒪𝒪𝑖𝑖  是 𝑉𝑉(𝑡𝑡 − 𝛼𝛼𝑖𝑖)上的零算子 

令 𝜀𝜀𝚤𝚤1����⃗  , … , 𝜀𝜀𝚤𝚤𝑑𝑑𝚤𝚤������⃗是 𝑉𝑉(𝑡𝑡 − 𝛼𝛼𝑖𝑖)的一组基，则 𝒜𝒜𝑖𝑖在该基下的矩阵为 𝛼𝛼𝑖𝑖𝐸𝐸𝑑𝑑𝑖𝑖 

于是在𝑉𝑉的基底 𝜀𝜀1���⃗ , … , 𝜀𝜀1𝑑𝑑1�������⃗ , … , 𝜀𝜀𝑠𝑠1�����⃗ , … , 𝜀𝜀𝑠𝑠𝑑𝑑𝑠𝑠�������⃗下 𝒜𝒜的矩阵为 

对角矩阵diag�𝛼𝛼1𝐸𝐸𝑑𝑑1 , … ,𝛼𝛼𝑠𝑠𝐸𝐸𝑑𝑑𝑠𝑠�        ∎ 

 

【推论 6.2】推论 6.1 的矩阵版 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),则 𝐴𝐴可对角化⇔ 𝜇𝜇𝐴𝐴 = (𝑡𝑡 − 𝛼𝛼1)⋯ (𝑡𝑡 − 𝛼𝛼𝑠𝑠) 

其中 𝛼𝛼1, … ,𝛼𝛼𝑠𝑠 ∈ 𝐹𝐹 两两不同 

证：把 𝐴𝐴 看成线性算子，然后用推论 6.1       ∎  

 

【例 6.2.2】幂等算子可对角化 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),且 𝒜𝒜2 = 𝒜𝒜,证明 𝒜𝒜 可对角化 

证：设 𝑝𝑝(𝑡𝑡) = 𝑡𝑡2 − 𝑡𝑡 = 𝑡𝑡(𝑡𝑡 − 1),𝑝𝑝(𝒜𝒜) = 0 

𝜇𝜇𝒜𝒜只能为𝑡𝑡或𝑡𝑡 − 1 或𝑡𝑡(𝑡𝑡 − 1) 

由推论 6.1,𝒜𝒜 可对角化        ∎ 
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【例 6.2.3】可对角化判定例 

设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹) 满足 𝐴𝐴2 = 𝐸𝐸,讨论𝐴𝐴是否能相似于某个对角矩阵 

解：设 𝑝𝑝 = 𝑡𝑡2 − 1 ∈ 𝐹𝐹[𝑡𝑡],𝑝𝑝(𝐴𝐴) = 𝐴𝐴2 − 𝐸𝐸 = 𝑂𝑂𝑛𝑛×𝑛𝑛 

⇒ 𝑝𝑝(𝑡𝑡)零化 𝐴𝐴 ⇒ 𝜇𝜇𝐴𝐴│𝑝𝑝(𝑡𝑡) = (𝑡𝑡 + 1)(𝑡𝑡 − 1) 

若𝜇𝜇𝐴𝐴(𝑡𝑡) = 𝑡𝑡 ± 1  则 𝐴𝐴 = ∓𝐸𝐸  可对角化 

若𝜇𝜇𝐴𝐴(𝑡𝑡) = (𝑡𝑡 + 1)(𝑡𝑡 − 1)且 1 ≠ −1 则可对角化 

当 char𝐹𝐹 = 2 时，𝜇𝜇𝐴𝐴 = (𝑡𝑡 + 1)2 ⇒ 𝐴𝐴不能对角化 

例如 �0 1
1 0� ∈ 𝑀𝑀2(ℤ2)不可对角化 

 

【例 6.2.4】求广义特征子空间分解例 

𝒜𝒜:ℝ3 → ℝ3,�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� ↦ �

1 0 1
1 1 −1
0 0 2

�
���������

𝐴𝐴

�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� 

求 ℝ3 关于 𝒜𝒜 的广义特征子空间分解 

解：𝜇𝜇𝐴𝐴(𝑡𝑡) = 𝑡𝑡3 − 4𝑡𝑡2 + 5𝑡𝑡 − 2 = (𝑡𝑡 − 2)(𝑡𝑡 − 1)2    

𝑉𝑉(𝑝𝑝 − 2) = ker(𝒜𝒜− 2ℰ) 

为(𝐴𝐴 − 2𝐸𝐸)�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = �

0
0
0
�的解空间    ∴ 𝑉𝑉(𝑝𝑝 − 2) = ��

1
0
1
��  

𝑉𝑉((𝑝𝑝 − 1)2) = ker((𝒜𝒜− ℰ)2) 

为(𝐴𝐴 − 𝐸𝐸)2 �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = �

0
0
0
�的解空间    ∴ 𝑉𝑉((𝑝𝑝 − 1)2) = ��

1
0
0
� ,�

0
1
0
�� 

∴ ℝ3 = ��
1
0
1
�� ⊕ ��

1
0
0
� ,�

0
1
0
�� 

𝒜𝒜在�
1
0
1
� ,�

1
0
0
� ,�

0
1
0
�下的矩阵为 �

2 0 0
0
0

1 0
0 1

� 
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§6.3 循环子空间的分解 

循环子空间的基本性质�命题 5.3� 

(𝑖𝑖)𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 是 𝒜𝒜−子空间 

(𝑖𝑖𝑖𝑖)如果 𝑑𝑑 = dim𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 

则 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑑𝑑−1(𝑣⃗𝑣) 是 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 的一组基 

(𝑖𝑖𝑖𝑖𝑖𝑖)如果 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑑𝑑−1(𝑣⃗𝑣)线性无关; 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑑𝑑(𝑣⃗𝑣)线性相关 

则dim𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = 𝑑𝑑 

(𝑖𝑖𝑖𝑖)𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = {𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣)|𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡]} 

 

【定理 6.2】循环子空间分解 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),则 ∃𝑣⃗𝑣1, … ,𝑣𝑣𝑘𝑘����⃗ ∈ 𝑉𝑉 

使得 𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣1����⃗ ⊕⋯⊕𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣𝑘𝑘����⃗  

证：设 𝑛𝑛 = dim𝑉𝑉  对 𝑛𝑛 归纳  

当𝑛𝑛 = 1 时   令 𝑣⃗𝑣 ∈ 𝑉𝑉 ∖ �0�⃗ � 则 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = 𝑉𝑉,定理成立 

设𝑛𝑛 > 1 且当dim𝑉𝑉 < 𝑛𝑛 时定理成立 

如果  𝑉𝑉 本身是 𝒜𝒜−循环的，则定理成立 

考虑 𝑉𝑉 不是𝒜𝒜−循环的情况 

令 𝑚𝑚 是 𝑉𝑉 中所有 𝒜𝒜−循环子空间的维数的最大值 

∃𝑤𝑤��⃗ ∈ 𝑉𝑉, dim𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗ = 𝑚𝑚,   1 ≤ 𝑚𝑚 < 𝑛𝑛 

 

证明思路：构造 𝒜𝒜 −子空间 𝑈𝑈 使得 𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗ ⊕ 𝑈𝑈 

然后对 𝒜𝒜│𝑈𝑈 ,𝑈𝑈用归纳假设 

由命题 5.3,𝑤𝑤��⃗ ,𝒜𝒜(𝑤𝑤��⃗ ), … ,𝒜𝒜𝑚𝑚−1(𝑤𝑤��⃗ )是 𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗ 的一组基 

扩充为 𝑉𝑉 的一组基 𝑤𝑤��⃗ ,𝒜𝒜(𝑤𝑤��⃗ ), … ,𝒜𝒜𝑚𝑚−1(𝑤𝑤��⃗ ),ℰ𝑚𝑚+1����������⃗ , … ,ℰ𝑛𝑛����⃗  
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由第一章定理 8.1�也见该定理后的例子� 

∃𝑓𝑓 ∈ 𝑉𝑉∗,使得 𝑓𝑓(𝑤𝑤��⃗ ) = 𝑓𝑓�𝒜𝒜(𝑤𝑤��⃗ )� = ⋯ = 𝑓𝑓�𝒜𝒜𝑚𝑚−2(𝑤𝑤��⃗ )� = 0 

𝑓𝑓�𝒜𝒜𝑚𝑚−1(𝑤𝑤��⃗ )� = 1,𝑓𝑓�ℰ𝚥𝚥���⃗ � = 0�⃗ , 𝑗𝑗 = 𝑚𝑚 + 1, … ,𝑛𝑛 

注：𝑚𝑚 = 1 时 𝑓𝑓(𝑤𝑤��⃗ ) = 1,𝑓𝑓�ℰ𝚥𝚥���⃗ � = 0, 𝑗𝑗 = 2, … ,𝑛𝑛 

定义 𝜑𝜑:𝑉𝑉 → 𝐹𝐹𝑚𝑚, 𝑥⃗𝑥 ↦

⎝

⎜
⎛

𝑓𝑓(𝑥⃗𝑥)
𝑓𝑓�𝒜𝒜(𝑥⃗𝑥)�

⋮
𝑓𝑓�𝒜𝒜𝑚𝑚−1(𝑥⃗𝑥)�⎠

⎟
⎞

 

∵ 𝒜𝒜𝑖𝑖 ∈ ℒ(𝑉𝑉),𝑓𝑓 ∈ 𝑉𝑉∗ ⇒ 𝑓𝑓 ∘ 𝒜𝒜𝑖𝑖 ∈ 𝑉𝑉∗ ⇒ 𝜑𝜑 ∈ Hom(𝑉𝑉,𝐹𝐹𝑚𝑚) 

 

断言 1      𝜑𝜑在基底 𝑤𝑤��⃗ ,𝒜𝒜(𝑤𝑤��⃗ ), … ,𝒜𝒜𝑚𝑚−1(𝑤𝑤��⃗ ),ℰ𝑚𝑚+1����������⃗ , … ,ℰ𝑛𝑛����⃗下的矩阵 

𝐴𝐴 = (𝐵𝐵 𝐶𝐶)𝑚𝑚×𝑛𝑛,其中 𝐵𝐵 ∈ 𝐺𝐺𝐿𝐿𝑚𝑚(𝐹𝐹),𝐶𝐶 ∈ 𝐹𝐹𝑚𝑚×(𝑛𝑛−𝑚𝑚) 

断言 1 的证明：∀𝑖𝑖 ∈ {0,1, … ,𝑚𝑚− 1} 

𝜑𝜑 �𝒜𝒜𝑖𝑖(𝑤𝑤��⃗ )� =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑓𝑓 �𝒜𝒜𝑖𝑖(𝑤𝑤��⃗ )�
⋮

𝑓𝑓�𝒜𝒜𝑚𝑚−2(𝑤𝑤��⃗ )�
𝑓𝑓�𝒜𝒜𝑚𝑚−1(𝑤𝑤��⃗ )�     �𝑚𝑚 − 𝑖𝑖行�

𝑓𝑓�𝒜𝒜𝑚𝑚(𝑤𝑤��⃗ )�
⋮

𝑓𝑓 �𝒜𝒜𝑖𝑖+𝑚𝑚−1(𝑤𝑤��⃗ )� ⎠

⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

0
⋮
0

1     �𝑚𝑚 − 𝑖𝑖行�
𝑋𝑋
⋮
𝑋𝑋 ⎠

⎟
⎟
⎟
⎞

 

𝑋𝑋表示任意值且不一定互相相同  

�𝜑𝜑(𝑤𝑤��⃗ ),𝜑𝜑�𝒜𝒜(𝑤𝑤��⃗ )�, … ,𝜑𝜑�𝒜𝒜𝑚𝑚−1(𝑤𝑤��⃗ )�,𝜑𝜑�ℰ𝑚𝑚+1����������⃗ �, … ,𝜑𝜑�ℰ𝑛𝑛����⃗ �� 

= (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑚𝑚�����⃗ )�������
𝐹𝐹𝑚𝑚的标准基

⎝

⎜⎜
⎜
⎛

0 0 ⋯ 0 1
0 0 ⋯ 1 𝑋𝑋
⋮ ⋮ ⋱ ⋮ ⋮
0 1 ⋯ 𝑋𝑋 𝑋𝑋
1 𝑋𝑋 ⋯ 𝑋𝑋 𝑋𝑋�����������

𝐵𝐵

�

�
𝑋𝑋 ⋯ 𝑋𝑋
𝑋𝑋 ⋯ 𝑋𝑋
⋮ ⋱ ⋮
𝑋𝑋 ⋯ 𝑋𝑋
𝑋𝑋 ⋯ 𝑋𝑋�������

𝐶𝐶 ⎠

⎟⎟
⎟
⎞

 

⇒ 𝐵𝐵 ∈ 𝐺𝐺𝐿𝐿𝑚𝑚(𝐹𝐹),𝐶𝐶 ∈ 𝐹𝐹𝑚𝑚×(𝑛𝑛−𝑚𝑚) 断言 1 成立 
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断言 2    ker𝜑𝜑是 𝑛𝑛 −𝑚𝑚 维 𝒜𝒜 −子空间 

断言 2 的证明：由线性映射维数公式 

dim ker𝜑𝜑 + rank𝜑𝜑 = 𝑛𝑛,由断言 1 

rank𝜑𝜑 = 𝑚𝑚 ⇒ dim ker𝜑𝜑 = 𝑛𝑛 −𝑚𝑚 

设 𝑥⃗𝑥 ∈ ker𝜑𝜑, 

 �
0
⋮
0
� = 𝜑𝜑(𝑥⃗𝑥) =

⎝

⎜
⎛

𝑓𝑓(𝑥⃗𝑥)
⋮

𝑓𝑓�𝒜𝒜𝑚𝑚−2(𝑥⃗𝑥)�
𝑓𝑓�𝒜𝒜𝑚𝑚−1(𝑥⃗𝑥)�⎠

⎟
⎞
⇒ 𝑓𝑓 �𝒜𝒜𝑖𝑖(𝑥⃗𝑥)� = 0, 𝑖𝑖 = 0, … ,𝑚𝑚− 1 

由𝑚𝑚选择可知,∃𝑘𝑘 ≤ 𝑚𝑚,使得 𝑥⃗𝑥,𝒜𝒜(𝑥⃗𝑥), … ,𝒜𝒜𝑘𝑘−1(𝑥⃗𝑥)是 𝐹𝐹[𝒜𝒜] ⋅ 𝑥⃗𝑥的一组基 

于是∃ 𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑘𝑘−1 ∈ 𝐹𝐹 

𝒜𝒜𝑚𝑚(𝑥⃗𝑥) = 𝛼𝛼0(𝑥⃗𝑥) + 𝛼𝛼1𝒜𝒜(𝑥⃗𝑥) + ⋯+ 𝛼𝛼𝑘𝑘−1𝒜𝒜𝑘𝑘−1(𝑥⃗𝑥)     [∗] 

𝜑𝜑�𝒜𝒜(𝑥⃗𝑥)� =

⎝

⎜
⎛

𝑓𝑓�𝒜𝒜(𝑥⃗𝑥)�
⋮

𝑓𝑓�𝒜𝒜𝑚𝑚−1(𝑥⃗𝑥)�
𝑓𝑓�𝒜𝒜𝑚𝑚(𝑥⃗𝑥)� ⎠

⎟
⎞

= �

0
⋮
0

𝑓𝑓�𝒜𝒜𝑚𝑚(𝑥⃗𝑥)�
� = �

0
⋮
0
0

�   �由[∗]� 

⇒ 𝒜𝒜(𝑥⃗𝑥) ∈ ker𝜑𝜑     断言 2 成立 

 

断言 3 𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗ ⊕ ker𝜑𝜑 

断言 3 的证明：设 𝑢𝑢�⃗ ∈ 𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗ ∩ ker𝜑𝜑 

∵ 𝑢𝑢�⃗ ∈ 𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗  ∴ ∃𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑚𝑚−1 ∈ 𝐹𝐹 使得 

𝑢𝑢�⃗ = 𝛽𝛽0𝑤𝑤��⃗ + 𝛽𝛽1𝒜𝒜(𝑤𝑤��⃗ ) + ⋯+ 𝛽𝛽𝑚𝑚−1�𝒜𝒜𝑚𝑚−1(𝑤𝑤��⃗ )� 

于是 𝑢𝑢�⃗在 𝑤𝑤��⃗ , … ,𝒜𝒜𝑚𝑚−1(𝑤𝑤��⃗ ),ℰ𝑚𝑚�����⃗ , … ,ℰ𝑛𝑛����⃗下的矩阵是 

⎝

⎜⎜
⎛

𝛽𝛽0
⋮

𝛽𝛽𝑚𝑚−1

                  
0
⋮
0
� 𝑛𝑛 − 𝑚𝑚行

⎠

⎟⎟
⎞
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∵ 𝑢𝑢�⃗ ∈ ker𝜑𝜑 ,   ∴ 𝜑𝜑(𝑢𝑢�⃗ ) = �
0
⋮
0
�  而 𝜑𝜑(𝑢𝑢�⃗ ) = (𝐵𝐵 𝐶𝐶)

⎝

⎜⎜
⎛

𝛽𝛽0
⋮

𝛽𝛽𝑚𝑚−1
0
⋮
0 ⎠

⎟⎟
⎞

= 𝐵𝐵�
𝛽𝛽0
⋮

𝛽𝛽𝑚𝑚−1

� 

∵ 𝐵𝐵可逆   ∴ 𝛽𝛽0 = ⋯ = 𝛽𝛽𝑚𝑚−1 = 0  ⇒ 𝑢𝑢�⃗ = 0 

于是 𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗ + ker𝜑𝜑是直和 

dim(𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗ ) + dim ker𝜑𝜑 = 𝑚𝑚 + 𝑛𝑛 −𝑚𝑚 = 𝑛𝑛 

⇒断言 3 成立 

 

令 𝑊𝑊 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗ ,𝐾𝐾 = ker𝜑𝜑 

由断言 3    𝑉𝑉 = 𝑊𝑊⊕𝐾𝐾 

由 𝑚𝑚 的选取, 0 < dim𝑊𝑊 < 𝑛𝑛 ⇒ 0 < dim𝑘𝑘 < 𝑛𝑛 

由断言 2    𝐾𝐾是 𝒜𝒜 −子空间  

对 𝒜𝒜│𝐾𝐾和 𝐾𝐾用归纳假设  

得𝐾𝐾是若干个𝐾𝐾中 𝒜𝒜│𝐾𝐾循环子空间的直和   

而它们也都是 𝒜𝒜−循环的   ∎ 

 

【推论 6.3】C-H 定理加强版 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉), 

(𝑖𝑖)𝜇𝜇𝒜𝒜│𝒳𝒳𝒜𝒜 

(𝑖𝑖𝑖𝑖)设 𝑝𝑝 是 𝒳𝒳𝒜𝒜 在 𝐹𝐹[𝑡𝑡]中的一个不可约因子，则 𝑝𝑝│𝜇𝜇𝒜𝒜 

证：由定理 6.2,𝑉𝑉 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑘𝑘,其中 𝑈𝑈1, … ,𝑈𝑈𝑘𝑘是非零𝒜𝒜−循环的 

令 𝒜𝒜𝑖𝑖 = 𝒜𝒜│𝑈𝑈𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑘𝑘 

则𝜇𝜇𝒜𝒜 = lcm�𝜇𝜇𝒜𝒜1 , … , 𝜇𝜇𝒜𝒜𝑘𝑘�       𝒳𝒳𝒜𝒜 = 𝒳𝒳𝒜𝒜1 ⋯𝒳𝒳𝒜𝒜𝑘𝑘 

由引理 5.4,则 𝒳𝒳𝒜𝒜𝑖𝑖 = 𝜇𝜇𝒜𝒜𝑖𝑖  , 𝑖𝑖 = 1, … , 𝑘𝑘 
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∴ 𝜇𝜇𝒜𝒜│𝒳𝒳𝒜𝒜   (𝑖𝑖)成立   

(𝑖𝑖𝑖𝑖)𝑝𝑝不可约且 𝑝𝑝│𝒳𝒳𝒜𝒜 ⇒ ∃𝑖𝑖 ∈ {1, … , 𝑘𝑘},𝑝𝑝│𝒳𝒳𝒜𝒜𝑖𝑖 

由(𝑖𝑖),𝑝𝑝│𝜇𝜇𝒜𝒜𝑖𝑖 ⇒ 𝑝𝑝│𝜇𝜇𝒜𝒜       ∎ 

注:由此,𝜇𝜇𝒜𝒜 = 𝑝𝑝1
𝑚𝑚1 ⋯𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠   �不可约分解� 

𝒳𝒳𝒜𝒜 = 𝑝𝑝1
𝑛𝑛1 ⋯𝑝𝑝𝑠𝑠

𝑛𝑛𝑠𝑠   且 0 < 𝑚𝑚𝑖𝑖 ≤ 𝑛𝑛𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑠𝑠 

 

【推论 6.4】可对角化判定 4 

设 𝐹𝐹 = ℂ,𝒜𝒜 ∈ ℒ(𝑉𝑉) 

则 (𝑖𝑖)𝒳𝒳𝒜𝒜 和 𝜇𝜇𝒜𝒜有相同的根�不计重数� 

(𝑖𝑖𝑖𝑖) 𝒜𝒜 可对角化⇔ gcd(𝜇𝜇𝒜𝒜 ,𝜇𝜇𝒜𝒜′ ) = 1 

证:由代数学基本定理和推论 6.3 

𝜇𝜇𝒜𝒜 = (𝑡𝑡 − 𝜆𝜆1)𝑚𝑚1 ⋯ (𝑡𝑡 − 𝜆𝜆𝑠𝑠)𝑚𝑚𝑠𝑠 

其中 𝜆𝜆1, … , 𝜆𝜆𝑠𝑠 ∈ ℂ 两两不同,𝑚𝑚1, … ,𝑚𝑚𝑠𝑠 ∈ ℤ+ 

𝒳𝒳𝒜𝒜 = (𝑡𝑡 − 𝜆𝜆1)𝑛𝑛1 ⋯ (𝑡𝑡 − 𝜆𝜆𝑠𝑠)𝑛𝑛𝑠𝑠 ,𝑚𝑚𝑖𝑖 ≤ 𝑛𝑛𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑠𝑠  ∴ (𝑖𝑖)成立    

由推论 6.2， 𝒜𝒜可对角化⇔𝑚𝑚1 = ⋯ = 𝑚𝑚𝑠𝑠 = 1 

⇔ gcd(𝜇𝜇𝒜𝒜 ,𝜇𝜇𝒜𝒜′ ) = 1       ∎ 

 

【例 6.3.1】可对角化判定例 2 

𝐴𝐴 = �

1 −2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

� ∈ 𝑀𝑀4(ℂ)  问 𝐴𝐴是否可对角化 

解：𝜇𝜇𝒜𝒜 = 𝑡𝑡4 − 18𝑡𝑡3 − 24𝑡𝑡2 + 64𝑡𝑡 + 512 

gcd(𝜇𝜇𝒜𝒜 ,𝜇𝜇𝒜𝒜′ ) = 1   故可对角化 
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§6.4 根子空间分解 

【定义 6.4.1】根子空间 

设 𝐹𝐹 = ℂ,𝒜𝒜 ∈ ℒ(𝑉𝑉), 𝜆𝜆 ∈ specℂ𝒜𝒜 

𝒜𝒜 关于 𝜆𝜆 的根子空间是  𝑉𝑉(𝜆𝜆) = �𝑣⃗𝑣 ∈ 𝑉𝑉�∃𝑘𝑘 ∈ ℕ, (𝒜𝒜− 𝜆𝜆ℰ)𝑘𝑘(𝑣⃗𝑣) = 0�⃗ � 

 

【引理 6.4】根子空间等于广义特征子空间 

利用上述记号，则  (𝑡𝑡 − 𝜆𝜆)│𝜇𝜇𝒜𝒜 且 𝑉𝑉(𝑡𝑡 − 𝜆𝜆) = 𝑉𝑉(𝜆𝜆) 

注： 𝑉𝑉(𝑡𝑡 − 𝜆𝜆) 是广义特征子空间  

证：由推论 6.3 (𝑡𝑡 − 𝜆𝜆)│𝜇𝜇𝒜𝒜 ,于是 𝑉𝑉(𝑡𝑡 − 𝜆𝜆)有意义 

设 (𝑡𝑡 − 𝜆𝜆)在 𝜇𝜇𝒜𝒜 中的重数是 𝑚𝑚 

则 𝑉𝑉(𝑡𝑡 − 𝜆𝜆) = ker((𝒜𝒜− 𝜆𝜆ℰ)𝑚𝑚) = �𝑣⃗𝑣 ∈ 𝑉𝑉�(𝒜𝒜− 𝜆𝜆ℰ)𝑚𝑚(𝑣⃗𝑣) = 0�⃗ � 

由此 𝑉𝑉(𝑡𝑡 − 𝜆𝜆) ⊂ 𝑉𝑉(𝜆𝜆) 

反之 设 𝑣⃗𝑣 ∈ 𝑉𝑉(𝜆𝜆),∃𝑘𝑘 ∈ ℕ 使得(𝒜𝒜− 𝜆𝜆ℰ)𝑘𝑘(𝑣⃗𝑣) = 0�⃗   

设 𝜇𝜇𝒜𝒜 = (𝑡𝑡 − 𝜆𝜆)𝑚𝑚𝑞𝑞(𝑡𝑡) 其中 𝑞𝑞 ∈ ℂ[𝑡𝑡]且 gcd(𝑡𝑡 − 𝜆𝜆,𝑞𝑞) = 1 

从而 gcd((𝑡𝑡 − 𝜆𝜆)𝑘𝑘 ,𝑞𝑞) = 1 

∃𝑎𝑎, 𝑏𝑏 ∈ 𝐹𝐹[𝑡𝑡],𝑎𝑎(𝑡𝑡)(𝑡𝑡 − 𝜆𝜆)𝑘𝑘 + 𝑏𝑏(𝑡𝑡)𝑞𝑞(𝑡𝑡) = 1 

𝑎𝑎(𝒜𝒜)(𝒜𝒜− 𝜆𝜆ℰ)𝑘𝑘(𝑣⃗𝑣) + 𝑏𝑏(𝒜𝒜)𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) = ℰ𝑣⃗𝑣 = 𝑣⃗𝑣 

∴ 𝑏𝑏(𝒜𝒜)𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) = 𝑣⃗𝑣 

(𝒜𝒜− 𝜆𝜆ℰ)𝑚𝑚(𝑣⃗𝑣) = (𝒜𝒜− 𝜆𝜆ℰ)𝑚𝑚𝑏𝑏(𝒜𝒜)𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) 

= 𝑏𝑏(𝒜𝒜)(𝒜𝒜− 𝜆𝜆ℰ)𝑚𝑚𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) 

= 𝑏𝑏(𝒜𝒜)𝜇𝜇𝒜𝒜(𝒜𝒜)�����
𝒪𝒪

(𝑣⃗𝑣) = 0�⃗ ⇒ 𝑣⃗𝑣 ∈ 𝑉𝑉(𝑡𝑡 − 𝜆𝜆)    

∴ 𝑉𝑉(𝜆𝜆) ⊂ 𝑉𝑉(𝑡𝑡 − 𝜆𝜆)   ∴ 𝑉𝑉(𝜆𝜆) = 𝑉𝑉(𝑡𝑡 − 𝜆𝜆)        ∎ 

注：由上述引理和定理 6.1 可直接得到柯书中根子空间的分解定理(𝑃𝑃72.3)  
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§6.5 循环子空间的进一步性质 

【例 6.5.1】无视极小多项式向量存在性 

P56 习题 9(𝑖𝑖𝑖𝑖)   

设 𝒜𝒜 ∈ ℒ(𝑉𝑉) 则 ∃𝑣⃗𝑣 ∈ 𝑉𝑉,使得 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ = 𝜇𝜇𝒜𝒜   

证：𝜇𝜇𝒜𝒜(𝒜𝒜) = 𝒪𝒪:𝑉𝑉 → 𝑉𝑉,则 ∀𝑣⃗𝑣 ∈ 𝑉𝑉, 𝜇𝜇𝒜𝒜(𝒜𝒜)(𝑣⃗𝑣) = 0�⃗  

于是 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ │𝜇𝜇𝒜𝒜 

下证 ∃𝑣⃗𝑣,使得deg𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ = deg𝜇𝜇𝒜𝒜 

记 𝜇𝜇𝒜𝒜 = 𝑝𝑝1
𝑚𝑚1 ⋯𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠 

若 𝑠𝑠 = 1, 则 𝜇𝜇𝒜𝒜 = 𝑝𝑝𝑚𝑚,𝑝𝑝 = 𝑝𝑝1,𝑚𝑚 = 𝑚𝑚1,𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡] ∖ 𝐹𝐹  

假设 ∀𝑣⃗𝑣 ∈ 𝑉𝑉, deg 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ < deg𝜇𝜇𝒜𝒜 ⇒ deg𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ │𝑝𝑝𝑚𝑚−1 

于是 𝑝𝑝𝑚𝑚−1(𝒜𝒜)(𝑣⃗𝑣) = 0�⃗ ⇒ 𝑝𝑝𝑚𝑚−1(𝒜𝒜) = 𝒪𝒪 ⇒ 𝑝𝑝𝑚𝑚−1为 𝒜𝒜 的零化多项式 

与𝜇𝜇𝒜𝒜 = 𝑝𝑝𝑚𝑚 极小矛盾,故∃𝑣⃗𝑣 ∈ 𝑉𝑉, deg𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ = deg𝜇𝜇𝒜𝒜 

若 𝑠𝑠 > 1 考虑广义特征子空间分解 

𝑉𝑉 = 𝑉𝑉(𝑝𝑝1)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑠𝑠),𝑉𝑉(𝑝𝑝𝑖𝑖) = ker �𝑝𝑝𝑖𝑖
𝑚𝑚𝑖𝑖(𝒜𝒜)� 

令 𝒜𝒜𝑖𝑖 = 𝒜𝒜│𝑉𝑉(𝑝𝑝𝑖𝑖)则 𝜇𝜇𝒜𝒜𝑖𝑖 = 𝑝𝑝𝑖𝑖
𝑚𝑚𝑖𝑖 

此时,用𝑠𝑠 = 1 的结果,存在𝑣𝑣𝚤𝚤���⃗ ∈ 𝑉𝑉(𝑝𝑝𝑖𝑖), 𝑠𝑠. 𝑡𝑡. 𝜇𝜇𝒜𝒜𝑖𝑖,𝑣𝑣𝚤𝚤���⃗ = 𝜇𝜇𝒜𝒜𝑖𝑖 = 𝑝𝑝𝑖𝑖
𝑚𝑚𝑖𝑖 

令 𝑣⃗𝑣 = 𝑣𝑣1����⃗ + ⋯+ 𝑣𝑣𝑠𝑠���⃗ , 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗由上述过程得到 

则 0�⃗ = 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝒜𝒜)(𝑣⃗𝑣) = 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝒜𝒜)(𝑣𝑣1����⃗ ) + ⋯+ 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝒜𝒜)(𝑣𝑣𝑠𝑠���⃗ ) 

注意，𝑉𝑉(𝑝𝑝𝑖𝑖)为𝒜𝒜不变子空间, 

则对 ∀𝑓𝑓 ∈ 𝐹𝐹[𝑡𝑡],𝑉𝑉(𝑝𝑝𝑖𝑖)为𝑓𝑓(𝒜𝒜)不变子空间 

则 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝒜𝒜)𝑣𝑣𝚤𝚤���⃗ ∈ 𝑉𝑉(𝑝𝑝𝑖𝑖) 

于是由𝑉𝑉 = 𝑉𝑉(𝑝𝑝1)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑠𝑠)和𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝒜𝒜)𝑣𝑣𝚤𝚤���⃗ = 0�⃗ , 𝑖𝑖 = 1, … , 𝑠𝑠 

则 𝜇𝜇𝒜𝒜𝑖𝑖,𝑣𝑣𝚤𝚤���⃗ │𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ , 𝑖𝑖 = 1, … , 𝑠𝑠 
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此时 𝜇𝜇𝒜𝒜𝑖𝑖,𝑣𝑣𝚤𝚤���⃗ = 𝜇𝜇𝒜𝒜𝑖𝑖   则𝜇𝜇𝒜𝒜𝑖𝑖│𝜇𝜇𝒜𝒜,𝑣𝑣�⃗  

⇒ 𝜇𝜇𝒜𝒜 = lcm(𝜇𝜇𝒜𝒜1, … ,𝜇𝜇𝒜𝒜𝑠𝑠)│𝜇𝜇𝒜𝒜,𝑣𝑣�⃗  

⇒ 𝜇𝜇𝒜𝒜 = 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗      ∎ 

 

【命题 6.1】循环空间维数等于极小多项式次数 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),则 𝑉𝑉是 𝒜𝒜 −循环的⇔ deg𝜇𝜇𝒜𝒜 = dim𝑉𝑉 

证： ⇒:由引理 5.4,𝜇𝜇𝒜𝒜 = 𝒳𝒳𝒜𝒜 ⇒ deg𝜇𝜇𝒜𝒜 = deg𝒳𝒳𝒜𝒜 = dim𝑉𝑉 

⇐:设 𝑛𝑛 = dim𝑉𝑉 ,且deg𝜇𝜇𝒜𝒜 = 𝑛𝑛  

由例 6.5.1 

∃𝑣⃗𝑣 ∈ 𝑉𝑉, 𝑠𝑠. 𝑡𝑡.  𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ = 𝜇𝜇𝒜𝒜 ⇒ deg𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ = 𝑛𝑛 = dim𝑉𝑉 

由命题 5.4 ⇒ dim𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = dim𝑉𝑉 ⇒ 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = 𝑉𝑉       ∎ 

 

【例 6.5.2】求循环向量例 

𝒜𝒜:ℝ3 → ℝ3,�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� ↦ �

1 0 1
1 1 −1
0 0 2

�
���������

𝐴𝐴

�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� 

证明 ℝ3是𝒜𝒜−循环的且求 𝑣⃗𝑣 使得 ℝ3 = ℝ[𝒜𝒜] ⋅ 𝑣⃗𝑣 

注：称 𝑣⃗𝑣 是 ℝ3 关于 𝒜𝒜 循环向量  

证： 𝜇𝜇𝒜𝒜 = 𝑡𝑡3 − 4𝑡𝑡2 + 5𝑡𝑡 − 2 

deg𝜇𝜇𝒜𝒜 = 3 ⇒ ℝ3是𝒜𝒜−循环的 

设𝑣⃗𝑣 = �
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
�是循环向量,即𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣),𝒜𝒜2(𝑣⃗𝑣)线性无关[命题 5.3] 

即 rank�𝐴𝐴0 �
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
� ,𝐴𝐴1 �

𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
� ,𝐴𝐴2 �

𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
�� = 3 

试验可得 𝑣𝑣1 = 𝑣𝑣2 = 0,𝑣𝑣3 = 1 满足要求 
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因此�
0
0
1
�是一个循环向量  

 

【命题 6.2】线性算子在循环子空间的矩阵 

设𝒜𝒜 ∈ ℒ(𝑉𝑉)且 𝑉𝑉是 𝒜𝒜−循环的 

设 𝜇𝜇𝒜𝒜 = 𝑡𝑡𝑛𝑛 + 𝛼𝛼𝑛𝑛−1𝑡𝑡𝑛𝑛−1 +⋯+ 𝛼𝛼0, 𝛼𝛼0, … ,𝛼𝛼𝑛𝑛−1 ∈ 𝐹𝐹 

设 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑛𝑛−1(𝑣⃗𝑣)是 𝑉𝑉 的一组基 

则 𝒜𝒜在该基下的矩阵为 

⎝

⎜⎜
⎛

0 −𝛼𝛼0
1 0 −𝛼𝛼1

1 ⋱ −𝛼𝛼2
⋱ 0 −𝛼𝛼𝑛𝑛−2

1 −𝛼𝛼𝑛𝑛−1⎠

⎟⎟
⎞

𝑛𝑛×𝑛𝑛

 

证：𝑖𝑖 ∈ {0,1, … ,𝑛𝑛 − 2},𝒜𝒜�𝒜𝒜𝑖𝑖(𝑣⃗𝑣)� = 𝒜𝒜𝑖𝑖+1(𝑣⃗𝑣)     [1] 

𝒜𝒜�𝒜𝒜𝑛𝑛−1(𝑣⃗𝑣)� = 𝒜𝒜𝑛𝑛(𝑣⃗𝑣) = (−𝛼𝛼𝑛𝑛−1𝒜𝒜𝑛𝑛−1 −⋯− 𝛼𝛼1𝒜𝒜 − 𝛼𝛼0ℰ)(𝑣⃗𝑣) 

= −𝛼𝛼0𝑣⃗𝑣 − 𝛼𝛼1𝒜𝒜(𝑣⃗𝑣)−⋯− 𝛼𝛼𝑛𝑛−1𝒜𝒜𝑛𝑛−1(𝑣⃗𝑣)  [2] 

由 [1][2] 

�𝒜𝒜(𝑣⃗𝑣),𝒜𝒜2(𝑣⃗𝑣), … ,𝒜𝒜𝑛𝑛−1(𝑣⃗𝑣),𝒜𝒜𝑛𝑛(𝑣⃗𝑣)� 

= �𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑛𝑛−2(𝑣⃗𝑣),𝒜𝒜𝑛𝑛−1(𝑣⃗𝑣)�

⎝

⎜⎜
⎛

0 −𝛼𝛼0
1 0 −𝛼𝛼1

1 ⋱ −𝛼𝛼2
⋱ 0 −𝛼𝛼𝑛𝑛−2

1 −𝛼𝛼𝑛𝑛−1⎠

⎟⎟
⎞

    ∎ 

由上述命题,例 6.5.2 中有 

�
1 0 1
1 1 −1
0 0 2

�~𝑠𝑠 �
0 0 2
1 0 −5
0 1 4

� 
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§6.6 𝒜𝒜-不可分子空间 

【定义 6.6.1】不可分子空间 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑈𝑈 ⊂ 𝑉𝑉,𝑈𝑈是𝒜𝒜−子空间 

如果 𝑈𝑈 不能写成两个维数为正的𝒜𝒜−子空间的直和 

则称𝑈𝑈是 𝒜𝒜−不可分的 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

否则𝑈𝑈 称为𝒜𝒜−可分的  

 

【定理 6.3】不可分子空间分解 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),则 𝑉𝑉是有限个 𝒜𝒜−不可分子空间的直和 

证：设 𝑛𝑛 = dim𝑉𝑉 ,对 𝑛𝑛 归纳   𝑛𝑛 = 1 时显然成立 

设𝑛𝑛 > 1 且dim𝑉𝑉 < 𝑛𝑛时定理成立  

如果 𝑉𝑉 是𝒜𝒜−不可分的，令 𝑈𝑈1 = 𝑉𝑉  得证 

如果 𝑉𝑉 是𝒜𝒜−可分的，则 𝑉𝑉 = 𝑈𝑈⊕𝑊𝑊,其中𝑈𝑈,𝑊𝑊 是 𝒜𝒜−子空间 

且 0 < dim𝑈𝑈 < 𝑛𝑛, 0 < dim𝑊𝑊 < 𝑛𝑛 

对 𝑈𝑈,𝒜𝒜│𝑈𝑈和𝑊𝑊,𝒜𝒜│𝑊𝑊用归纳假设即可        ∎ 

 

【命题 6.3】不可分子空间性质 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),则 𝑉𝑉 是 𝒜𝒜 −不可分的⇔ 

(𝑖𝑖)𝜇𝜇𝒜𝒜 是 𝐹𝐹上某个不可约多项式的幂次 

(𝑖𝑖𝑖𝑖)𝑉𝑉是𝒜𝒜−循环的 

证： ⇒:若𝜇𝜇𝒜𝒜不是某个不可约多项式的幂次 

则 ∃𝑝𝑝,𝑞𝑞 ∈ 𝐹𝐹[𝑡𝑡] ∖ 𝐹𝐹 ,使得 𝜇𝜇𝒜𝒜 = 𝑝𝑝𝑚𝑚𝑞𝑞 且 gcd(𝑝𝑝,𝑞𝑞) = 1 

则 gcd(𝑝𝑝𝑚𝑚,𝑞𝑞) = 1 

213／363
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𝜇𝜇𝒜𝒜 = 𝑝𝑝𝑚𝑚 𝑝𝑝2
𝑚𝑚2 ⋯𝑝𝑝𝑠𝑠

𝑚𝑚𝑆𝑆�������
𝑞𝑞

 (𝑠𝑠 > 1) 

由引理 6.3    𝑉𝑉是𝒜𝒜−可分的，矛盾 

若𝑉𝑉不是 𝒜𝒜−循环的 

由定理 6.2,𝑉𝑉是若干个 𝒜𝒜 −循环子空间的直和 

∴ 𝑉𝑉是𝒜𝒜 −可分的 ,矛盾 

⇐:设𝜇𝜇𝒜𝒜 = 𝑝𝑝𝑚𝑚,其中 𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡]不可约,𝑚𝑚 ∈ ℤ+ 

∵ 𝑉𝑉 是 𝒜𝒜 −循环的 

∴ dim𝑉𝑉 = deg𝜇𝜇𝒜𝒜       �命题 6.1� 

设𝑉𝑉 = 𝑈𝑈⊕𝑊𝑊,其中𝑈𝑈,𝑊𝑊是𝒜𝒜−子空间 

设 𝒜𝒜𝑈𝑈 = 𝒜𝒜│𝑈𝑈   则 𝜇𝜇𝒜𝒜𝑈𝑈│𝜇𝜇𝒜𝒜 ⇒ 𝜇𝜇𝒜𝒜𝑈𝑈 = 𝑝𝑝𝑘𝑘 , 0 < 𝑘𝑘 ≤ 𝑚𝑚 

同理 𝒜𝒜𝑊𝑊 = 𝒜𝒜│𝑊𝑊,𝜇𝜇𝒜𝒜𝑊𝑊 = 𝑝𝑝𝑙𝑙 , 0 < 𝑙𝑙 ≤ 𝑚𝑚 

𝜇𝜇𝒜𝒜 = lcm(𝑝𝑝𝑙𝑙 ,𝑝𝑝𝑘𝑘) = 𝑝𝑝max(𝑘𝑘,𝑙𝑙) = 𝑝𝑝𝑚𝑚,不妨设 𝑘𝑘 = 𝑚𝑚 

⇒ 𝜇𝜇𝒜𝒜𝑈𝑈 = 𝑝𝑝𝑚𝑚 ⇒ dim𝑈𝑈 ≥ deg𝑝𝑝𝑚𝑚 = dim𝑉𝑉 ⇒ 𝑈𝑈 = 𝑉𝑉 ⇒ 𝑊𝑊 = �0�⃗ � 

⇒ 𝑉𝑉不可分      ∎ 

 

【例 6.6.1】不可分子空间例 

𝒜𝒜 如例 6.5.2,𝜇𝜇𝒜𝒜 = (𝑡𝑡 − 2)(𝑡𝑡 − 1)2 ⇒ ℝ3是𝒜𝒜−可分的 

ℝ3 = 𝑉𝑉(𝑡𝑡 − 2)⊕𝑉𝑉((𝑡𝑡 − 1)2) 

𝒜𝒜│𝑉𝑉(𝑡𝑡−2)的极小多项式是𝑡𝑡 − 2 

𝒜𝒜│𝑉𝑉(𝑡𝑡−1)2的极小多项式是(𝑡𝑡 − 1)2 

再由dim𝑉𝑉(𝑡𝑡 − 2) = 1, dim𝑉𝑉((𝑡𝑡 − 1)2) = 2 

可知𝑉𝑉(𝑡𝑡 − 2)和 𝑉𝑉((𝑡𝑡 − 1)2)都是𝒜𝒜−不可分的  
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【定理 6.4】不可分循环子空间分解 

𝒜𝒜 ∈ ℒ(𝑉𝑉),则 𝑉𝑉 = 𝑉𝑉1 ⊕⋯⊕𝑉𝑉𝑙𝑙 , 

其中 𝑉𝑉𝑖𝑖既是 𝒜𝒜−不可分的，也是𝒜𝒜−循环的 

特别地， 𝒜𝒜│𝑉𝑉𝑖𝑖的极小多项式是𝐹𝐹[𝑡𝑡]中某个不可约多项式的幂次 

证：定理 6.3 和命题 6.2 的直接推论  

 

【命题 6.4】复 Jordan 块存在性 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝐹𝐹 = ℂ,𝑉𝑉是𝒜𝒜−不可分的 

则 𝒜𝒜 在 𝑉𝑉 的某组基下的矩阵是 

⎝

⎜
⎛
𝜆𝜆 1 ⋯ 0 0
0 𝜆𝜆 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 𝜆𝜆 1
0 0 ⋯ 0 𝜆𝜆⎠

⎟
⎞

𝑛𝑛×𝑛𝑛

, 𝜆𝜆 ∈ ℂ 

记为 𝐽𝐽𝑛𝑛(𝜆𝜆)  称为 𝑛𝑛 阶关于 𝜆𝜆的𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽块 

 例: 𝐽𝐽2(𝜆𝜆) = �𝜆𝜆 1
0 𝜆𝜆� , 𝐽𝐽3(𝜆𝜆) = �

𝜆𝜆 1 0
0 𝜆𝜆 1
0 0 𝜆𝜆

 � 

证：由命题 6.3 和代数学基本定理,𝜇𝜇𝒜𝒜 = (𝑡𝑡 − 𝜆𝜆)𝑛𝑛,其中 𝑛𝑛 = dim𝑉𝑉, 

且 ∃𝑣⃗𝑣 ∈ 𝑉𝑉,𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 

令 𝑒𝑒𝚤𝚤��⃗ = (𝒜𝒜− 𝜆𝜆ℰ)𝑛𝑛−𝑖𝑖(𝑣⃗𝑣), 𝑖𝑖 = 1, … ,𝑛𝑛 

先验证 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗  是基 

设 𝛼𝛼1𝑒𝑒1���⃗ + ⋯+ 𝛼𝛼𝑛𝑛𝑒𝑒𝑛𝑛����⃗ = 0�⃗  , 𝛼𝛼𝑖𝑖 ∈ 𝐹𝐹 

⇒�𝛼𝛼𝑖𝑖(𝒜𝒜− 𝜆𝜆ℰ)𝑛𝑛−𝑖𝑖(𝑣⃗𝑣)
𝑛𝑛

𝑖𝑖=1

= 0�⃗  

令𝑓𝑓(𝑡𝑡) = �𝛼𝛼𝑖𝑖(𝑡𝑡 − 𝜆𝜆)𝑛𝑛−𝑖𝑖
𝑛𝑛

𝑖𝑖=1

∈ ℂ[𝑡𝑡] 

即𝑓𝑓(𝒜𝒜(𝑣⃗𝑣)) = 0�⃗  
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⇒ ∀𝑗𝑗 ∈ {0,1, … ,𝑛𝑛 − 1},𝑓𝑓(𝒜𝒜) �𝒜𝒜𝑗𝑗(𝑣⃗𝑣)� = 0�⃗  

⇒ 𝑓𝑓(𝒜𝒜) = 𝒪𝒪 [∵ 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣), … ,𝒜𝒜𝑛𝑛−1(𝑣⃗𝑣)是 𝑉𝑉的基]  

⇒ 𝜇𝜇𝒜𝒜│𝑓𝑓,但deg𝑓𝑓 ≤ 𝑛𝑛 − 1 

⇒ 𝑓𝑓 ≡ 0 ⇒ 𝛼𝛼0 = 𝛼𝛼1 = ⋯ = 𝛼𝛼𝑛𝑛−1 = 0 

𝒜𝒜(𝑒𝑒1���⃗ ) = 𝒜𝒜�(𝒜𝒜− 𝜆𝜆ℰ)𝑛𝑛−1(𝑣⃗𝑣)� = (𝒜𝒜− 𝜆𝜆ℰ)𝑛𝑛−1 ∘ 𝒜𝒜(𝑣⃗𝑣) 

= (𝒜𝒜− 𝜆𝜆ℰ)𝑛𝑛−1(𝒜𝒜− 𝜆𝜆ℰ + 𝜆𝜆ℰ)(𝑣⃗𝑣) 

= (𝒜𝒜− 𝜆𝜆ℰ)𝑛𝑛(𝑣⃗𝑣) + 𝜆𝜆(𝒜𝒜 − 𝜆𝜆ℰ)𝑛𝑛−1(𝑣⃗𝑣) = 𝜆𝜆𝑒𝑒1���⃗  

𝑖𝑖 > 1,𝒜𝒜(𝑒𝑒𝚤𝚤��⃗ ) = 𝒜𝒜 ∘ (𝒜𝒜− 𝜆𝜆ℰ)𝑛𝑛−𝑖𝑖(𝑣⃗𝑣) = (𝒜𝒜 − 𝜆𝜆ℰ)𝑛𝑛−𝑖𝑖𝒜𝒜(𝑣⃗𝑣) 

= (𝒜𝒜− 𝜆𝜆ℰ)𝑛𝑛−𝑖𝑖(𝒜𝒜− 𝜆𝜆ℰ + 𝜆𝜆ℰ)(𝑣⃗𝑣) 

= (𝒜𝒜− 𝜆𝜆ℰ)𝑛𝑛−(𝑖𝑖−1)(𝑣⃗𝑣) + 𝜆𝜆(𝒜𝒜 − 𝜆𝜆ℰ)𝑛𝑛−𝑖𝑖(𝑣⃗𝑣) = 𝑒𝑒𝚤𝚤−1�������⃗ + 𝜆𝜆𝑒𝑒𝚤𝚤��⃗  

由此    �𝒜𝒜(𝑒𝑒1���⃗ ), … ,𝒜𝒜(𝑒𝑒𝑛𝑛����⃗ )� = (𝑒𝑒1���⃗  , . . . , 𝑒𝑒𝑛𝑛����⃗ )

⎝

⎜
⎛
𝜆𝜆 1 ⋯ 0 0
0 𝜆𝜆 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 𝜆𝜆 1
0 0 ⋯ 0 𝜆𝜆⎠

⎟
⎞

𝑛𝑛×𝑛𝑛�����������������
𝐽𝐽𝑛𝑛(𝜆𝜆)

 ∎ 
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§7复矩阵的 Jordan标准型（存在性） 

【定理 7.1】复方阵可化为 Jordan 标准型 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ),则存在 𝜆𝜆1, … , 𝜆𝜆𝑙𝑙 ∈ ℂ �不必两两不同�,𝑑𝑑1, … . ,𝑑𝑑𝑙𝑙 ∈ ℤ+ 

使得 𝐴𝐴~𝑠𝑠𝐽𝐽𝐴𝐴 = diag �𝐽𝐽𝑑𝑑1(𝜆𝜆1), … , 𝐽𝐽𝑑𝑑𝑛𝑛(𝜆𝜆𝑛𝑛)� 

证：设 𝒜𝒜:ℂ𝑛𝑛 → ℂ𝑛𝑛,�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦ 𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,则𝒜𝒜 ∈ ℒ(ℂ𝑛𝑛) 

由定理 6.4,ℂ𝑛𝑛 = 𝑉𝑉1 ⊕⋯⊕𝑉𝑉𝑙𝑙 ,其中𝑉𝑉𝑖𝑖是𝒜𝒜−不可分的 

令 𝒜𝒜𝑖𝑖 = 𝒜𝒜│𝑉𝑉𝑖𝑖 

由命题 6.3,𝜇𝜇𝒜𝒜𝑖𝑖 = (𝑡𝑡 − 𝜆𝜆𝑖𝑖)𝑑𝑑𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑙𝑙, 𝜆𝜆𝑖𝑖 ∈ ℂ,𝑑𝑑𝑖𝑖 ∈ ℤ+ 

由命题 6.1, dim𝑉𝑉𝑖𝑖 = 𝑑𝑑𝑖𝑖  �∵ 𝑉𝑉𝑖𝑖是𝒜𝒜−循环的� 

由命题 6.4,𝑉𝑉𝑖𝑖中存在一组基 𝑒𝑒𝚤𝚤1�����⃗ , … , 𝑒𝑒𝚤𝚤𝑑𝑑𝚤𝚤������⃗  

使得 𝒜𝒜𝑖𝑖在该基下的矩阵为 𝐽𝐽𝑑𝑑𝑖𝑖(𝜆𝜆𝑖𝑖) 

由上述直和分解, 𝑒𝑒11�����⃗ , … , 𝑒𝑒1𝑑𝑑1�������⃗ , … , 𝑒𝑒𝑙𝑙1�����⃗ , … , 𝑒𝑒𝑙𝑙𝑑𝑑𝑙𝑙������⃗下𝒜𝒜的矩阵为 

diag �𝐽𝐽𝑑𝑑1(𝜆𝜆1), … , 𝐽𝐽𝑑𝑑𝑛𝑛(𝜆𝜆𝑛𝑛)� ≔ 𝐽𝐽𝐴𝐴      �定理 3.2�     

即 𝐴𝐴~𝑠𝑠𝐽𝐽𝐴𝐴        ∎ 

注：1.称证明中的 𝐽𝐽𝐴𝐴为𝐴𝐴的一个𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜标准型 

2. 𝜆𝜆1, … , 𝜆𝜆𝑙𝑙中互不相同的元素集合为 specℂ 𝐴𝐴 

3.𝒳𝒳𝐴𝐴 = (𝑡𝑡 − 𝜆𝜆1)𝑑𝑑1 ⋯ (𝑡𝑡 − 𝜆𝜆𝑙𝑙)𝑑𝑑𝑙𝑙 

𝜇𝜇𝒜𝒜 = lcm((𝑡𝑡 − 𝜆𝜆1)𝑑𝑑1 ,⋯ , (𝑡𝑡 − 𝜆𝜆𝑙𝑙)𝑑𝑑𝑙𝑙) 

4.如果𝑑𝑑1 = ⋯ = 𝑑𝑑𝑙𝑙 = 1,则𝐽𝐽𝐴𝐴 = diag(𝜆𝜆1, … , 𝜆𝜆𝑙𝑙) , 𝑙𝑙 = 𝑛𝑛 

此时 𝐴𝐴可对角化  逆命题也成立 
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【例 7.1.1】求复方阵 Jordan 标准型例 

计算 𝐴𝐴 = �
1 0 1
1 1 −1
0 0 2

� ∈ 𝑀𝑀3(ℂ)的𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽标准型 

注：在第九节会依据相关定理简化求𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜标准型的过程 

解: 1.计算 𝐴𝐴 的极小多项式 𝜇𝜇𝐴𝐴 = 𝑡𝑡3 − 4𝑡𝑡2 + 5𝑡𝑡 − 2 

2.在 ℂ分解 𝜇𝜇𝐴𝐴 = (𝑡𝑡 − 2)(𝑡𝑡 − 1)2 

ℂ3 = 𝑉𝑉(𝑡𝑡 − 2)⊕𝑉𝑉(𝑡𝑡 − 1)  �把𝐴𝐴看成ℂ3上的算子� 

𝑉𝑉(𝑡𝑡 − 2) = ker(𝒜𝒜− 2ℰ) 

rank(𝒜𝒜− 2ℰ) = rank(𝐴𝐴 − 2𝐸𝐸) = rank�
1 0 0
1 1 −1
0 0 0

� = 2 

⇒ dim𝑉𝑉(𝑡𝑡 − 2) = 3 − 2 = 1 ⇒ 𝑉𝑉(𝑡𝑡 − 2)是𝒜𝒜−不可分的 

∴ dim𝑉𝑉(𝑡𝑡 − 1) = 2 

断言 𝑉𝑉(𝑡𝑡 − 1)是𝒜𝒜−不可分的 

证：假如 𝑉𝑉(𝑡𝑡 − 1) = 𝑊𝑊1⊕𝑊𝑊2,其中𝑊𝑊1,𝑊𝑊2是𝒜𝒜−子空间 

且非 �0�⃗ �  则dim𝑊𝑊1 = dim𝑊𝑊2 = 1 

设 𝑊𝑊1 = ⟨𝑤𝑤1����⃗ ⟩,𝑊𝑊2 = ⟨𝑤𝑤2�����⃗ ⟩ 

𝑉𝑉(𝑡𝑡 − 1) = ⟨𝑣⃗𝑣⟩ 

ℂ3 = ⟨𝑣⃗𝑣⟩ ⊕ ⟨𝑤𝑤1����⃗ ⟩ ⊕ ⟨𝑤𝑤2�����⃗ ⟩ 

𝒜𝒜(𝑣⃗𝑣) = 𝛼𝛼1𝑣⃗𝑣,𝒜𝒜(𝑤𝑤1����⃗ ) = 𝛽𝛽1𝑤𝑤1����⃗ ,𝒜𝒜(𝑤𝑤2�����⃗ ) = 𝛽𝛽2𝑤𝑤2�����⃗  

于是 𝑣⃗𝑣,𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗是ℂ3中线性无关的 𝒜𝒜的特征向量 

⇒ 𝐴𝐴可对角化        矛盾 

于是 𝑉𝑉(𝑡𝑡 − 1)是 𝒜𝒜−不可分的  

也可利用𝒜𝒜│𝑉𝑉(𝑡𝑡−1)的极小多项式为(𝑡𝑡 − 1)2�定理 6.1� 

再用命题 6.1 和 6.3  
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ℂ3 = 𝑉𝑉(𝑡𝑡 − 2)⊕𝑉𝑉(𝑡𝑡 − 1),                     1 2
(𝑡𝑡 − 2) (𝑡𝑡 − 1)2 

𝐴𝐴~𝑠𝑠 �
𝐽𝐽1(2)  

 𝐽𝐽2(1)� = �
2  

 1 1
0 1

� 

 

【例 7.1.2】求约当转换矩阵例 

接上题,若需求 𝑇𝑇 ∈ 𝐺𝐺𝐿𝐿3(ℂ)使得 𝐽𝐽𝐴𝐴 = 𝑇𝑇−1𝐴𝐴𝐴𝐴 

计算𝑉𝑉(𝑡𝑡 − 2)的循环向量 𝑥⃗𝑥 = �
1
0
1
�   

依命题 6.4 的证明造𝐽𝐽1(2)的基 𝑒𝑒11�����⃗ = 𝑥⃗𝑥  �𝑒𝑒𝚤𝚤��⃗ = (𝒜𝒜− 𝜆𝜆ℰ)𝑛𝑛−𝑖𝑖(𝑣⃗𝑣)� 

计算𝑉𝑉(𝑡𝑡 − 1)的基,即 ker((𝒜𝒜− ℰ)2)的基 �
1
0
0
� ,�

0
1
0
�  

即求𝑉𝑉(𝑡𝑡 − 1)的一个循环向量   

设𝑣⃗𝑣 = 𝛼𝛼1 �
1
0
0
�+ 𝛼𝛼2 �

0
1
0
� = �

𝛼𝛼1
𝛼𝛼2
0
�  

𝑣⃗𝑣是 𝑉𝑉(𝑡𝑡 − 1)的循环向量⇔ 𝑣⃗𝑣,𝒜𝒜(𝑣⃗𝑣)线性无关 

⇔ (𝑣⃗𝑣,𝒜𝒜𝑣⃗𝑣) = �
𝛼𝛼1 𝛼𝛼1
𝛼𝛼2 𝛼𝛼1 + 𝛼𝛼2
0 0

�的秩为 2     

取 𝛼𝛼1 = 1,𝛼𝛼2 = 0 即可, 𝑣⃗𝑣 = �
1
0
0
� 

则𝑒𝑒21�����⃗ = (𝒜𝒜− ℰ)(𝑣⃗𝑣) = �
0
1
0
� , 𝑒𝑒22�����⃗ = (𝒜𝒜 − ℰ)0(𝑣⃗𝑣) = �

1
0
0
� 

则在 𝑒𝑒11�����⃗ , 𝑒𝑒21�����⃗ , 𝑒𝑒22�����⃗下 𝐴𝐴的矩阵为 𝐽𝐽𝐴𝐴 = �
2 0 0
0 1 1
0 0 1

� 
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𝐽𝐽𝐴𝐴 = 𝑇𝑇−1𝐴𝐴𝐴𝐴,其中𝑇𝑇 = �
1 0 1
0 1 0
1 0 0

�
�������
𝑒𝑒11������⃗ 𝑒𝑒21������⃗ 𝑒𝑒22������⃗

 

【例 7.1.2】求复方阵 Jordan 标准型例 2 

𝐴𝐴 = �

−2 −1 −1 −1
2 1 3 2
1 1 0 1
−1 −1 −2 −2

� ∈ 𝑀𝑀4(ℂ)求 𝐽𝐽𝐴𝐴 

解:𝜇𝜇𝒜𝒜 = 𝑡𝑡(𝑡𝑡 + 1)2 

由定理 6.1 ℂ4 = 𝑉𝑉(𝑡𝑡)⊕𝑉𝑉(𝑡𝑡 + 1)      𝑉𝑉(𝑡𝑡 + 1) = ker((𝒜𝒜 + ℰ)2) 

dim𝑉𝑉(𝑡𝑡) = dim ker𝒜𝒜 = 4 − rank𝐴𝐴 = 1,𝑉𝑉(𝑡𝑡)是𝒜𝒜−不可分的 

dim𝑉𝑉(𝑡𝑡 + 1) = 3,𝒜𝒜│𝑉𝑉(𝑡𝑡+1)的极小多项式是 (𝑡𝑡 + 1)2   

由命题 6.1,6.3,𝑉𝑉(𝑡𝑡 + 1)是𝒜𝒜−可分的    

�∵ deg𝜇𝜇𝒜𝒜│𝑉𝑉(𝑡𝑡+1)
= 2 < 3 = dim𝑉𝑉(𝑡𝑡 + 1)� 

情形 1    𝑉𝑉(𝑡𝑡 + 1) = 𝑊𝑊1 ⊕𝑊𝑊2 ⊕𝑊𝑊3,其中𝑊𝑊1,𝑊𝑊2,𝑊𝑊3是𝒜𝒜−子空间 

且dim𝑊𝑊1 = dim𝑊𝑊2 = dim𝑊𝑊3 = 1 

如上例分解   𝒜𝒜可对角化      矛盾 

 

情形 2    𝑉𝑉(𝑡𝑡 + 1) = 𝑈𝑈1 ⊕ 𝑈𝑈2 

其中dim𝑈𝑈1 = 1, dim𝑈𝑈2 = 2,𝑈𝑈1,𝑈𝑈2是𝒜𝒜−不可分的 

ℂ = 𝑉𝑉(𝑡𝑡)⊕𝑈𝑈1 ⊕𝑈𝑈2  是𝒜𝒜−不可分分解 

dim 1 1 2
𝑡𝑡 𝑡𝑡 + 1 (𝑡𝑡 + 1)2   

𝐽𝐽𝐴𝐴 = diag�𝐽𝐽1(0), 𝐽𝐽1(−1), 𝐽𝐽2(−1)� 

𝐴𝐴~𝑠𝑠 �

0 0 0 0
0 −1 0 0
0 0 −1 1
0 0 0 −1

� 
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§8 矩阵的准素有理规范型 

【定义 8.1.1】广义 Jordan 块 

设 𝐹𝐹为任意域,𝑉𝑉是𝐹𝐹上𝑛𝑛维线性空间 

𝒜𝒜 ∈ ℒ(𝑉𝑉),设 𝑉𝑉是𝒜𝒜−不可分的 

由命题 6.3,∃𝑣⃗𝑣,𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣, 

𝜇𝜇𝒜𝒜 = 𝑝𝑝𝑚𝑚,其中𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡]不可约,𝑚𝑚 ∈ ℤ+ 

设𝑑𝑑 = deg  𝑝𝑝 ,则 𝑛𝑛 = 𝑑𝑑𝑑𝑑  �命题 6.1� 

类似于命题 6.4 的证明可得 𝑒𝑒𝚤𝚤𝚤𝚤����⃗ = 𝑝𝑝(𝒜𝒜)𝑚𝑚−𝑖𝑖 ∘ 𝒜𝒜𝑑𝑑−𝑗𝑗(𝑣⃗𝑣), 

𝑖𝑖 = 1, … ,𝑚𝑚; 𝑗𝑗 = 1, … ,𝑑𝑑 

 𝑒𝑒𝚤𝚤𝚤𝚤����⃗是 𝑉𝑉的一组基,在该基下 𝒜𝒜的矩阵记为 𝐽𝐽𝑛𝑛(𝑝𝑝) 

称为关于 𝑝𝑝 的 𝑛𝑛阶广义𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽块 

 

【例 8.1.1】求准素有理规范型例 

已知𝑉𝑉 = ℝ4,𝒜𝒜 ∈ ℒ(𝑉𝑉),𝜇𝜇𝒜𝒜 = (𝑡𝑡2 + 1)2 

设ℝ4 = ℝ[𝒜𝒜] ⋅ 𝑣⃗𝑣 

𝑒𝑒11�����⃗ = (𝒜𝒜2 + ℰ)𝒜𝒜(𝑣⃗𝑣) 

𝑒𝑒12�����⃗ = (𝒜𝒜2 + ℰ)(𝑣⃗𝑣) 

𝑒𝑒21�����⃗ = 𝒜𝒜(𝑣⃗𝑣) 

𝑒𝑒22�����⃗ = 𝑣⃗𝑣 

𝒜𝒜(𝑒𝑒11�����⃗ ) = 𝒜𝒜(𝒜𝒜2 + ℰ)𝒜𝒜(𝑣⃗𝑣) = (𝒜𝒜2 + ℰ)𝒜𝒜2(𝑣⃗𝑣) 

= (𝒜𝒜2 + ℰ)(𝒜𝒜2 + ℰ − ℰ)(𝑣⃗𝑣) 

= (𝒜𝒜2 + ℰ)2(𝑣⃗𝑣)− (𝒜𝒜2 + ℰ)(𝑣⃗𝑣) 

= −(𝒜𝒜2 + ℰ)(𝑣⃗𝑣) = −𝑒𝑒12�����⃗  
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类似地 𝒜𝒜(𝑒𝑒12�����⃗ ) = 𝑒𝑒11�����⃗ ,𝒜𝒜(𝑒𝑒21�����⃗ ) = 𝑒𝑒12�����⃗ − 𝑒𝑒22�����⃗ ,𝒜𝒜(𝑒𝑒22�����⃗ ) = 𝑒𝑒21�����⃗  

�𝒜𝒜(𝑒𝑒11�����⃗ ),𝒜𝒜(𝑒𝑒12�����⃗ ),𝒜𝒜(𝑒𝑒21�����⃗ ),𝒜𝒜(𝑒𝑒22�����⃗ )� 

= (𝑒𝑒11�����⃗ , 𝑒𝑒12�����⃗ , 𝑒𝑒21�����⃗ , 𝑒𝑒22�����⃗ )

⎝

⎜
⎛

0 1
−1 0

0 0
1 0

0 0
0 0

0 1
−1 0 ⎠

⎟
⎞

���������������
𝐽𝐽𝐴𝐴

 

 

【定理 8.1】矩阵的准素标准有理型 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),则存在 𝑑𝑑1, … ,𝑑𝑑𝑙𝑙 ∈ ℤ+,𝑝𝑝1, … ,𝑝𝑝𝑠𝑠 ∈ 𝐹𝐹[𝑡𝑡] ∖ 𝐹𝐹不可约 

使得 𝐴𝐴~ diag �𝐽𝐽𝑑𝑑1(𝑝𝑝1), … , 𝐽𝐽𝑑𝑑𝑙𝑙(𝑝𝑝𝑙𝑙)� 

证略.                
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§9 初等因子组 

【定义 9.1.1】重集 

重集(multi− sets)−集合中相同的元素允许多次出现 

例：作为重集 {𝑎𝑎, 𝑎𝑎,𝑏𝑏}�����
𝑎𝑎重数为 2

≠ {𝑎𝑎,𝑏𝑏} 

120 = 23 × 3 × 5     不同的素因子{2,3,5}  重集{2,2,2,3,5} 

 

【定义 9.1.2】初等因子组 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑉𝑉 = 𝑉𝑉1 ⊕⋯⊕𝑉𝑉𝑙𝑙     [∗]  

其中 𝑉𝑉1, … ,𝑉𝑉𝑙𝑙是𝒜𝒜−不可分的 

设 𝒜𝒜𝑖𝑖 = 𝒜𝒜│𝑉𝑉𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑙𝑙 

则重集 �𝜇𝜇𝒜𝒜1 , … , 𝜇𝜇𝒜𝒜𝑙𝑙�称为𝒜𝒜关于[∗]的初等因子组 

 

【例 9.1.1】标准基分解的初等因子组 

ℰ:ℂ𝑛𝑛 → ℂ𝑛𝑛     𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是标准基 

ℂ𝑛𝑛 = ⟨𝑒𝑒1���⃗ ⟩�
𝑡𝑡−1

⊕ ⟨𝑒𝑒2���⃗ ⟩�
𝑡𝑡−1

⊕⋯⊕ ⟨𝑒𝑒𝑛𝑛����⃗ ⟩�
𝑡𝑡−1

 是𝒜𝒜−不可分的直和分解 

设𝒜𝒜│⟨𝑒𝑒𝚤𝚤���⃗ ⟩ = 𝒜𝒜𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 

则𝒜𝒜关于该直和分解的初等因子组 

�𝜇𝜇𝒜𝒜1 , … , 𝜇𝜇𝒜𝒜𝑛𝑛� =  {𝑡𝑡 − 1, 𝑡𝑡 − 1, … , 𝑡𝑡 − 1} 
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§9 初等因子组 

 

【本节目的】 

①证明初等因子组由𝒜𝒜确定，与𝑉𝑉的𝒜𝒜−不可分子空间的直和分解无关 

②通过初等因子组可以“唯一”地确定 Jordan 标准型 

 

【引理 9.1】循环向量的极小多项式分解引理 

设 𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣, 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ = 𝑝𝑝𝑝𝑝, 𝑝𝑝, 𝑞𝑞 ∈ 𝐹𝐹[𝑡𝑡] ∖ 𝐹𝐹,首一 

令 𝑤𝑤��⃗ = 𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣),则 𝜇𝜇𝒜𝒜,𝑤𝑤��⃗ = 𝑝𝑝 

证:𝑝𝑝(𝒜𝒜)(𝑤𝑤��⃗ ) = 𝑝𝑝(𝒜𝒜) ∘ 𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) 

= 𝑝𝑝𝑝𝑝(𝒜𝒜)(𝑣⃗𝑣) = 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ (𝒜𝒜)(𝑣⃗𝑣) = 0�⃗  

⇒ 𝜇𝜇𝒜𝒜,𝑤𝑤��⃗ │𝑝𝑝 

0�⃗ = 𝜇𝜇𝒜𝒜,𝑤𝑤��⃗ (𝑤𝑤��⃗ ) = 𝜇𝜇𝒜𝒜,𝑤𝑤��⃗ (𝒜𝒜) ∘ 𝑞𝑞(𝒜𝒜)(𝑣⃗𝑣) = �𝜇𝜇𝒜𝒜,𝑤𝑤��⃗ 𝑞𝑞�(𝒜𝒜)(𝑣⃗𝑣) 

⇒ 𝜇𝜇𝒜𝒜,𝑣𝑣�⃗ │𝜇𝜇𝒜𝒜,𝑤𝑤��⃗ 𝑞𝑞 ⇒ 𝑝𝑝𝑝𝑝│𝜇𝜇(𝒜𝒜,𝑤𝑤��⃗ )𝑞𝑞 

⇒ 𝑝𝑝│𝜇𝜇𝒜𝒜,𝑤𝑤��⃗  

⇒ 𝑝𝑝 = 𝜇𝜇𝒜𝒜,𝑤𝑤��⃗         ∎ 

 

【引理 9.2】极小因子作用的算子的秩 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣,设𝜇𝜇𝒜𝒜 = 𝑝𝑝𝑚𝑚,𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡] 

则 ∀𝑘𝑘 ∈ ℕ, rank(𝑝𝑝(𝒜𝒜)𝑘𝑘) = �(𝑚𝑚− 𝑘𝑘) deg𝑝𝑝 0 ≤ 𝑘𝑘 < 𝑚𝑚
0 𝑘𝑘 ≥ 𝑚𝑚

 

证:∀𝑥⃗𝑥 ∈ 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣,∃𝑓𝑓 ∈ 𝐹𝐹[𝑡𝑡]使得 𝑥⃗𝑥 = 𝑓𝑓(𝒜𝒜)(𝑣⃗𝑣)    �命题 5.3(𝑖𝑖𝑖𝑖)� 

于是 𝑝𝑝(𝒜𝒜)𝑘𝑘(𝑥⃗𝑥) = 𝑝𝑝(𝒜𝒜)𝑘𝑘 ∘ 𝑓𝑓(𝒜𝒜)(𝑣⃗𝑣) = 𝑓𝑓(𝒜𝒜) �𝑝𝑝𝑘𝑘(𝒜𝒜)(𝑣⃗𝑣)� 

令𝑤𝑤��⃗ = 𝑝𝑝𝑘𝑘(𝒜𝒜)(𝑣⃗𝑣),则𝑝𝑝𝑘𝑘(𝒜𝒜)(𝑥⃗𝑥) = 𝑓𝑓(𝒜𝒜)(𝑤𝑤��⃗ ) 

于是 im(𝑝𝑝(𝒜𝒜)𝑘𝑘) = {𝑓𝑓(𝒜𝒜)(𝑤𝑤��⃗ )|𝑓𝑓 ∈ 𝐹𝐹[𝑡𝑡]} = 𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗  

当 𝑘𝑘 ≥ 𝑚𝑚,𝑤𝑤��⃗ = 𝑝𝑝𝑘𝑘(𝑣⃗𝑣) = 𝑝𝑝𝑘𝑘−𝑚𝑚(𝒜𝒜)𝑝𝑝𝑚𝑚(𝒜𝒜)(𝑣⃗𝑣) = 0�⃗  
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⇒ rank 𝑝𝑝𝑘𝑘(𝒜𝒜) = 0 

当 0 ≤ 𝑘𝑘 < 𝑚𝑚 

dim𝐹𝐹[𝒜𝒜] ⋅ 𝑤𝑤��⃗ = deg𝜇𝜇𝒜𝒜,𝑤𝑤��⃗     �命题 5.4� 

= deg𝑝𝑝𝑚𝑚−𝑘𝑘 = (𝑚𝑚− 𝑘𝑘) deg𝑝𝑝 = rank𝑝𝑝𝑘𝑘(𝒜𝒜)       ∎ 

 

【引理 9.3】算子作用保持不变子空间分解 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑓𝑓 ∈ 𝐹𝐹[𝑡𝑡],如果 𝑉𝑉 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑙𝑙 

𝑈𝑈1, … ,𝑈𝑈𝑙𝑙是𝒜𝒜−子空间 则 

𝑓𝑓(𝒜𝒜)(𝑉𝑉) = 𝑓𝑓(𝒜𝒜)(𝑈𝑈1)⊕⋯⊕𝑓𝑓(𝒜𝒜)(𝑈𝑈𝑙𝑙) 

证:令 𝑊𝑊 = 𝑓𝑓(𝒜𝒜)(𝑈𝑈1) + ⋯+ 𝑓𝑓(𝒜𝒜)(𝑈𝑈𝑙𝑙) 

由命题 5.2(𝑖𝑖),𝑓𝑓(𝒜𝒜)(𝑈𝑈𝑖𝑖) ⊂ 𝑈𝑈𝑖𝑖, 𝑖𝑖 = 1, … , 𝑙𝑙 

由第一章命题 4.1 中(𝑖𝑖𝑖𝑖𝑖𝑖)与(𝑖𝑖)等价性 

∵ 𝑈𝑈𝑖𝑖 ∩ (𝑈𝑈1 + ⋯+ 𝑈𝑈𝑖𝑖−1 + 𝑈𝑈𝑖𝑖+1 + ⋯+ 𝑈𝑈𝑙𝑙) = �0�⃗ �, 𝑖𝑖 = 1, … , 𝑙𝑙 

∴ 𝑓𝑓(𝒜𝒜)(𝑈𝑈𝑖𝑖) 

∩ (𝑓𝑓(𝒜𝒜)(𝑈𝑈1) + ⋯+ 𝑓𝑓(𝒜𝒜)(𝑈𝑈𝑖𝑖−1) + 𝑓𝑓(𝒜𝒜)(𝑈𝑈𝑖𝑖+1) + ⋯+ 𝑓𝑓(𝒜𝒜)(𝑈𝑈𝑙𝑙))  

= �0�⃗ �, 𝑖𝑖 = 1, … , 𝑙𝑙 

∴ 𝑊𝑊 = 𝑓𝑓(𝒜𝒜)(𝑈𝑈1)⊕⋯⊕𝑓𝑓(𝒜𝒜)(𝑈𝑈𝑙𝑙) 

∵ 𝑓𝑓(𝒜𝒜)(𝑈𝑈𝑖𝑖) ⊂ 𝑓𝑓(𝒜𝒜)(𝑉𝑉)   ∴ 𝑊𝑊 ⊂ 𝑓𝑓(𝒜𝒜)(𝑉𝑉) 

反之,设 𝑤𝑤��⃗ ∈ 𝑓𝑓(𝒜𝒜)(𝑉𝑉),∃𝑣⃗𝑣 ∈ 𝑉𝑉,使得 𝑤𝑤��⃗ = 𝑓𝑓(𝒜𝒜)(𝑣⃗𝑣) 

∃𝑢𝑢𝚤𝚤���⃗ ∈ 𝑈𝑈𝑖𝑖 ,使得𝑣⃗𝑣 = 𝑢𝑢1����⃗ + ⋯+ 𝑢𝑢𝑙𝑙���⃗  

𝑤𝑤��⃗ = 𝑓𝑓(𝒜𝒜)(𝑣⃗𝑣) = 𝑓𝑓(𝒜𝒜)(𝑢𝑢1����⃗ ) +⋯+ 𝑓𝑓(𝒜𝒜)(𝑢𝑢𝑙𝑙���⃗ ) 

∈ 𝑓𝑓(𝒜𝒜)(𝑈𝑈1) + ⋯+ 𝑓𝑓(𝒜𝒜)(𝑈𝑈𝑙𝑙) = 𝑊𝑊      

于是𝑓𝑓(𝒜𝒜)(𝑉𝑉) ⊂ 𝑊𝑊 ⇒ 𝑓𝑓(𝒜𝒜)(𝑉𝑉) = 𝑊𝑊   ∎ 
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【定理 9.1】初等因子组中某项重数计算公式 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),𝜇𝜇𝒜𝒜 = 𝑝𝑝𝑚𝑚,其中𝑝𝑝 ∈ 𝐹𝐹[𝑡𝑡]不可约 

对∀𝑙𝑙 ∈ ℤ+,令𝑛𝑛𝑙𝑙为𝑝𝑝𝑙𝑙在𝒜𝒜关于某个𝒜𝒜−不可分子空间 

直和分解的初等因子组中的重数 

再令 𝑟𝑟𝑙𝑙 = rank(𝑝𝑝(𝒜𝒜)𝑙𝑙) ,其中𝑙𝑙 ∈ ℕ 

则𝑛𝑛𝑙𝑙 =
1
𝑑𝑑

(𝑟𝑟𝑙𝑙+1 + 𝑟𝑟𝑙𝑙−1 − 2𝑟𝑟𝑙𝑙),其中𝑑𝑑 = deg𝑝𝑝 

 

证:设 𝑉𝑉 = 𝑉𝑉1 ⊕⋯⊕𝑉𝑉𝑘𝑘 ,其中 𝑉𝑉𝑖𝑖是𝒜𝒜−不可分的, 𝑖𝑖 = 1, … ,𝑘𝑘 

令𝒜𝒜𝑖𝑖 = 𝒜𝒜│𝑉𝑉𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑘𝑘 

𝜇𝜇𝑖𝑖 = 𝜇𝜇𝒜𝒜𝑖𝑖 = 𝑝𝑝𝑚𝑚𝑖𝑖 , 1 ≤ 𝑚𝑚𝑖𝑖 ≤ 𝑚𝑚  �∵ 𝑝𝑝是不可约的� 

𝑛𝑛𝑙𝑙是𝑝𝑝𝑙𝑙在重集{𝜇𝜇1, … , 𝜇𝜇𝑘𝑘}中的重数 

令𝑆𝑆𝑙𝑙 = {𝑈𝑈 ∈ {𝑉𝑉1, … ,𝑉𝑉𝑘𝑘}| dim𝑈𝑈 = 𝑙𝑙𝑙𝑙} 

如果 𝒜𝒜𝑖𝑖对应的极小多项式是𝑝𝑝𝑙𝑙 ⇒ dim𝑉𝑉𝑖𝑖 = 𝑙𝑙𝑙𝑙 

于是 𝑛𝑛𝑙𝑙 = card(𝑆𝑆𝑙𝑙),下面来计算 card 𝑆𝑆𝑙𝑙 

𝑉𝑉 = �𝑉𝑉𝑖𝑖

𝑘𝑘

𝑖𝑖=1

= ���𝑈𝑈
𝑈𝑈∈𝑆𝑆𝑗𝑗

�
𝑚𝑚

𝑗𝑗=1

    dim𝑈𝑈 = 𝑗𝑗𝑗𝑗 

dim�𝑈𝑈
𝑈𝑈∈𝑆𝑆𝑗𝑗

= (𝑗𝑗𝑗𝑗)𝑛𝑛𝐽𝐽 

由引理 9.3,  

𝑝𝑝(𝒜𝒜)𝑙𝑙(𝑉𝑉) = 𝑝𝑝(𝒜𝒜)𝑙𝑙 ����𝑈𝑈
𝑈𝑈∈𝑆𝑆𝑗𝑗

�
𝑚𝑚

𝑗𝑗=1

� = ����𝑝𝑝(𝒜𝒜)𝑙𝑙(𝑈𝑈)
𝑈𝑈∈𝑆𝑆𝑗𝑗

�
𝑚𝑚

𝑗𝑗=1

� 

由第一章命题 4.2 dim 𝑝𝑝(𝒜𝒜)𝑙𝑙(𝑉𝑉) = � � dim �𝑝𝑝(𝒜𝒜)𝑙𝑙(𝑈𝑈)�
𝑈𝑈∈𝑆𝑆𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

令 𝒜𝒜𝑈𝑈 = 𝒜𝒜│𝑈𝑈 ,于是𝑟𝑟𝑙𝑙 = � � rank(𝑝𝑝(𝒜𝒜𝑈𝑈)𝑙𝑙)
𝑈𝑈∈𝑆𝑆𝑗𝑗

𝑚𝑚

𝑗𝑗=1

     [∗] 
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�dim �𝑝𝑝(𝒜𝒜)𝑙𝑙(𝑈𝑈)� = dim �𝑝𝑝(𝒜𝒜𝑈𝑈)𝑙𝑙(𝑈𝑈)� = rank 𝑝𝑝(𝒜𝒜𝑈𝑈)𝑙𝑙� 

𝒜𝒜𝑈𝑈 ∈ ℒ(𝑈𝑈),𝑈𝑈是𝒜𝒜│𝑈𝑈 −循环的  

�𝑈𝑈是𝒜𝒜−不可分的 ⇒ 𝑈𝑈是𝒜𝒜│𝑈𝑈 −不可分的� 

𝒜𝒜𝑈𝑈的极小多项式为𝑝𝑝𝑗𝑗 

由引理 9.2, rank 𝑝𝑝(𝒜𝒜𝑈𝑈)𝑙𝑙 = �
(𝑗𝑗 − 𝑙𝑙)𝑑𝑑 0 ≤ 𝑙𝑙 < 𝑗𝑗

0 𝑙𝑙 ≥ 𝑗𝑗  

𝑈𝑈是𝒜𝒜−不可分的 ⇒ 𝑈𝑈的一个是𝒜𝒜−循环的 �命题 6.3� 

引理 9.2 适用于𝒜𝒜𝑈𝑈 

由 ∗式，𝑟𝑟𝑙𝑙 = � � (𝑗𝑗 − 𝑙𝑙)
𝑈𝑈∈𝑆𝑆𝑗𝑗

 𝑚𝑚

𝑗𝑗=𝑙𝑙+1

𝑑𝑑 = 𝑑𝑑 � � 𝑛𝑛𝐽𝐽(𝑗𝑗 − 𝑙𝑙)
 𝑚𝑚

𝑗𝑗=𝑙𝑙+1

� 

当 𝑙𝑙 ≥ 1 时 𝑟𝑟𝑙𝑙−1 = 𝑑𝑑 ��𝑛𝑛𝐽𝐽(𝑗𝑗 − 𝑙𝑙 + 1)
 𝑚𝑚

𝑗𝑗=𝑙𝑙

� 

=  𝑑𝑑 �𝑛𝑛𝑙𝑙 + 2𝑛𝑛𝑙𝑙+1 + � � 𝑛𝑛𝐽𝐽(𝑗𝑗 − 𝑙𝑙 + 1)
𝑈𝑈∈𝑆𝑆𝑗𝑗

 𝑚𝑚

𝑗𝑗=𝑙𝑙+2

� 

𝑟𝑟𝑙𝑙 = 𝑑𝑑 � � 𝑛𝑛𝐽𝐽(𝑗𝑗 − 𝑙𝑙)
 𝑚𝑚

𝑗𝑗=𝑙𝑙+1

� = 𝑑𝑑 �𝑛𝑛𝑙𝑙+1 + � � 𝑛𝑛𝐽𝐽(𝑗𝑗 − 𝑙𝑙)
𝑈𝑈∈𝑆𝑆𝑗𝑗

 𝑚𝑚

𝑗𝑗=𝑙𝑙+2

� 

𝑟𝑟𝑙𝑙+1 = 𝑑𝑑 � � 𝑛𝑛𝐽𝐽(𝑗𝑗 − 𝑙𝑙 − 1)
 𝑚𝑚

𝑗𝑗=𝑙𝑙+2

� 

𝑟𝑟𝑙𝑙−1 + 𝑟𝑟𝑙𝑙+1 − 2𝑟𝑟𝑙𝑙 

= 𝑑𝑑(𝑛𝑛𝑙𝑙 + 2𝑛𝑛𝑙𝑙+1 − 2𝑛𝑛𝑙𝑙+1)

+ 𝑑𝑑 � � 𝑛𝑛𝑗𝑗(𝑗𝑗 − 𝑙𝑙 + 1 − 2(𝑗𝑗 − 𝑙𝑙) + 𝑗𝑗 − 𝑙𝑙 − 1)
𝑚𝑚

𝑗𝑗=𝑙𝑙+2

� 

= 𝑑𝑑𝑛𝑛𝑙𝑙 

𝑛𝑛𝑙𝑙 =
1
𝑑𝑑

(𝑟𝑟𝑙𝑙−1 + 𝑟𝑟𝑙𝑙+1 − 2𝑟𝑟𝑙𝑙)        ∎ 

注:𝑛𝑛𝑙𝑙与我们特定选取的直和分解无关  
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【例 9.1.2】求单一因子方阵的 Jordan 标准型例 

设 𝐴𝐴 = �

𝛼𝛼 0 0 0
0 𝛼𝛼 0 0
0 0 𝛼𝛼 0
𝛼𝛼 0 0 𝛼𝛼

� ,其中𝛼𝛼 ∈ ℂ ∖ �0�⃗ �,求𝐽𝐽𝐴𝐴 

解:把𝐴𝐴看成𝒜𝒜 ∈ ℒ(ℂ4),𝒳𝒳𝒜𝒜 = (𝑡𝑡 − 𝛼𝛼)4,𝑝𝑝 = 𝑡𝑡 − 𝛼𝛼 

𝜇𝜇𝐴𝐴 = 𝑝𝑝𝑚𝑚,其中𝑚𝑚 ∈ {1,2,3,4} 

𝑟𝑟0 = rank𝑝𝑝(𝒜𝒜)0 = 4 

𝑟𝑟1 = rank𝑝𝑝(𝒜𝒜) = rank(𝐴𝐴 − 𝛼𝛼𝛼𝛼) = rank�

0 0 0 0
0 0 0 0
0 0 0 0
𝛼𝛼 0 0 0

� = 1 

𝑟𝑟2 = rank𝑝𝑝(𝒜𝒜)2 = rank(𝐴𝐴 − 𝛼𝛼𝛼𝛼)2 = 0 

𝑛𝑛1 =
1
𝑑𝑑

(𝑟𝑟0 + 𝑟𝑟2 − 2𝑟𝑟1) = 4 + 0 − 2 = 2 

⇒ 𝑛𝑛2 = 1  

初等因子组 {𝑡𝑡 − 𝛼𝛼, 𝑡𝑡 − 𝛼𝛼, (𝑡𝑡 − 𝛼𝛼)2} 

𝐽𝐽𝐴𝐴 = diag�𝐽𝐽1(𝛼𝛼), 𝐽𝐽1(𝛼𝛼), 𝐽𝐽2(𝛼𝛼)� =

⎝

⎛

𝛼𝛼 0 0 0
0 𝛼𝛼 0 0
0
0

0
0

𝛼𝛼 1
0 𝛼𝛼 ⎠

⎞ 

此外𝜇𝜇𝒜𝒜 = (𝑡𝑡 − 𝛼𝛼)2 

 

【定理 9.2】初等因子组重数计算公式 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),𝜇𝜇𝒜𝒜的两两不同，首一的不可约因子是 𝑝𝑝1, … , 𝑝𝑝𝑠𝑠 ∈ 𝐹𝐹[𝑡𝑡] 

设 𝑉𝑉 = 𝑉𝑉1 ⊕⋯⊕𝑉𝑉𝑘𝑘   [∗],其中𝑉𝑉1, … ,𝑉𝑉𝑘𝑘是𝒜𝒜−不可分的 

令𝑁𝑁(𝑖𝑖, 𝑙𝑙)是𝑝𝑝𝑖𝑖𝑙𝑙在𝒜𝒜关于[∗]的初等因子组的重数，其中 

𝑖𝑖 ∈ {1, . . , 𝑘𝑘}, 𝑙𝑙 ∈ ℤ+,令𝑅𝑅𝑖𝑖,𝑙𝑙 = rank(𝑝𝑝𝑖𝑖(𝒜𝒜)𝑙𝑙) , 𝑖𝑖 ∈ {1, … ,𝑘𝑘}, 𝑙𝑙 ∈ ℕ 

则 𝑁𝑁(𝑖𝑖, 𝑙𝑙) =
1

deg𝑝𝑝𝑖𝑖
�𝑅𝑅𝑖𝑖,𝑙𝑙−1 + 𝑅𝑅𝑖𝑖,𝑙𝑙+1 − 2𝑅𝑅𝑖𝑖,𝑙𝑙� 
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证：不妨只考虑 𝑖𝑖 = 1, 

令 𝕊𝕊 = �𝑈𝑈 ∈ {𝑉𝑉1, … ,𝑉𝑉𝑘𝑘}�𝒜𝒜│𝑈𝑈的极小多项式是𝑝𝑝1的某个幂次� 

𝕊𝕊� = {𝑉𝑉1, … ,𝑉𝑉𝑘𝑘} ∖ 𝕊𝕊,令 𝑊𝑊 = �𝑈𝑈
𝑈𝑈∈𝕊𝕊

,𝑊𝑊� = �𝑈𝑈�
𝑈𝑈�∈𝕊𝕊�

 

则𝑉𝑉 = 𝑊𝑊⊕𝑊𝑊�  

断言 1    设𝑟𝑟𝑙𝑙 = rank𝑝𝑝1𝑙𝑙�𝒜𝒜│𝑊𝑊� , 𝑙𝑙 ∈ ℕ则 

𝑁𝑁(1, 𝑙𝑙) =
1

deg𝑝𝑝1
(𝑟𝑟𝑙𝑙−1 + 𝑟𝑟𝑙𝑙+1 − 2𝑟𝑟𝑙𝑙) 

断言 1 的证明  

𝑊𝑊 = �𝑈𝑈
𝑈𝑈∈𝕊𝕊

是𝒜𝒜│𝑊𝑊 −不可分子空间分解, 

∀𝑈𝑈� ∈ 𝕊𝕊�,𝒜𝒜│𝑈𝑈�的极小多项式与𝑝𝑝1互素, 

于是𝑁𝑁(1, 𝑙𝑙)是𝑝𝑝1𝑙𝑙在 𝒜𝒜│𝑊𝑊的初等因子组中的重数 

由定理 9.1 �用于 𝑊𝑊,𝒜𝒜│𝑊𝑊上� 

𝑁𝑁(1, 𝑙𝑙) =
1

deg𝑝𝑝1
(𝑟𝑟𝑙𝑙−1 + 𝑟𝑟𝑙𝑙+1 − 2𝑟𝑟𝑙𝑙)  断言 1 成立 

 

断言 2      𝑝𝑝1(𝒜𝒜)│𝑊𝑊�可逆 

断言 2 的证明 

注意到 𝑊𝑊 = 𝑉𝑉(𝑝𝑝1),𝑊𝑊� = 𝑉𝑉(𝑝𝑝2)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑠𝑠) 

由定理 6.1(𝑖𝑖𝑖𝑖𝑖𝑖),𝑝𝑝1(𝒜𝒜)│𝑊𝑊�可逆        断言 2 成立 

 

断言 3    ∀𝑙𝑙 ∈ ℕ,𝑅𝑅1,𝑙𝑙 = 𝑟𝑟𝑙𝑙 + dim𝑊𝑊�  

断言 3 的证明 

𝑅𝑅1,𝑙𝑙 = rank(𝑝𝑝1(𝒜𝒜)𝑙𝑙) = dim �𝑝𝑝1(𝒜𝒜)𝑙𝑙(𝑉𝑉)� 

= dim𝑝𝑝1(𝒜𝒜)𝑙𝑙�𝑊𝑊⊕𝑊𝑊� � 

= dim�𝑝𝑝1(𝒜𝒜)𝑙𝑙𝑊𝑊 ⊕ 𝑝𝑝1(𝒜𝒜)𝑙𝑙𝑊𝑊� �        �引理 9.3� 
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= dim𝑝𝑝1(𝒜𝒜)𝑙𝑙(𝑊𝑊) + dim𝑝𝑝1(𝒜𝒜)𝑙𝑙�𝑊𝑊� � 

= 𝑟𝑟𝑙𝑙 + dim𝑊𝑊�     �∵断言 2� 

断言 3 成立 

 

由断言 1 

𝑁𝑁(1, 𝑙𝑙) =
1

deg𝑝𝑝1
(𝑟𝑟𝑙𝑙−1 + 𝑟𝑟𝑙𝑙+1 − 2𝑟𝑟𝑙𝑙) 

=
1

deg𝑝𝑝1
�𝑅𝑅1,𝑙𝑙−1 − dim𝑊𝑊� + 𝑅𝑅1,𝑙𝑙+1 − dim𝑊𝑊� − 2�𝑅𝑅1,𝑙𝑙 − dim𝑊𝑊� �� 

=
1

deg𝑝𝑝1
(𝑅𝑅1,𝑙𝑙−1 + 𝑅𝑅1,𝑙𝑙+1 − 2𝑅𝑅1,𝑙𝑙) 

∎ 

 

【例 9.1.3】求 Jordan 标准型例 

𝐴𝐴1 = �3 −4
4 −5�  𝐴𝐴2 = � 0 2

−2 4�   𝐴𝐴3 = �3 −2
2 −1� 

𝐴𝐴 = �𝐴𝐴1 𝐴𝐴2
𝑂𝑂 𝐴𝐴3

�  求𝐽𝐽𝐴𝐴 

解:𝒳𝒳𝐴𝐴 = 𝒳𝒳𝐴𝐴1𝒳𝒳𝐴𝐴3 = (𝑡𝑡 + 1)2(𝑡𝑡 − 1)2 

𝑝𝑝1 = 𝑡𝑡 + 1,𝑝𝑝2 = 𝑡𝑡 − 1 

𝑅𝑅(1,0) = 4    

𝑅𝑅(1,1) = rank�𝑝𝑝1(𝐴𝐴)� = rank �𝐴𝐴1 + 𝐸𝐸2 𝐴𝐴2
𝑂𝑂 𝐴𝐴3 + 𝐸𝐸2

� = 3 

𝑅𝑅(1,2) = rank((𝐴𝐴 + 𝐸𝐸)2) = rank �𝑂𝑂 ∗
𝑂𝑂 (𝐴𝐴3 + 𝐸𝐸2)2� = 2 

𝑁𝑁(1,1) = 𝑅𝑅1,0 + 𝑅𝑅1,2 − 2𝑅𝑅1,1 = 0 

𝑅𝑅(1,3) = rank �𝑂𝑂 ∗
𝑂𝑂 (𝐴𝐴3 + 𝐸𝐸2)3� = 2 

𝑁𝑁(1,2) = 3 + 2 − 2 × 2 = 1,同理 𝑁𝑁(2,1) = 0,𝑁𝑁(2,2) = 1 

初等因子组 {(𝑡𝑡 + 1)2, (𝑡𝑡 − 1)2} 

230／363



李子明老师的线性代数讲义 

 

𝐽𝐽𝐴𝐴 = �𝐽𝐽2
(−1) 𝑂𝑂
𝑂𝑂 𝐽𝐽2(1)� = �

−1 1 0 0
0 −1 0 0
0 0 1 1
0 0 0 1

� 

 

【例 9.1.4】由秩求 Jordan 标准例 

𝐴𝐴 ∈ 𝑀𝑀5(ℂ),满足 rank𝐴𝐴 = 3, rank𝐴𝐴2 = 2, rank(𝐴𝐴 + 𝐸𝐸) = 4 

rank(𝐴𝐴 + 𝐸𝐸)2 = 3  求𝐽𝐽𝐴𝐴 

解: rank𝐴𝐴 = 3 < 5 ⇒ 𝑡𝑡│𝒳𝒳𝒜𝒜(𝑡𝑡) 

rank(𝐴𝐴 + 𝐸𝐸) = 4 < 5 ⇒ 𝑡𝑡 + 1│𝒳𝒳𝒜𝒜(𝑡𝑡) 

𝑝𝑝1 = 𝑡𝑡, 𝑝𝑝2 = 𝑡𝑡 + 1 

𝑁𝑁(1,1) = 𝑅𝑅(1,0) + 𝑅𝑅(1,2)− 2𝑅𝑅(1,1) = 5 + 2 − 2 × 3 = 1 

𝑁𝑁(2,1) = 𝑅𝑅(2,0) + 𝑅𝑅(2,2)− 2𝑅𝑅(2,1) = 5 + 3 − 2 × 4 = 0 

𝐽𝐽𝐴𝐴 =

⎝

⎜
⎛

0 0 0 0 0
0 𝜆𝜆2 ? ? ?
0 0 𝜆𝜆3 ? ?
0 0 0 𝜆𝜆4 ?
0 0 0 0 𝜆𝜆5⎠

⎟
⎞

 

𝑁𝑁(1,1) = 1 ⇒ 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4,𝜆𝜆5中没有或至少有两个 0 

�考虑𝑁𝑁(1,1)对应的约当块(0),注意到左上角已经有 1 个该约当块�  

rank 𝐽𝐽𝐴𝐴 = 3 ⇒ 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4,𝜆𝜆5中至少有一个是 0 

∴ 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4,𝜆𝜆5中至少有两个是 0  

𝑁𝑁(2,1) = 0 ⇒ 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4,𝜆𝜆5中至多有两个是 0 

�考虑𝑁𝑁(2,1)对应的约当块(−1)�  

于是可推断𝑁𝑁(2,2) = 1,𝑁𝑁(1,2) = 1,初等因子组为{𝑡𝑡, 𝑡𝑡2, (𝑡𝑡 + 1)2} 

𝐽𝐽𝐴𝐴 =

⎝

⎜⎜
⎛

0
0 1
0 0

−1 1
0 −1 ⎠

⎟⎟
⎞

       ∎  
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§10 Jordan标准型的唯一性和应用 

【定理 10.1】Jordan 标准型的唯一性 

设 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ), 

𝐵𝐵 = diag �𝐽𝐽𝑑𝑑1(𝜆𝜆1), … , 𝐽𝐽𝑑𝑑𝑘𝑘(𝜆𝜆𝑘𝑘)� ,𝐶𝐶 = diag �𝐽𝐽𝑙𝑙1(𝛼𝛼1), … , 𝐽𝐽𝑙𝑙𝑚𝑚(𝛼𝛼𝑚𝑚)� 

是𝐴𝐴 在 ℂ上的两个𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜标准型 

则有𝑘𝑘 = 𝑚𝑚,并在适当调整下标之后 

有𝑑𝑑1 = 𝑙𝑙1, … ,𝑑𝑑𝑘𝑘 = 𝑙𝑙𝑘𝑘 , 𝜆𝜆1 = 𝛼𝛼1, … , 𝜆𝜆𝑘𝑘 = 𝛼𝛼𝑘𝑘 

证:设𝒜𝒜:ℂ𝑛𝑛 → ℂ𝑛𝑛,�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ↦ 𝐴𝐴�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,𝒜𝒜 ∈ ℒ(ℂ𝑛𝑛) 

由定理 3.2,∃𝒜𝒜 −子空间𝑈𝑈1, … ,𝑈𝑈𝑘𝑘使得 

ℂ𝑛𝑛 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑘𝑘     [∗] 

令𝒜𝒜𝑖𝑖 = 𝒜𝒜│𝑈𝑈𝑖𝑖 ,则在𝑈𝑈𝑖𝑖的某组基下𝒜𝒜𝑖𝑖的矩阵是𝐽𝐽𝑑𝑑𝑖𝑖(𝜆𝜆𝑖𝑖) 

由此可知dim𝑈𝑈𝑖𝑖 = 𝑑𝑑𝑖𝑖 ,而𝐽𝐽𝑑𝑑𝑖𝑖(𝜆𝜆𝑖𝑖)的极小多项式是(𝑡𝑡 − 𝜆𝜆𝑖𝑖)𝑑𝑑𝑖𝑖 

于是𝑈𝑈𝑖𝑖是𝒜𝒜−不可分的�命题 6.1,6.3� 

即[∗]是𝒜𝒜−不可分子空间直和分解,于是 

𝒜𝒜关于[∗]的初等因子组𝐿𝐿𝐵𝐵 = {(𝑡𝑡 − 𝜆𝜆1)𝑑𝑑1 , … , (𝑡𝑡 − 𝜆𝜆𝑘𝑘)𝑑𝑑𝑘𝑘} 

同理,𝒜𝒜关于另一组𝒜𝒜−不可分子空间直和分解的初等因子组 

𝐿𝐿𝐶𝐶 = {(𝑡𝑡 − 𝛼𝛼1)𝑙𝑙1 , … , (𝑡𝑡 − 𝛼𝛼𝑚𝑚)𝑙𝑙𝑚𝑚} 

由定理 9.2,𝐿𝐿𝐵𝐵 = 𝐿𝐿𝐶𝐶�作为重集� 

∴ 𝑘𝑘 = 𝑚𝑚 且适当调整下标后𝑑𝑑𝑖𝑖 = 𝑙𝑙𝑖𝑖 , 𝜆𝜆𝑖𝑖 = 𝛼𝛼𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑘𝑘      ∎ 

注：该定理对任何域都成立，因为定理 9.2 如此。 
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【定理 10.2】相似的判定法 

设𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),则𝐴𝐴~𝑠𝑠𝐵𝐵 ⇔ 

(𝑖𝑖)𝜇𝜇𝐴𝐴 = 𝜇𝜇𝐵𝐵�或𝒳𝒳𝐴𝐴 = 𝒳𝒳𝐵𝐵� 

(𝑖𝑖𝑖𝑖)对于𝜇𝜇𝐴𝐴的任何不可约因子, 

rank�𝑝𝑝(𝐴𝐴)𝑖𝑖� = rank�𝑝𝑝(𝐵𝐵)𝑖𝑖� , 𝑖𝑖 = 0,1, . . ,𝑛𝑛 + 1 

证:⇒:∵ 𝐴𝐴~𝑠𝑠𝐵𝐵  ∴ 𝜇𝜇𝐴𝐴 = 𝜇𝜇𝐵𝐵 ,𝒳𝒳𝐴𝐴 = 𝒳𝒳𝐵𝐵 

设𝐵𝐵 = 𝑇𝑇−1𝐴𝐴𝐴𝐴,𝑇𝑇 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹) 

则∀𝑘𝑘 ∈ ℕ,𝐵𝐵𝑘𝑘 = 𝑇𝑇−1𝐴𝐴𝑘𝑘𝑇𝑇 

⇒ ∀𝑓𝑓 ∈ 𝐹𝐹[𝑡𝑡],𝑓𝑓(𝐵𝐵) = 𝑓𝑓(𝑇𝑇−1𝐴𝐴𝐴𝐴) = 𝑇𝑇−1𝑓𝑓(𝐴𝐴)𝑇𝑇 

⇒ rank 𝑓𝑓(𝐴𝐴) = rank 𝑓𝑓(𝐵𝐵) 

⇐:由定理 9.2(𝑖𝑖)(𝑖𝑖𝑖𝑖),𝐴𝐴,𝐵𝐵对应的初等因子组一样 

由定理 10.1, , 𝐽𝐽𝐴𝐴 = 𝐽𝐽𝐵𝐵  �适当调整下标后� 

∵ 𝐴𝐴~𝑠𝑠𝐽𝐽𝐴𝐴,𝐵𝐵~𝑠𝑠𝐽𝐽𝐵𝐵 ⇒ 𝐴𝐴~𝑠𝑠𝐵𝐵      ∎ 

 

【例 10.1.1】全 1 矩阵的 Jordan 标准型 

𝐴𝐴 = �

1 1 ⋯ 1
1 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1

� ∈ 𝑀𝑀𝑛𝑛(ℂ),求𝐽𝐽𝐴𝐴 

解:𝐴𝐴0 = 𝐸𝐸,𝐴𝐴2 = 𝑛𝑛𝑛𝑛 ⇒ 𝜇𝜇𝐴𝐴 = 𝑡𝑡2 − 𝑛𝑛𝑛𝑛 = (𝑡𝑡 − 𝑛𝑛)𝑡𝑡 

𝑝𝑝1 = 𝑡𝑡, rank𝐴𝐴0 = 𝑛𝑛, rank𝐴𝐴 = 1, rank𝐴𝐴2 = 1 

𝑁𝑁(1,1) = rank𝐴𝐴0 + rank𝐴𝐴2 − 2 rank𝐴𝐴 = 𝑛𝑛 + 1 − 2 = 𝑛𝑛 − 1 

∴ 𝑁𝑁(2,1) = 1 

⇒ 𝐽𝐽𝐴𝐴 = diag(0, … ,0,𝑛𝑛) 

另解:∵ 𝜇𝜇𝐴𝐴 = 𝑡𝑡(𝑡𝑡 − 𝑛𝑛) ⇒ 𝐴𝐴可对角化 

∵ rank𝐴𝐴 = 1   ∴ 𝐽𝐽𝐴𝐴 = diag(𝑛𝑛, 0, … ,0) 
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【例 10.1.2】转置相似 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),证明𝐴𝐴~𝑠𝑠𝐴𝐴𝑡𝑡 

证:由(𝐴𝐴𝑘𝑘)𝑡𝑡 = (𝐴𝐴𝑡𝑡)𝑘𝑘 

∀𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹, (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)𝑡𝑡 = 𝛼𝛼𝐴𝐴𝑡𝑡 + 𝛽𝛽𝐵𝐵𝑡𝑡 

可知∀𝑓𝑓 ∈ 𝐹𝐹[𝑡𝑡].𝑓𝑓(𝐴𝐴)𝑡𝑡 = 𝑓𝑓(𝐴𝐴𝑡𝑡) 

⇒ rank 𝑓𝑓(𝐴𝐴𝑡𝑡) = rank 𝑓𝑓(𝐴𝐴)𝑡𝑡 = rank 𝑓𝑓(𝐴𝐴) 

𝒳𝒳𝐴𝐴𝑡𝑡 = |𝑡𝑡𝑡𝑡 − 𝐴𝐴𝑡𝑡| = |(𝑡𝑡𝑡𝑡 − 𝐴𝐴)𝑡𝑡| = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = 𝒳𝒳𝐴𝐴 

rank 𝑝𝑝(𝐴𝐴) = rank 𝑝𝑝(𝐴𝐴𝑡𝑡) ⇒ 𝐴𝐴~𝑠𝑠𝐴𝐴𝑡𝑡 

 

【例 10.1.3】二阶矩阵平方根例 

 求矩阵方程𝑋𝑋2 = � 3 1
−1 5�在𝑀𝑀2(ℂ)的解 

解 1:设𝑋𝑋 = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� ,𝑋𝑋2 = � 3 1

−1 5� 

�
𝑎𝑎2 + 𝑏𝑏𝑏𝑏 = 3
𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐 = 1
𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐 = −1
𝑏𝑏𝑏𝑏 + 𝑑𝑑2 = 5

⇒ 𝑋𝑋1 = �

7
4

1
4

−
1
4

9
4

� ,𝑋𝑋2 = �
−

7
4

−
1
4

1
4

−
9
4

�  

解 2:设𝐴𝐴 = � 3 1
−1 5� ,𝒳𝒳𝐴𝐴 = �𝑡𝑡 − 3 −1

1 𝑡𝑡 − 5� = (𝑡𝑡 − 4)2 

𝑝𝑝 = 𝑡𝑡 − 4, 𝑟𝑟0 = rank 𝑝𝑝(𝐴𝐴)0 = 2, 𝑟𝑟1 = rank 𝑝𝑝(𝐴𝐴) = rank �1 −1
1 −1� = 1 

𝑟𝑟2 = rank𝑝𝑝(𝐴𝐴)2 = rank ��1 −1
1 −1� �

1 −1
1 −1�� = 0 

𝑛𝑛1 = 𝑟𝑟0 + 𝑟𝑟2 − 2𝑟𝑟1 = 0 ⇒ 𝐽𝐽𝐴𝐴 = �4 1
0 4� 

𝐴𝐴~𝑠𝑠𝐽𝐽𝐴𝐴 ⇒ ∃𝑆𝑆 ∈ 𝑀𝑀2(ℂ)使得 𝐽𝐽𝐴𝐴 = 𝑆𝑆−1𝐴𝐴𝐴𝐴, 𝑆𝑆𝐽𝐽𝐴𝐴 = 𝐴𝐴𝐴𝐴 

设𝑆𝑆 = �
𝑠𝑠11 𝑠𝑠12
𝑠𝑠21 𝑠𝑠22� ,由𝑆𝑆𝐽𝐽𝐴𝐴 = 𝐴𝐴𝐴𝐴,�

𝑠𝑠11 − 𝑠𝑠21 = 0
𝑠𝑠11 − 𝑠𝑠21 = 0

𝑠𝑠11 + 𝑠𝑠12 − 𝑠𝑠21 = 0
𝑠𝑠12 + 𝑠𝑠21 − 𝑠𝑠22 = 0
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⇒ �

1 0 −1 0
1 0 −1 0
1 1 0 −1
0 1 1 −1

�

�������������
rank=2

�

𝑠𝑠11
𝑠𝑠12
𝑠𝑠21
𝑠𝑠22

� = �

0
0
0
0

� 

取解𝑠𝑠11 = 𝑠𝑠21 = 1, 𝑠𝑠12 = 2, 𝑠𝑠22 = 3, 𝑆𝑆 = �1 2
1 3� , 𝑆𝑆−1 = � 3 −2

−1 1 � 

先解𝑌𝑌2 = �4 1
0 4� ,设𝑌𝑌 = �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� ⇒ �

𝑎𝑎2 + 𝑏𝑏𝑏𝑏 = 4
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 1 ⇒ 𝑏𝑏(𝑎𝑎 + 𝑑𝑑) = 1
𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐 = 0 ⇒ 𝑐𝑐(𝑎𝑎 + 𝑑𝑑) = 0

𝑏𝑏𝑏𝑏 + 𝑑𝑑2 = 4

 

∴ (𝑎𝑎 + 𝑑𝑑) ≠ 0, 𝑐𝑐 = 0  

⇒ �
𝑎𝑎2 = 4
𝑑𝑑2 = 4

(𝑎𝑎 + 𝑑𝑑)𝑏𝑏 = 1
⇒

⎩
⎪
⎨

⎪
⎧𝑎𝑎 = 2
𝑑𝑑 = 2
𝑐𝑐 = 0

𝑏𝑏 =
1
4

或

⎩
⎪
⎨

⎪
⎧𝑎𝑎 = −2
𝑑𝑑 = −2
𝑐𝑐 = 0

𝑏𝑏 = −
1
4

 

⇒ 𝑌𝑌2 = 𝐽𝐽𝐴𝐴 ⇒ (𝑆𝑆𝑆𝑆𝑆𝑆−1)2 = 𝑆𝑆𝑌𝑌2𝑆𝑆−1 = 𝑆𝑆𝐽𝐽𝐴𝐴𝑆𝑆−1 = 𝐴𝐴 

⇒ 𝑋𝑋1 = 𝑆𝑆 �2
1
4

0 2
�𝑆𝑆−1,𝑋𝑋2 = 𝑆𝑆 �−2 −

1
4

0 −2
�𝑆𝑆−1 

 

【例 10.1.4】复可逆矩阵可逆 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ)可逆,证明∀𝑘𝑘 ∈ ℤ+,𝑋𝑋𝑘𝑘 = 𝐴𝐴 在𝑀𝑀𝑛𝑛(ℂ)中有解 

注:可直接验证𝑋𝑋2 = �0 1
0 0�无解 

证:先设𝐴𝐴 = 𝐽𝐽𝑛𝑛(𝜆𝜆),因为𝐴𝐴可逆,所以𝜆𝜆 ≠ 0 

𝑋𝑋𝑘𝑘 = 𝐽𝐽𝑛𝑛(𝜆𝜆) = 𝜆𝜆

⎝

⎜
⎜
⎜
⎜
⎛

1
1
𝜆𝜆

1
1
𝜆𝜆
⋱ ⋱

1
1
𝜆𝜆
1⎠

⎟
⎟
⎟
⎟
⎞

�����������������
𝐵𝐵

 

由此可知�
1
√𝜆𝜆𝑘𝑘 𝑋𝑋�

𝑘𝑘

= 𝐵𝐵 
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由第 14 次作业可知,𝐵𝐵𝑘𝑘~𝑠𝑠𝐵𝐵 

∃𝑆𝑆 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℂ),使得𝑆𝑆−1𝐵𝐵𝑘𝑘𝑆𝑆 = 𝐵𝐵 

即(𝑆𝑆−1𝐵𝐵𝐵𝐵)𝑘𝑘 = 𝐵𝐵 

令𝑋𝑋 = √𝜆𝜆𝑘𝑘 (𝑆𝑆−1𝐵𝐵𝐵𝐵) 

𝑋𝑋𝑘𝑘 = �√𝜆𝜆𝑘𝑘 (𝑆𝑆−1𝐵𝐵𝐵𝐵)�
𝑘𝑘

= 𝜆𝜆𝑆𝑆−1𝐵𝐵𝑘𝑘𝑆𝑆 = 𝜆𝜆𝜆𝜆 = 𝐴𝐴 

由此可知当𝐴𝐴 = 𝐽𝐽𝑛𝑛(𝜆𝜆)时𝑋𝑋𝑘𝑘 = 𝐴𝐴在𝑀𝑀𝑛𝑛(ℂ)中有解 

再考虑𝐴𝐴 = diag �𝐽𝐽𝑑𝑑1(𝜆𝜆), … , 𝐽𝐽𝑑𝑑𝑛𝑛(𝜆𝜆𝑛𝑛)� 

其中𝑑𝑑1, … ,𝑑𝑑𝑛𝑛 ∈ ℤ+,𝜆𝜆1, … , 𝜆𝜆𝑛𝑛 ∈ ℂ ∖ {0} 

由上述结论可知 ∃𝑋𝑋𝑖𝑖 ∈ 𝑀𝑀𝑑𝑑𝑖𝑖(ℂ)使得 𝑋𝑋𝑖𝑖𝑘𝑘 = 𝐽𝐽𝑑𝑑𝑖𝑖(𝜆𝜆𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛 

令𝑋𝑋 = diag(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) 

则𝑋𝑋𝑘𝑘 = diag�𝑋𝑋1𝑘𝑘, … ,𝑋𝑋𝑛𝑛𝑘𝑘� = diag �𝐽𝐽𝑑𝑑1(𝜆𝜆), … , 𝐽𝐽𝑑𝑑𝑛𝑛(𝜆𝜆𝑛𝑛)� = 𝐴𝐴 

一般情形:设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ)可逆 

∃𝑇𝑇 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℂ),使得𝐽𝐽𝐴𝐴 = 𝑇𝑇−1𝐴𝐴𝐴𝐴 

由上述结论,∃𝑌𝑌 ∈ 𝑀𝑀𝑛𝑛(ℂ),使得𝑌𝑌𝑘𝑘 = 𝐽𝐽𝐴𝐴 = 𝑇𝑇−1𝐴𝐴𝐴𝐴 

⇒ 𝑇𝑇𝑌𝑌𝑘𝑘𝑇𝑇−1 = 𝐴𝐴 ⇒ (𝑇𝑇𝑇𝑇𝑇𝑇−1)𝑘𝑘 = 𝐴𝐴 ⇒ 𝑋𝑋 = 𝑇𝑇𝑇𝑇𝑇𝑇−1       ∎ 
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第二章总结 

𝐹𝐹 = ℂ 

𝐴𝐴~𝑠𝑠𝐽𝐽𝐴𝐴 = diag �𝐽𝐽𝑑𝑑1(𝜆𝜆1), … , 𝐽𝐽𝑑𝑑𝑘𝑘(𝜆𝜆𝑘𝑘)� 

𝒳𝒳𝐴𝐴 = (𝑡𝑡 − 𝜆𝜆1)𝑑𝑑1 ⋯ (𝑡𝑡 − 𝜆𝜆𝑘𝑘)𝑑𝑑𝑘𝑘 

𝜇𝜇𝐴𝐴 = lcm((𝑡𝑡 − 𝜆𝜆1)𝑑𝑑1 , … , (𝑡𝑡 − 𝜆𝜆𝑘𝑘)𝑑𝑑𝑘𝑘)  

⇒ 𝜇𝜇𝐴𝐴│𝒳𝒳𝐴𝐴�𝐶𝐶 − 𝐻𝐻定理� 

特征根𝜆𝜆1, … , 𝜆𝜆𝑘𝑘�不一定两两不同� 

𝐴𝐴可对角化⇔ 𝑑𝑑1 = ⋯ = 𝑑𝑑𝑘𝑘 ⇔ 𝜇𝜇𝐴𝐴无重根 

 

【去年期末考题】 

证明: (𝑖𝑖)𝐴𝐴的以𝜆𝜆为特征值𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜块的个数为dim𝑉𝑉𝜆𝜆 

(𝑖𝑖𝑖𝑖)𝐽𝐽𝐴𝐴中𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜块的个数是 � 𝑉𝑉𝜆𝜆
𝜆𝜆∈spec𝐴𝐴
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第三章 内积空间 



§1 欧氏空间

§1 欧氏空间

§1.1 内积

【定义 1.1.1】欧氏空间 

设𝑉𝑉是 ℝ上𝑛𝑛维线性空间,𝑓𝑓:𝑉𝑉 × 𝑉𝑉 → ℝ是对称双线性型 

使得𝑓𝑓对应的二次型𝑞𝑞(𝑥⃗𝑥) = 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)是正定的

双线性:∀𝑥⃗𝑥, 𝑦⃗𝑦, 𝑧𝑧 ∈ 𝑉𝑉,𝛼𝛼,𝛽𝛽 ∈ ℝ 

𝑓𝑓(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦, 𝑧𝑧) = 𝛼𝛼𝛼𝛼(𝑥⃗𝑥, 𝑧𝑧) + 𝛽𝛽𝛽𝛽(𝑦⃗𝑦, 𝑧𝑧)

𝑓𝑓(𝑥⃗𝑥,𝛼𝛼𝑦⃗𝑦 + 𝛽𝛽𝑧𝑧) = 𝛼𝛼𝛼𝛼(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝛽𝛽𝛽𝛽(𝑥⃗𝑥, 𝑧𝑧)

对称:𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥)

正定:∀𝑥⃗𝑥 ∈ 𝑉𝑉 ∖ �0�⃗ �,𝑞𝑞(𝑥⃗𝑥) = 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) > 0

称(𝑉𝑉, 𝑓𝑓)是一个欧氏空间,其中𝑓𝑓称为𝑉𝑉上的内积

【例 1.1.1】标准欧氏空间 

𝑉𝑉 = ℝ𝑛𝑛,𝑓𝑓:ℝ𝑛𝑛 × ℝ𝑛𝑛 → ℝ,��
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
�� ↦ 𝑥𝑥1𝑦𝑦1 + ⋯+ 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛

𝑓𝑓 ��
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,�

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�� = 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2

称之为标准欧氏空间 

【符号化简】 

设(𝑉𝑉, 𝑓𝑓)是欧氏空间, 𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉

记𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦)为(𝑥⃗𝑥, 𝑦⃗𝑦)或𝑥⃗𝑥 ⋅ 𝑦⃗𝑦    �𝑥⃗𝑥│𝑦⃗𝑦�不常用

239／363



李子明老师的线性代数讲义 

 

双线性: (𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦, 𝑧𝑧) = 𝛼𝛼(𝑥⃗𝑥, 𝑧𝑧) + 𝛽𝛽(𝑦⃗𝑦, 𝑧𝑧) 

(𝑥⃗𝑥,𝛼𝛼𝑦⃗𝑦 + 𝛽𝛽𝑧𝑧) = 𝛼𝛼(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝛽𝛽(𝑥⃗𝑥, 𝑧𝑧) 

(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦) ⋅ 𝑧𝑧 = 𝛼𝛼(𝑥⃗𝑥 ⋅ 𝑧𝑧) + 𝛽𝛽(𝑦⃗𝑦 ⋅ 𝑧𝑧) 

𝑥⃗𝑥 ⋅ (𝛼𝛼𝑦⃗𝑦 + 𝛽𝛽𝑧𝑧) = 𝛼𝛼(𝑥⃗𝑥 ⋅ 𝑦⃗𝑦) + 𝛽𝛽(𝑥⃗𝑥 ⋅ 𝑧𝑧) 

对称: (𝑥⃗𝑥, 𝑦⃗𝑦) = (𝑦⃗𝑦, 𝑥⃗𝑥), 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = 𝑦⃗𝑦 ⋅ 𝑥⃗𝑥 

正定:∀𝑥⃗𝑥 ∈ 𝑉𝑉 ∖ �0�⃗ �, (𝑥⃗𝑥, 𝑥⃗𝑥) > 0    𝑥⃗𝑥 ⋅ 𝑥⃗𝑥 > 0   

 

【命题 1.1】欧氏空间的基本性质 

设𝑉𝑉是欧氏空间 

(𝑖𝑖)∀𝑥⃗𝑥 ∈ 𝑉𝑉, 0�⃗ ⋅ 𝑥⃗𝑥 = 0 

(𝑖𝑖𝑖𝑖)𝑥⃗𝑥 ⋅ 𝑥⃗𝑥 = 0 ⇔ 𝑥⃗𝑥 = 0�⃗  

证: (𝑖𝑖) 0�⃗ ⋅ 𝑥⃗𝑥 = �0�⃗ + 0�⃗ � ⋅ 𝑥⃗𝑥 = 0�⃗ ⋅ 𝑥⃗𝑥 + 0�⃗ ⋅ 𝑥⃗𝑥 ⇒ 0�⃗ ⋅ 𝑥⃗𝑥 = 0  

(𝑖𝑖𝑖𝑖) ⇒:正定  ⇐: (𝑖𝑖)    ∎ 

注:在本节中𝑉𝑉是线性空间, 𝑣⃗𝑣 ∈ 𝑉𝑉,𝐿𝐿𝑣𝑣�⃗ :𝑉𝑉 → ℝ, 𝑥⃗𝑥 ↦ 𝑣⃗𝑣 ⋅ 𝑥⃗𝑥 

𝐿𝐿𝑣𝑣�⃗是𝑉𝑉上的线性函数,换言之𝐿𝐿𝑣𝑣�⃗ ∈ 𝑉𝑉∗ 

 

【定义 1.1.2】Gram 矩阵 

设𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ ∈ 𝑉𝑉,𝐺𝐺(𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ ) ≔ �𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ �𝑖𝑖=1,…,𝑠𝑠
𝑗𝑗=1,…,𝑠𝑠

  

称𝐺𝐺(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ )是(𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ )的𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟矩阵 

它是𝑠𝑠阶实对称方阵 

 

【定理 1.1】Gram 矩阵秩判定线性相关性 

设𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ ∈ 𝑉𝑉,𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗线性无关⇔ 𝐺𝐺(𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ )满秩 

证:  ⇐:∀𝑖𝑖, 𝑗𝑗 ∈ {1, … , 𝑠𝑠},𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ = 𝐿𝐿𝑣𝑣𝚤𝚤���⃗ �𝑣𝑣𝚥𝚥���⃗ � 
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由第一章引理 9.3,𝐺𝐺(𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ )满秩 ⇒ 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗线性无关 

⇒:设 𝑊𝑊 = ⟨𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ ⟩ ,则dim𝑊𝑊 = 𝑠𝑠 

而(𝑊𝑊,⋅)也是欧氏空间 

那么𝐺𝐺(𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ )是该内积对应的双线性型 

在𝑊𝑊的基底𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗下的矩阵 

由此可知该双线性型对应的二次型正定 

所以|𝐺𝐺(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ )| > 0    

即𝐺𝐺(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ )满秩       ∎ 

  

241／363



李子明老师的线性代数讲义 

 

§1.2 长度（范数）和距离 

【定义 1.2.1】长度 

设𝑥⃗𝑥 ∈ 𝑉𝑉,�𝑥⃗𝑥 ⋅ 𝑥⃗𝑥称为𝑥⃗𝑥的长度或范数 ,记为|𝑥⃗𝑥|或�|𝑥⃗𝑥|� 

 

【例 1.2.1】标准形式的内积 

设ℝ𝑛𝑛是标准欧氏空间, 𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� , 𝑦⃗𝑦 = �

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = 𝑥𝑥1𝑦𝑦1 + ⋯+ 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛 = 𝑥⃗𝑥𝑡𝑡𝑦⃗𝑦 = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

|𝑥⃗𝑥| = �𝑥⃗𝑥 ⋅ 𝑥⃗𝑥 = �𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2 

 

【例 1.2.2】迹形式的内积 

设𝑉𝑉 = 𝑀𝑀𝑛𝑛(ℝ),𝐴𝐴,𝐵𝐵 ∈ 𝑉𝑉 

规定(𝐴𝐴,𝐵𝐵) = tr(𝐴𝐴𝐵𝐵𝑡𝑡) 

可直接验证(  ,   ) 是对称，双线性的内积 

正定:设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑛𝑛×𝑛𝑛
 

(𝐴𝐴,𝐴𝐴) = tr(𝐴𝐴𝐴𝐴𝑡𝑡) = ��𝑎𝑎𝑖𝑖𝑖𝑖2
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

≥ 0 

�|A|� = �tr(𝐴𝐴𝐴𝐴𝑡𝑡) 
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【例 1.2.3】积分形式的内积 

设 𝑎𝑎,𝑏𝑏 ∈ ℝ,𝑎𝑎 < 𝑏𝑏,𝑉𝑉 = ℝ𝑛𝑛[𝑥𝑥]  �或𝐶𝐶[𝑎𝑎, 𝑏𝑏]� 

∀𝑓𝑓,𝑔𝑔 ∈ 𝑉𝑉, (𝑓𝑓,𝑔𝑔) ≔ � 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)d𝑥𝑥
𝑏𝑏

𝑎𝑎
 

(𝑓𝑓,𝑔𝑔)是𝑉𝑉上的一个内积, �|𝑓𝑓|� = �� 𝑓𝑓2(𝑥𝑥)d𝑥𝑥
𝑏𝑏

𝑎𝑎
 

 

【命题 1.2】Cauchy-Buniakowski 不等式 

设𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉, |𝑥⃗𝑥 ⋅ 𝑦⃗𝑦| ≤ |𝑥⃗𝑥||𝑦⃗𝑦|, 等号成立⇔ 𝑥⃗𝑥, 𝑦⃗𝑦线性相关 

证:如果𝑦⃗𝑦 = 0�⃗ ,则该命题显然成立 

设𝑦𝑦 ≠ 0�⃗ ,对∀𝜆𝜆 ∈ ℝ, 

0 ≤ (𝑥⃗𝑥 + 𝜆𝜆𝑦⃗𝑦) ⋅ (𝑥⃗𝑥 + 𝜆𝜆𝑦⃗𝑦) = 𝑥⃗𝑥 ⋅ 𝑥⃗𝑥 + 2(𝑥⃗𝑥 ⋅ 𝑦⃗𝑦)𝜆𝜆 + (𝑦⃗𝑦 ⋅ 𝑦⃗𝑦)𝜆𝜆2 

= |𝑥⃗𝑥|2 + 2(𝑥⃗𝑥 ⋅ 𝑦⃗𝑦)𝜆𝜆 + |𝑦⃗𝑦|2𝜆𝜆2      [|𝑦⃗𝑦|2 ≠ 0] 

于是△= 4(𝑥⃗𝑥 ⋅ 𝑦⃗𝑦)2 − 4|𝑥⃗𝑥|2|𝑦⃗𝑦|2 ≤ 0 ⇒ |𝑥⃗𝑥 ⋅ 𝑦⃗𝑦| ≤ |𝑥⃗𝑥||𝑦⃗𝑦| 

进而|𝑥⃗𝑥 ⋅ 𝑦⃗𝑦| = |𝑥⃗𝑥||𝑦⃗𝑦| ⇔ △= 0 

⇔ ∃𝜆𝜆0 ∈ ℝ, |𝑥⃗𝑥|2 + 2(𝑥⃗𝑥 ⋅ 𝑦⃗𝑦)𝜆𝜆0 + |𝑦⃗𝑦|2𝜆𝜆0
2 = 0  

⇔ (𝑥⃗𝑥 + 𝜆𝜆0𝑦⃗𝑦) ⋅ (𝑥⃗𝑥 + 𝜆𝜆0𝑦⃗𝑦) = 0 

⇔ 𝑥⃗𝑥 + 𝜆𝜆0𝑦⃗𝑦 = 0�⃗     �命题 1.1(𝑖𝑖𝑖𝑖)� 

∵ 𝑦⃗𝑦 ≠ 0�⃗     ∴ ∃𝜆𝜆0 ∈ ℝ使得𝑥⃗𝑥 + 𝜆𝜆0𝑦⃗𝑦 = 0�⃗ ⇔ 𝑥⃗𝑥, 𝑦⃗𝑦线性相关   ∎ 

 

注:应用该不等式,在上述三个例子中, 

|𝑥𝑥1𝑦𝑦1 + 𝑥𝑥2𝑦𝑦2 +⋯+ 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛| ≤ �𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2�𝑦𝑦12 + ⋯+ 𝑦𝑦𝑛𝑛2 

|tr𝐴𝐴𝐵𝐵𝑡𝑡| ≤ �tr(𝐴𝐴𝐴𝐴𝑡𝑡)�tr(𝐵𝐵𝐵𝐵𝑡𝑡) 

�� 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)d𝑥𝑥
𝑏𝑏

𝑎𝑎
� ≤ �� 𝑓𝑓2(𝑥𝑥)d𝑥𝑥

𝑏𝑏

𝑎𝑎
�� 𝑔𝑔2(𝑥𝑥)d𝑥𝑥

𝑏𝑏

𝑎𝑎
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【定义 1.2.2】距离 

设𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉, 𝑥⃗𝑥, 𝑦⃗𝑦之间的距离为|𝑥⃗𝑥 − 𝑦⃗𝑦| 

 

【例 1.2.4】标准欧氏空间的距离 

ℝ𝑛𝑛标准欧氏空间 𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� , 𝑦⃗𝑦 = �

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

𝑥⃗𝑥 − 𝑦⃗𝑦 = �
𝑥𝑥1 − 𝑦𝑦1

⋮
𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛

� , |𝑥⃗𝑥 − 𝑦⃗𝑦| = �(𝑥𝑥1 − 𝑦𝑦1)2 + ⋯+ (𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛)2 

 

【例 1.2.5】三维实空间的距离例 

ℝ3 标准欧氏空间, 𝑒𝑒1���⃗ = �
1
0
0
� , 𝑒𝑒2���⃗ = �

0
1
0
� , 𝑒𝑒3���⃗ = �

0
0
1
� 

|𝑒𝑒1���⃗ | = �12 + 02 + 02 = 1 

|𝑒𝑒2���⃗ − 𝑒𝑒3���⃗ | = ��
0
1
−1

�� = �02 + 12 + (−1)2 = √2 

注: 𝑥⃗𝑥 ∈ 𝑉𝑉,如果|𝑥⃗𝑥| = 1,则称𝑥⃗𝑥是单位向量  

 

【例 1.2.6】验证单位化 

设𝑥⃗𝑥 ∈ 𝑉𝑉 ∖ �0�⃗ �,证明
𝑥⃗𝑥

|𝑥⃗𝑥|的长度为 1 

证: �
𝑥⃗𝑥

|𝑥⃗𝑥|� = �
𝑥⃗𝑥

|𝑥⃗𝑥| ⋅
𝑥⃗𝑥

|𝑥⃗𝑥| = �
1

|𝑥𝑥|2
(𝑥⃗𝑥 ⋅ 𝑥⃗𝑥) =

1
|𝑥⃗𝑥|

�𝑥⃗𝑥 ⋅ 𝑥⃗𝑥 =
|𝑥⃗𝑥|
|𝑥⃗𝑥| = 1 
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§1.3 夹角，方向和正交（垂直） 

【定义 1.3.1】夹角 

设𝑥⃗𝑥. 𝑦⃗𝑦 ∈ 𝑉𝑉 ∖ �0�⃗ �,由𝐶𝐶 − 𝐵𝐵不等式 

−1 ≤
𝑥⃗𝑥 ⋅ 𝑦⃗𝑦

|𝑥⃗𝑥||𝑦⃗𝑦| ≤ 1 

定义𝑥⃗𝑥, 𝑦⃗𝑦的夹角是𝜃𝜃 = arccos
𝑥⃗𝑥 ⋅ 𝑦⃗𝑦

|𝑥⃗𝑥||𝑦⃗𝑦| , 𝜃𝜃 ∈ [0,𝜋𝜋] 

注: 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = |𝑥⃗𝑥||𝑦⃗𝑦| cos𝜃𝜃 

如果|𝑥⃗𝑥| = 1,则𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = |𝑥⃗𝑥||𝑦⃗𝑦| cos𝜃𝜃 = |𝑦⃗𝑦| cos𝜃𝜃 是𝑦⃗𝑦在𝑥⃗𝑥上投影的长度 

 

【定义 1.3.2】同向，反向 

设𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉 ∖ �0�⃗ �, 𝑥⃗𝑥, 𝑦⃗𝑦的夹角为𝜃𝜃 

当𝜃𝜃 = 0 时,称𝑥⃗𝑥, 𝑦⃗𝑦同向 

当𝜃𝜃 = 𝜋𝜋时,称𝑥⃗𝑥, 𝑦⃗𝑦反向 

 

【例 1.3.1】同向与反向的数学表述 

设𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉 ∖ �0�⃗ �,证明: 

(𝑖𝑖)𝑥⃗𝑥, 𝑦⃗𝑦同向⇔ ∃𝛼𝛼 ∈ ℝ+,使得𝑥⃗𝑥 = 𝛼𝛼𝑦⃗𝑦 

(𝑖𝑖𝑖𝑖)𝑥⃗𝑥, 𝑦⃗𝑦反向⇔ ∃𝛼𝛼 ∈ ℝ−,使得𝑥⃗𝑥 = 𝛼𝛼𝑦⃗𝑦 

证: (𝑖𝑖𝑖𝑖) ⇒: 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = −|𝑥⃗𝑥||𝑦⃗𝑦| ⇒ |𝑥⃗𝑥 ⋅ 𝑦⃗𝑦| = |𝑥⃗𝑥||𝑦⃗𝑦| 

⇒ 𝑥⃗𝑥 + 𝜆𝜆𝑦⃗𝑦 = 0 �命题 1.2� 

∴ 𝑥⃗𝑥 = −𝜆𝜆𝑦⃗𝑦   ∵ 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = −|𝑥⃗𝑥||𝑦⃗𝑦|  ∴ −𝜆𝜆𝑦⃗𝑦 ⋅ 𝑦⃗𝑦 = −|𝜆𝜆||𝑦⃗𝑦||𝑦⃗𝑦| 

∴
λ

|𝜆𝜆| = 1 ⇒ 𝜆𝜆 > 0,取𝛼𝛼 = −𝜆𝜆即可 

⇐:设𝑥⃗𝑥 = 𝛼𝛼𝑦⃗𝑦, 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = 𝛼𝛼𝑦⃗𝑦 ⋅ 𝑦⃗𝑦 ⇒
𝑥⃗𝑥 ⋅ 𝑦⃗𝑦

|𝑥⃗𝑥||𝑦⃗𝑦| =
𝛼𝛼𝑦⃗𝑦 ⋅ 𝑦⃗𝑦

|𝛼𝛼||𝑦⃗𝑦||𝑦⃗𝑦| = −1       ∎  
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(𝑖𝑖)类似 

 

【例 1.3.2】三角不等式 

设𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,则|𝑥⃗𝑥 + 𝑦⃗𝑦| ≤ |𝑥⃗𝑥| + |𝑦⃗𝑦| 

等号成立⇔ 𝑥⃗𝑥, 𝑦⃗𝑦中至少有一个为0�⃗或𝑥⃗𝑥, 𝑦⃗𝑦同向 

证: |𝑥⃗𝑥 + 𝑦⃗𝑦|2 = (𝑥⃗𝑥 + 𝑦⃗𝑦) ⋅ (𝑥⃗𝑥 + 𝑦⃗𝑦) = |𝑥⃗𝑥|2 + 2(𝑥⃗𝑥 ⋅ 𝑦⃗𝑦) + |𝑦⃗𝑦|2 

≤ |𝑥𝑥|2 + 2|𝑥⃗𝑥||𝑦⃗𝑦| + |𝑦⃗𝑦|2 = (|𝑥⃗𝑥| + |𝑦⃗𝑦|)2 

∴ |𝑥⃗𝑥 + 𝑦⃗𝑦| ≤ |𝑥⃗𝑥| + |𝑦⃗𝑦| 

等号成立⇔ 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = |𝑥⃗𝑥||𝑦⃗𝑦| ⇔ 𝑥⃗𝑥, 𝑦⃗𝑦中至少有一个为0�⃗或𝑥⃗𝑥, 𝑦⃗𝑦同向   ∎ 

 

【定义 1.3.3】正交（垂直） 

设𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,如果𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = 0,则称𝑥⃗𝑥与𝑦⃗𝑦正交�垂直� 

记为𝑥⃗𝑥 ⊥ 𝑦⃗𝑦 

注:当𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉 ∖ �0�⃗ �, 𝑥⃗𝑥 ⊥ 𝑦⃗𝑦 ⇔ 𝑥⃗𝑥, 𝑦⃗𝑦的夹角是
𝜋𝜋
2

   [𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = |𝑥⃗𝑥||𝑦⃗𝑦| cos𝜃𝜃] 

注: 0�⃗与任何向量都正交  [命题 1.1(𝑖𝑖)]  

 

 

【例 1.3.3】验证标准基相互正交 

设ℝ𝑛𝑛是标准欧氏空间, 𝑒𝑒𝚥𝚥��⃗ =

⎝

⎜
⎜
⎜
⎛

    0
    ⋮
    0
    1
    0
    ⋮
    0

�𝑗𝑗行�

⎠

⎟
⎟
⎟
⎞

 , 𝑗𝑗 = 1, … ,𝑛𝑛 

证明𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗两两正交 
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证: 𝑒𝑒𝚤𝚤��⃗ ⋅ 𝑒𝑒𝚥𝚥��⃗ = 0 × 0 + ⋯+ 1⏟
第𝑖𝑖个

× 0 + ⋯+ 0 × 1⏟
第𝑗𝑗个

+ ⋯+ 0 × 0 

= 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 

∴ 𝑖𝑖 ≠ 𝑗𝑗时  𝑒𝑒𝚤𝚤��⃗ ⋅ 𝑒𝑒𝚥𝚥��⃗ = 0, 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗两两正交     ∎ 

 

【例 1.3.4】勾股定理 

设𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,如果𝑥⃗𝑥 ⊥ 𝑦⃗𝑦,则|𝑥⃗𝑥 + 𝑦⃗𝑦|2 = |𝑥⃗𝑥|2 + |𝑦⃗𝑦|2 

证: |𝑥⃗𝑥 + 𝑦⃗𝑦|2 = (𝑥⃗𝑥 + 𝑦⃗𝑦) ⋅ (𝑥⃗𝑥 + 𝑦⃗𝑦) 

= |𝑥⃗𝑥|2 + 2𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 + |𝑦⃗𝑦|2 = |𝑥⃗𝑥|2 + |𝑦⃗𝑦|2  ∎ 
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§1.4 单位正交基 

【定义 1.4.1】单位正交基 

设𝑉𝑉是𝑛𝑛维欧氏空间, 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的一组基,如果 

(𝑖𝑖)𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗两两正交 

(𝑖𝑖𝑖𝑖)𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗都是单位向量 

则称𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的一组单位正交基 

注: (𝑖𝑖)(𝑖𝑖𝑖𝑖)可简述为 𝑒𝑒𝚤𝚤��⃗ ⋅ 𝑒𝑒𝚥𝚥��⃗ = 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} 

注:ℝ𝑛𝑛是标准欧氏空间,其标准基𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗是单位正交基 

 

【命题 1.3】单位正交基与坐标 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的单位正交基,则 

(𝑖𝑖)∀𝑥⃗𝑥 ∈ 𝑉𝑉, 𝑥⃗𝑥 = (𝑥⃗𝑥 ⋅ 𝑒𝑒1���⃗ )𝑒𝑒1���⃗ + ⋯+ (𝑥⃗𝑥 ⋅ 𝑒𝑒𝑛𝑛����⃗ )𝑒𝑒𝑛𝑛����⃗  

(𝑖𝑖𝑖𝑖)设𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ , … ,𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ , 𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ + ⋯+ 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛����⃗  

则𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = 𝑥𝑥1𝑦𝑦1 + ⋯+ 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛 = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = 𝑥⃗𝑥𝑡𝑡𝑦⃗𝑦 

证: (𝑖𝑖)𝑥⃗𝑥 = �𝑥𝑥𝑗𝑗𝑒𝑒𝚥𝚥��⃗
𝑛𝑛

𝑗𝑗=1

, 𝑒𝑒𝚤𝚤��⃗ ⋅ 𝑥⃗𝑥 = �𝑥𝑥𝑗𝑗𝑒𝑒𝚤𝚤��⃗ ⋅ 𝑒𝑒𝚥𝚥��⃗
𝑛𝑛

𝑗𝑗=1

= �𝑥𝑥𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑗𝑗=1

, 𝑖𝑖 = 1, … ,𝑛𝑛 

𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ = 𝑥⃗𝑥  

(𝑖𝑖𝑖𝑖)𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = ��𝑥𝑥𝑖𝑖𝑒𝑒𝚤𝚤��⃗
𝑛𝑛

𝑖𝑖=1

� ⋅ ��𝑦𝑦𝑗𝑗𝑒𝑒𝚥𝚥��⃗
𝑛𝑛

𝑗𝑗=1

� = ��𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

= �𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

      ∎ 
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【例 1.4.1】正交则线性无关 

设𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ ∈ 𝑉𝑉 ∖ �0�⃗ �两两正交,则𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗线性无关 

证:法 1:𝐺𝐺(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ ) = �𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ �𝑖𝑖=1,…,𝑠𝑠
𝑗𝑗=1,…,𝑠𝑠

 

= diag(𝑣𝑣1����⃗ ⋅ 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ ⋅ 𝑣𝑣𝑠𝑠���⃗ ) = diag(|𝑣𝑣1����⃗ |2, … , |𝑣𝑣𝑠𝑠|2) 

⇒ 𝐺𝐺(𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ )满秩⇒ 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗线性无关  �定理 1.1� 

法 2:设𝛼𝛼1, … ,𝛼𝛼𝑠𝑠 ∈ ℝ使得 𝛼𝛼1𝑣𝑣1����⃗ + ⋯+ 𝛼𝛼𝑠𝑠𝑣𝑣𝑠𝑠���⃗ = 0�⃗  

则 𝑣𝑣𝚤𝚤���⃗ ⋅ ��𝛼𝛼𝑗𝑗𝑣𝑣𝚥𝚥���⃗
𝑠𝑠

𝑗𝑗=1

� = 0 ,于是�𝛼𝛼𝑗𝑗�𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ �
𝑠𝑠

𝑗𝑗=1

= 0 ⇒ 𝛼𝛼𝑖𝑖(𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚤𝚤���⃗ ) = 0 

∵ 𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚤𝚤���⃗ ≠ 0 ∴ 𝛼𝛼𝑖𝑖 = 0, 𝑖𝑖 = 1, … , 𝑠𝑠       

⇒ 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗线性无关       ∎  

 

【定理 1.2】Gram-Schmidt 正交化过程 

设𝑉𝑉是𝑛𝑛维欧氏空间,则𝑉𝑉有单位正交基 

证:设𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是𝑉𝑉的一组基 

首先令𝑒𝑒1���⃗ =
𝜀𝜀1���⃗

|𝜀𝜀1���⃗ | ,则 ⟨𝜀𝜀1���⃗ ⟩ = ⟨𝑒𝑒1���⃗ ⟩ 

假设对𝑘𝑘, 1 ≤ 𝑘𝑘 < 𝑛𝑛,已经得到两两正交的单位向量𝑒𝑒1���⃗  , … , 𝑒𝑒𝑘𝑘����⃗  

使得⟨𝜀𝜀1���⃗  , … , 𝜀𝜀𝑘𝑘���⃗ ⟩ = ⟨𝑒𝑒1���⃗  , … , 𝑒𝑒𝑘𝑘����⃗ ⟩ 

令𝑒𝑒𝑘𝑘+1��������⃗ ′ = 𝜀𝜀𝑘𝑘+1��������⃗ − (𝑒𝑒1���⃗ ⋅ 𝜀𝜀𝑘𝑘+1��������⃗ )𝑒𝑒1���⃗ − ⋯− (𝑒𝑒𝑘𝑘����⃗ ⋅ 𝜀𝜀𝑘𝑘+1��������⃗ )𝑒𝑒𝑘𝑘����⃗  

∀𝑖𝑖 = 1, … ,𝑘𝑘    𝑒𝑒𝚤𝚤��⃗ ⋅ 𝑒𝑒𝑘𝑘+1��������⃗ ′ = 𝑒𝑒𝚤𝚤��⃗ ⋅ 𝜀𝜀𝑘𝑘+1��������⃗ − (𝑒𝑒𝚤𝚤��⃗ ⋅ 𝜀𝜀𝑘𝑘+1��������⃗ )(𝑒𝑒𝚤𝚤��⃗ ⋅ 𝑒𝑒𝚤𝚤��⃗ ) = 0 

令𝑒𝑒𝑘𝑘+1��������⃗ =
𝑒𝑒𝑘𝑘+1��������⃗ ′
�𝑒𝑒𝑘𝑘+1��������⃗ ′�

,则𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘+1��������⃗是两两正交的单位向量 

可直接验证⟨𝜀𝜀1���⃗ , … , 𝜀𝜀𝑘𝑘���⃗ , 𝜀𝜀𝑘𝑘+1��������⃗ ⟩ = ⟨𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ ,𝑒𝑒𝑘𝑘+1��������⃗ ⟩ 

当𝑘𝑘 = 𝑛𝑛时定理即证.       ∎ 

注:从(𝑒𝑒1���⃗  , . . . , 𝑒𝑒𝑛𝑛����⃗ )到(𝜀𝜀1���⃗  , . . . , 𝜀𝜀𝑛𝑛���⃗ )的转换矩阵是上三角的. 
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【例 1.4.2】求子空间的单位正交基例 

设𝑉𝑉 = ℝ4,标准欧氏空间 

设𝑢𝑢1����⃗ = �

1
0
1
0

� ,𝑢𝑢2����⃗ = �

0
−1
1
−1

� ,𝑢𝑢3����⃗ = �

1
1
1
1

� ,且𝑈𝑈 = ⟨𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ,𝑢𝑢3����⃗ ⟩ 

计算𝑈𝑈的一组单位正交基 

解: dim𝑈𝑈 = rank(𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ,𝑢𝑢3����⃗ ) = rank�

1 0 1
0 −1 1
1 1 1
0 −1 1

� = 3 

𝑒𝑒1���⃗ =
𝑢𝑢1����⃗

|𝑢𝑢1����⃗ | =
1
√2

�

1
0
1
0

� 

𝑒𝑒2���⃗
′ = 𝑢𝑢2����⃗ − (𝑢𝑢2����⃗ ⋅ 𝑒𝑒1���⃗ )𝑒𝑒1���⃗ = �

−1/2
−1
1/2
−1

� 

𝑒𝑒2���⃗ =
𝑒𝑒2���⃗

′

�𝑒𝑒2���⃗
′�

=
1
√10

�

−1
−2
1
−2

� 

𝑒𝑒3���⃗
′ = 𝑢𝑢3����⃗ − (𝑢𝑢3����⃗ ⋅ 𝑒𝑒1���⃗ )𝑒𝑒1���⃗ − (𝑢𝑢3����⃗ ⋅ 𝑒𝑒2���⃗ )𝑒𝑒2���⃗ = �

−2/5
1/5
2/5
1/5

� 

𝑒𝑒3���⃗ =
𝑒𝑒3���⃗

′

�𝑒𝑒3���⃗
′�

=
1
√10

�

−2
1
2
1

� 

𝑈𝑈 = ⟨𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ⟩, 𝑒𝑒𝚤𝚤��⃗ ⋅ 𝑒𝑒𝚥𝚥��⃗ = 𝛿𝛿𝑖𝑖𝑖𝑖 

即𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗是𝑈𝑈的一组单位正交基  
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§1.5 正交矩阵 

【例 1.5.1】正交矩阵的由来 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ; 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是𝑉𝑉的两组单位正交基 

设𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ),使得 (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴 

𝜀𝜀𝚥𝚥��⃗ = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴(𝚥𝚥)�������⃗  

𝛿𝛿𝑖𝑖𝑖𝑖 = 𝜀𝜀𝚤𝚤��⃗ ⋅ 𝜀𝜀𝚥𝚥��⃗ = �(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴(𝚤𝚤)������⃗ � ⋅ �(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴(𝚥𝚥)�������⃗ � 

= �𝐴𝐴(𝚤𝚤)������⃗ �
𝑡𝑡
𝐴𝐴(𝚥𝚥)�������⃗ = (𝐴𝐴𝑡𝑡)𝚤𝚤����������⃗ 𝐴𝐴(𝚥𝚥)�������⃗     ,∀𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛}  ��𝐴𝐴(𝚤𝚤)������⃗ �

𝑡𝑡
= (𝐴𝐴𝑡𝑡)𝚤𝚤����������⃗ � 

即𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐸𝐸,于是𝐴𝐴𝑡𝑡 = 𝐴𝐴−1 

 

【定义 1.5.1】正交矩阵 

设𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ),如果𝐴𝐴𝑡𝑡 = 𝐴𝐴−1,则称𝐴𝐴是正交矩阵 

 

【定理 1.3】正交矩阵的判定 

设𝑉𝑉的一组单位正交基是𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ,而𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是𝑉𝑉的另一组基 

(𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴,𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ) 

则𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是单位正交基⇔ 𝐴𝐴是正交矩阵 

证:⇒上文已证 

⇐: 𝜀𝜀𝚥𝚥��⃗ = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴(𝚥𝚥)�������⃗ , 𝑗𝑗 = 1, … ,𝑛𝑛 

𝜀𝜀𝚤𝚤��⃗ ⋅ 𝜀𝜀𝚥𝚥��⃗ = �(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴(𝚤𝚤)������⃗ � ⋅ �(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴(𝚤𝚤)������⃗ � 

= �𝐴𝐴(𝑖𝑖)�
𝑡𝑡
𝐴𝐴(𝚥𝚥)�������⃗ = (𝐴𝐴𝑡𝑡)𝚤𝚤����������⃗ 𝐴𝐴(𝚥𝚥)�������⃗ = 𝛿𝛿𝑖𝑖𝑖𝑖       [∵ 𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐸𝐸]     ∎ 
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【例 1.5.1】正交矩阵的具体形式 

一阶: (𝑎𝑎) = (𝑎𝑎)𝑡𝑡 

(𝑎𝑎)(𝑎𝑎)𝑡𝑡 = (1) ⇔ 𝑎𝑎2 = 1 ⇒ 𝑎𝑎 = ±1 ∴ (1)或(−1) 

二阶: 

𝐴𝐴2 = �cos𝜃𝜃 − sin 𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 � ,𝐵𝐵2 = �cos𝜃𝜃 sin 𝜃𝜃

sin𝜃𝜃 − cos𝜃𝜃� 

𝐵𝐵2𝑡𝑡𝐵𝐵2 = �cos𝜃𝜃 sin𝜃𝜃
sin 𝜃𝜃 − cos𝜃𝜃��

cos𝜃𝜃 sin𝜃𝜃
sin 𝜃𝜃 − cos𝜃𝜃� = �1 0

0 1� 

(𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ ) = (𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ )𝐴𝐴2    (𝛼𝛼1����⃗ ,𝛼𝛼2����⃗ ) = (𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ )𝐵𝐵2 

𝑛𝑛阶: 

𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐸𝐸 ⇔ (𝐴𝐴𝑡𝑡)𝚤𝚤����������⃗ 𝐴𝐴(𝚥𝚥)�������⃗ = 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} 

⇔ �𝐴𝐴(𝚤𝚤)������⃗ �
𝑡𝑡
𝐴𝐴(𝚥𝚥)�������⃗ = 𝛿𝛿𝑖𝑖𝑖𝑖 ⇔ 𝐴𝐴(𝚤𝚤)������⃗ ⋅ 𝐴𝐴(𝚥𝚥)�������⃗ = 𝛿𝛿𝑖𝑖𝑖𝑖 

⇔ 𝐴𝐴(1)�������⃗ , … ,𝐴𝐴(𝑛𝑛)��������⃗是ℝ𝑛𝑛在标准内积下的单位正交基 

 

【命题 1.4】正交矩阵的性质 

设𝐴𝐴是正交矩阵,则 

(𝑖𝑖) det𝐴𝐴 = ±1 

(𝑖𝑖𝑖𝑖)𝐴𝐴𝑡𝑡,𝐴𝐴−1也是正交矩阵 

(𝑖𝑖𝑖𝑖𝑖𝑖)若𝐵𝐵也是正交矩阵,则𝐴𝐴𝐴𝐴也是正交矩阵 

证: (𝑖𝑖)𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐸𝐸 ⇒ det(𝐴𝐴𝑡𝑡𝐴𝐴) = 1 ⇒ det𝐴𝐴𝑡𝑡 det𝐴𝐴 = 1 

⇒ (det𝐴𝐴)2 = 1 ⇒ det𝐴𝐴 = ±1 

(𝑖𝑖𝑖𝑖)𝐴𝐴𝑡𝑡 = 𝐴𝐴−1 ⇒ 𝐴𝐴𝐴𝐴𝑡𝑡 = 𝐸𝐸 ⇒ (𝐴𝐴𝑡𝑡)𝑡𝑡𝐴𝐴𝑡𝑡 = 𝐸𝐸 ⇒ 𝐴𝐴𝑡𝑡正交 

(𝑖𝑖𝑖𝑖𝑖𝑖)(𝐴𝐴𝐴𝐴)𝑡𝑡(𝐴𝐴𝐴𝐴) = (𝐵𝐵𝑡𝑡𝐴𝐴𝑡𝑡)(𝐴𝐴𝐴𝐴) = 𝐵𝐵𝑡𝑡(𝐴𝐴𝑡𝑡𝐴𝐴)𝐵𝐵 = 𝐵𝐵𝑡𝑡𝐸𝐸𝐸𝐸 = 𝐵𝐵𝑡𝑡𝐵𝐵 = 𝐸𝐸    ∎ 
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【推论 1.1】正交矩阵群 

令𝑂𝑂𝑛𝑛(ℝ) = �𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ)�𝐴𝐴正交�,则𝑂𝑂𝑛𝑛(ℝ)是𝐺𝐺𝐿𝐿𝑛𝑛(ℝ)的子群 

证:由上学期第四章命题 2.2,只要证明∀𝐴𝐴,𝐵𝐵 ∈ 𝑂𝑂𝑛𝑛(ℝ),𝐴𝐴𝐵𝐵−1 ∈ 𝑂𝑂𝑛𝑛(ℝ) 

由命题 1.4 (𝑖𝑖𝑖𝑖),𝐵𝐵−1 ∈ 𝑂𝑂𝑛𝑛(ℝ) 

命题 1.4(𝑖𝑖𝑖𝑖𝑖𝑖),𝐴𝐴𝐵𝐵−1 ∈ 𝑂𝑂𝑛𝑛(ℝ)        ∎ 

注:称𝑂𝑂𝑛𝑛(ℝ)为𝑛𝑛阶正交矩阵群 
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§1.6 正交相似 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ ;  𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是𝑉𝑉的两组单位正交基 

(𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝑃𝑃,则𝑃𝑃 ∈ 𝑂𝑂𝑛𝑛(ℝ) 

设𝒜𝒜在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵为𝐴𝐴,在𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗的矩阵为𝐵𝐵 

由第二章§2.1,𝐵𝐵 = 𝑃𝑃−1𝐴𝐴𝐴𝐴 = 𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 

 

【定义 1.6.1】正交相似 

设𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(ℝ),如果存在𝑃𝑃 ∈ 𝑂𝑂𝑛𝑛(ℝ),使得𝐵𝐵 = 𝑃𝑃−1𝐴𝐴𝐴𝐴 

则称𝐵𝐵与𝐴𝐴正交相似,记为𝐴𝐴~𝑜𝑜𝐵𝐵 

注:如果𝐴𝐴~𝑜𝑜𝐵𝐵,则𝐴𝐴~𝑠𝑠𝐵𝐵且𝐴𝐴~𝑐𝑐𝐵𝐵,逆命题一般不真 

 

目标:给定𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ),求𝐴𝐴在正交相似下的标准型 

 

【命题 1.4】正交相似是等价关系 

~𝑜𝑜是等价关系 

证:取𝑃𝑃 = 𝐸𝐸,则 𝐴𝐴 = 𝑃𝑃−1𝐴𝐴𝐴𝐴 ⇒ 𝐴𝐴~𝑜𝑜𝐴𝐴    �自反性� 

若𝐵𝐵 = 𝑃𝑃−1𝐴𝐴𝐴𝐴,𝑃𝑃 ∈ 𝑂𝑂𝑛𝑛(ℝ)   则𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃−1 

取𝑄𝑄 = 𝑃𝑃−1 ∈ 𝑂𝑂𝑛𝑛(ℝ)    则𝐴𝐴 = 𝑄𝑄−1𝐵𝐵𝐵𝐵    �对称性� 

若𝐵𝐵 = 𝑃𝑃−1𝐴𝐴𝐴𝐴,𝐶𝐶 = 𝑄𝑄−1𝐵𝐵𝐵𝐵, 𝑃𝑃,𝑄𝑄 ∈ 𝑂𝑂𝑛𝑛(ℝ) 

则𝐶𝐶 = 𝑄𝑄−1𝑃𝑃−1𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑃𝑃𝑃𝑃)−1𝐴𝐴(𝑃𝑃𝑃𝑃) 

∵ 𝑃𝑃𝑃𝑃 ∈ 𝑂𝑂𝑛𝑛(ℝ)  ∴ 𝐴𝐴~𝑜𝑜𝐶𝐶    �传递性�      ∎ 
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§1.7 正交补 

【定义 1.7.1】正交补 

设𝑈𝑈 ⊂ 𝑉𝑉是子空间,𝑈𝑈的正交补 𝑈𝑈⊥ = {𝑣⃗𝑣 ∈ 𝑉𝑉|∀𝑢𝑢�⃗ ∈ 𝑈𝑈, 𝑣⃗𝑣 ⊥ 𝑢𝑢�⃗ } 

 

【命题 1.5】正交补的基本性质 

设𝑈𝑈 ⊂ 𝑉𝑉是子空间,则 

(𝑖𝑖)𝑈𝑈⊥是子空间 

(𝑖𝑖𝑖𝑖)𝑉𝑉 = 𝑈𝑈⊕𝑈𝑈⊥ 

 (𝑖𝑖𝑖𝑖𝑖𝑖)(𝑈𝑈⊥)⊥ = 𝑈𝑈 

证: (𝑖𝑖)设𝑣⃗𝑣,𝑢𝑢�⃗ ∈ 𝑈𝑈⊥, 𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹 

∀𝑢𝑢�⃗ ∈ 𝑈𝑈, (𝛼𝛼𝑣⃗𝑣 + 𝛽𝛽𝑤𝑤��⃗ ) ⋅ 𝑢𝑢�⃗ = 𝛼𝛼𝑣⃗𝑣 ⋅ 𝑢𝑢�⃗ + 𝛽𝛽𝑤𝑤��⃗ ⋅ 𝑢𝑢�⃗ = 0 

⇒ 𝛼𝛼𝑣⃗𝑣 + 𝛽𝛽𝑤𝑤��⃗ ∈ 𝑈𝑈⊥, 𝑈𝑈⊥是子空间  

(𝑖𝑖𝑖𝑖)设𝜀𝜀1���⃗  , … , 𝜀𝜀𝑑𝑑����⃗是𝑈𝑈的一组基,扩充为𝑉𝑉的一组基𝜀𝜀1���⃗  , … , 𝜀𝜀𝑑𝑑����⃗ , 𝜀𝜀𝑑𝑑+1��������⃗ , … , 𝜀𝜀𝑛𝑛���⃗  

对这组基应用𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑆𝑆𝑆𝑆ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚正交化,得到𝑉𝑉的单位正交基 

𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗ , 𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗  

且𝑈𝑈 = ⟨𝜀𝜀1���⃗  , … , 𝜀𝜀𝑑𝑑����⃗ ⟩ = ⟨𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗ ⟩ 

于是∀𝑗𝑗 ∈ {𝑑𝑑 + 1, … ,𝑛𝑛}, 𝑒𝑒𝚥𝚥��⃗ ∈ 𝑈𝑈⊥ ⇒ dim𝑈𝑈⊥ ≥ 𝑛𝑛 − 𝑑𝑑 

设𝑣⃗𝑣 ∈ 𝑈𝑈 ∩ 𝑈𝑈⊥ ⇒ 𝑣⃗𝑣 ⋅ 𝑣⃗𝑣 = 0 ⇒ 𝑣⃗𝑣 = 0�⃗     �命题 1.1� 

⇒ 𝑉𝑉 = 𝑈𝑈⊕𝑈𝑈⊥ 

𝑈𝑈 + 𝑈𝑈⊥ = 𝑈𝑈⊕𝑈𝑈⊥, dim(𝑈𝑈⊕𝑈𝑈⊥) = dim𝑈𝑈 + dim𝑈𝑈⊥ = 𝑑𝑑 + 𝑛𝑛 − 𝑑𝑑 = 𝑛𝑛 

(𝑖𝑖𝑖𝑖𝑖𝑖)设dim𝑈𝑈 = 𝑑𝑑,由(𝑖𝑖𝑖𝑖), dim𝑈𝑈⊥ = 𝑛𝑛 − 𝑑𝑑 

再用(𝑖𝑖𝑖𝑖), dim(𝑈𝑈⊥)⊥ = 𝑑𝑑 

可用定义验证 𝑈𝑈 ⊂ (𝑈𝑈⊥)⊥,于是𝑈𝑈 = (𝑈𝑈⊥)⊥     ∎ 
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【例 1.7.1】求正交补例 

设𝑉𝑉 = ℝ4是标准欧氏空间 

设𝑢𝑢1����⃗ = �

1
0
1
0

� ,𝑢𝑢2����⃗ = �

0
−1
1
−1

� ,𝑢𝑢3����⃗ = �

1
1
1
1

� 

求ℝ4的一组单位正交基 𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ , 𝑒𝑒4���⃗  

使得⟨𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ⟩ = ⟨𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ,𝑢𝑢3����⃗ ⟩ 

解:由前例 

𝑒𝑒1���⃗ =
1
√2

�

1
0
1
0

� , 𝑒𝑒2���⃗ =
1
√10

�

−1
−2
1
−2

� , 𝑒𝑒3���⃗ =
1
√10

�

−2
1
2
1

� 

下面计算𝑤𝑤��⃗ ∈ ⟨𝑢𝑢1����⃗ ,𝑢𝑢2����⃗  ,𝑢𝑢3����⃗ ⟩�������
𝑈𝑈

⊥ ∖ �0�⃗ � 

𝑤𝑤��⃗ ∈ 𝑈𝑈⊥ ⇔ 𝑤𝑤��⃗ ⋅ 𝑢𝑢1����⃗ = 𝑤𝑤��⃗ ⋅ 𝑢𝑢2����⃗ = 𝑤𝑤��⃗ ⋅ 𝑢𝑢3����⃗ = 0 

设𝑤𝑤��⃗ = �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� ,则�
1 0 1 0
0 −1 1 −1
1 1 1 1

��

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� = �
0
0
0
� 

⇒ 𝑤𝑤��⃗ ∈ ��

0
1
0
−1

�� ,𝑈𝑈⊥ = ⟨𝑤𝑤��⃗ ⟩, 𝑒𝑒4���⃗ =
𝑤𝑤��⃗

|𝑤𝑤��⃗ | =
1
√2

�

0
1
0
−1

� 

 

【推论 1.2】正交基扩充定理 

设𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ ∈ 𝑉𝑉两两正交,则∃𝑣𝑣𝑠𝑠+1��������⃗ , … ,𝑣𝑣𝑛𝑛����⃗ ∈ 𝑉𝑉 

使得𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ ,𝑣𝑣𝑠𝑠+1��������⃗ , … , 𝑣𝑣𝑛𝑛����⃗是𝑉𝑉的一组基且两两正交 

证:设𝑈𝑈 = ⟨𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ ⟩ ,由命题 1.3 后的例子可知 

dim𝑈𝑈 = 𝑠𝑠,由命题 1.5(𝑖𝑖𝑖𝑖), dim𝑈𝑈⊥ = 𝑛𝑛 − 𝑠𝑠 

由定理 1.2  𝑈𝑈⊥有一组基 𝑣𝑣𝑠𝑠+1��������⃗ , … ,𝑣𝑣𝑛𝑛����⃗两两正交 
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由命题 1.5(𝑖𝑖𝑖𝑖)  𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ ,𝑣𝑣𝑠𝑠+1��������⃗ , … , 𝑣𝑣𝑛𝑛����⃗是𝑉𝑉的一组基 

且𝑣𝑣𝚤𝚤���⃗ ⊥ 𝑣𝑣𝚥𝚥���⃗   , 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛}, 𝑖𝑖 ≠ 𝑗𝑗       ∎ 

 

【例 1.7.2】求单位正交基例 

设𝑊𝑊是 �𝑥𝑥1 + 𝑥𝑥2 − 𝑥𝑥3 = 0
2𝑥𝑥1 + 3𝑥𝑥3 = 0 在ℝ3中的解空间 

求𝑊𝑊⊥的一组单位正交基  �ℝ3是标准欧氏空间� 

解: �1 1 −1
2 0 3 ����������

𝐴𝐴

�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = �0

0� 

𝑊𝑊⊥ = �𝜀𝜀1���⃗ = �
1
1
−1

� , 𝜀𝜀2���⃗ = �
2
0
3
�� 

𝑒𝑒1���⃗ =
𝜀𝜀1���⃗

|𝜀𝜀1���⃗ | =
1
√3

�
1
1
−1

� 

𝑒𝑒2���⃗
′ = 𝜀𝜀2���⃗ − (𝜀𝜀2���⃗ ⋅ 𝑒𝑒1���⃗ )𝑒𝑒1���⃗ = �

7/3
1/3
8/3

� 

𝑒𝑒2���⃗ =
1

√114
�

7
1
8
� 
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§2 正规算子与正规矩阵 

§2.1 伴随算子 

【定义 2.1.1】伴随算子 

设𝑉𝑉是𝑛𝑛维标准欧氏空间,𝒜𝒜 ∈ ℒ(𝑉𝑉),设𝒜𝒜∗ ∈ ℒ(𝑉𝑉) 

使得∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,𝒜𝒜(𝑥⃗𝑥) ⋅ 𝑦⃗𝑦 = 𝑥⃗𝑥 ⋅ 𝒜𝒜∗(𝑦⃗𝑦)对称 

则称𝒜𝒜∗是𝒜𝒜的伴随算子 

 

【例 2.1.1】伴随算子的来历 

𝜑𝜑:𝑉𝑉 → 𝑉𝑉∗, 𝑣⃗𝑣 ↦ 𝐿𝐿𝑣𝑣�⃗  

𝐿𝐿𝑣𝑣�⃗ :𝑉𝑉 → ℝ, 𝑥⃗𝑥 ↦ 𝑣⃗𝑣 ⋅ 𝑥⃗𝑥 

由内积的双线性性可知𝐿𝐿𝑣𝑣�⃗ ∈ 𝑉𝑉∗且𝜑𝜑是线性映射  

若𝜑𝜑(𝑣⃗𝑣) = 𝑂𝑂∗,𝐿𝐿𝑣𝑣�⃗ (𝑢𝑢�⃗ ) = 0 ⇔ ∀𝑢𝑢�⃗ ∈ 𝑉𝑉,𝐿𝐿𝑣𝑣�⃗ (𝑢𝑢�⃗ ) = 𝑣⃗𝑣 ⋅ 𝑢𝑢�⃗ = 0 

∴ 𝑣⃗𝑣 = 0�⃗ ⇔ ker𝜑𝜑 = �0�⃗ � ⇔ 𝜑𝜑是线性同构 

𝒜𝒜:𝑉𝑉 → 𝑉𝑉   𝒜̂𝒜:𝑉𝑉∗ → 𝑉𝑉∗是𝒜𝒜的对偶算子 

则𝒜𝒜∗ = 𝜑𝜑−1 ∘ 𝒜̂𝒜 ∘ 𝜑𝜑 

 

【定理 2.1】伴随算子的唯一性及其矩阵 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),则 

(𝑖𝑖)𝒜𝒜的伴随算子存在且唯一 

(𝑖𝑖𝑖𝑖)设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的一组单位正交基,且𝒜𝒜在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵为𝐴𝐴 

则𝒜𝒜的伴随算子在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵为𝐴𝐴𝑡𝑡 

证:设𝒜𝒜∗ ∈ ℒ(𝑉𝑉),由公式�𝒜𝒜∗(𝑒𝑒1���⃗ ), … ,𝒜𝒜∗(𝑒𝑒𝑛𝑛����⃗ )� = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴𝑡𝑡确定 

𝑉𝑉 𝑉𝑉 

𝑉𝑉∗ 𝑉𝑉∗ 

𝒜𝒜 

𝒜𝒜∗ 

𝜑𝜑 𝜑𝜑−1 
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则𝒜𝒜∗(𝑒𝑒𝚤𝚤��⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴𝑡𝑡(𝚤𝚤)��������⃗ = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )�𝐴𝐴𝚤𝚤���⃗ �
𝑡𝑡
 

𝒜𝒜∗(𝑒𝑒𝚤𝚤��⃗ ) ⋅ 𝑒𝑒𝚥𝚥��⃗ = �(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )�𝐴𝐴𝚤𝚤���⃗ �
𝑡𝑡
� ⋅ 𝑒𝑒𝚥𝚥��⃗  

= 𝐴𝐴𝚤𝚤���⃗ ⋅ �0 ⋯ 0 1�第𝑗𝑗个� 0 ⋯ 0�
𝑡𝑡

= 𝑎𝑎𝑖𝑖𝑖𝑖       [∗] 

同理,𝑒𝑒𝚤𝚤��⃗ ⋅ 𝒜𝒜�𝑒𝑒𝚥𝚥��⃗ � = �0 ⋯ 0 1[第𝑖𝑖个] 0 ⋯ 0�𝐴𝐴(𝚥𝚥)�������⃗ = 𝑎𝑎𝑖𝑖𝑖𝑖     [∗∗] 

由[∗], [∗∗]得到 𝒜𝒜∗(𝑒𝑒𝚤𝚤��⃗ ) ⋅ 𝑒𝑒𝚥𝚥��⃗ = 𝑒𝑒𝚤𝚤��⃗ ⋅ 𝒜𝒜�𝑒𝑒𝚥𝚥��⃗ � = 𝑎𝑎𝑖𝑖𝑖𝑖 

设𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ , 𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ + ⋯+ 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛����⃗  

𝒜𝒜∗(𝑥⃗𝑥) ⋅ 𝑦⃗𝑦 = 𝒜𝒜∗ ��𝑥𝑥𝑖𝑖𝑒𝑒𝚤𝚤��⃗
𝑛𝑛

𝑖𝑖=1

� ⋅ 𝑦⃗𝑦 = �𝑥𝑥𝑖𝑖(𝒜𝒜∗(𝑒𝑒𝚤𝚤��⃗ ) ⋅ 𝑦⃗𝑦)
𝑛𝑛

𝑖𝑖=1

 

= �𝑥𝑥𝑖𝑖 �𝒜𝒜∗(𝑒𝑒𝚤𝚤��⃗ ) ⋅ ��𝑦𝑦𝑗𝑗𝑒𝑒𝚥𝚥��⃗
𝑛𝑛

𝑗𝑗=1

��
𝑛𝑛

𝑖𝑖=1

= ��𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖�𝒜𝒜∗(𝑒𝑒𝚤𝚤��⃗ ) ⋅ 𝑒𝑒𝚥𝚥��⃗ �
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

= ��𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

, 同理, 𝑥⃗𝑥 ⋅ 𝒜𝒜(𝑦⃗𝑦) = ��𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

      

于是 𝒜𝒜∗(𝑥⃗𝑥) ⋅ 𝑦⃗𝑦 = 𝑥⃗𝑥 ⋅ 𝒜𝒜(𝑦⃗𝑦), 𝒜𝒜∗的存在性和(𝑖𝑖)得证 

唯一性:设ℬ∗ ∈ ℒ(𝑉𝑉)是𝒜𝒜的另一个伴随算子,则 

ℬ∗(𝑒𝑒𝚤𝚤��⃗ ) ⋅ 𝑒𝑒𝚥𝚥��⃗ = 𝑒𝑒𝚤𝚤��⃗ ⋅ 𝒜𝒜�𝑒𝑒𝚥𝚥��⃗ � = 𝑎𝑎𝑖𝑖𝑖𝑖      [∗∗] 

由命题 1.3(𝑖𝑖),ℬ∗(𝑒𝑒𝚤𝚤��⃗ )在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的第𝑗𝑗个坐标是𝑎𝑎𝑖𝑖𝑖𝑖 

于是ℬ∗在𝑒𝑒1���⃗  , . . . , 𝑒𝑒𝑛𝑛����⃗下的矩阵也是𝐴𝐴𝑡𝑡∎ 

 

【定义 2.1.2】正规算子 正规矩阵 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),𝒜𝒜∗是𝒜𝒜伴随算子，如果𝒜𝒜 ∘𝒜𝒜∗ = 𝒜𝒜∗ ∘ 𝒜𝒜 

则称𝒜𝒜是正规(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)算子 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ),如果𝐴𝐴𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡𝐴𝐴,则称𝐴𝐴是正规矩阵 

注：设𝒜𝒜 ∈ ℒ(𝑉𝑉),𝒜𝒜在𝑉𝑉的某组正交基下的矩阵是𝐴𝐴 
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则𝐴𝐴正规⇔𝒜𝒜正规 

 

【例 2.1.2】正规的三个重要子类 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ),如果𝐴𝐴对称或斜对称或正交,则𝐴𝐴是正规的 

证:对称 ⇒ 𝐴𝐴 = 𝐴𝐴𝑡𝑡 ⇒ 𝐴𝐴𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡𝐴𝐴 

斜对称 ⇒ 𝐴𝐴 = −𝐴𝐴𝑡𝑡 ⇒ 𝐴𝐴𝐴𝐴𝑡𝑡 = −𝐴𝐴2 = 𝐴𝐴𝑡𝑡𝐴𝐴 

正交 ⇒ 𝐴𝐴𝑡𝑡 = 𝐴𝐴−1 ⇒ 𝐴𝐴𝐴𝐴𝑡𝑡 = 𝐸𝐸 = 𝐴𝐴𝑡𝑡𝐴𝐴      ∎ 

 

【引理 2.1】hand waiving 

设𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛, tr𝐴𝐴𝐴𝐴𝑡𝑡 = 0 ⇒ 𝐴𝐴 = 𝑂𝑂𝑚𝑚×𝑛𝑛 

证:第九周习题五 

 

【引理 2.2】柯 P64 定理 7 

设𝑊𝑊是 ℝ上的𝑛𝑛维线性空间,设𝒜𝒜 ∈ ℒ(𝑊𝑊) 

则𝑊𝑊有 1 维或 2 维不变子空间 

证:由 ℝ[𝑡𝑡]中因式分解可知,𝜇𝜇𝒜𝒜(𝑡𝑡) = 𝑝𝑝(𝑡𝑡)𝑞𝑞(𝑡𝑡) 

其中𝑝𝑝,𝑞𝑞 ∈ ℝ[𝑡𝑡], 0 < deg𝑝𝑝 ≤ 2 

∵ deg𝑞𝑞 < deg𝜇𝜇𝒜𝒜    ∴ ∃𝑥⃗𝑥 ∈ 𝑊𝑊 使得𝑞𝑞(𝒜𝒜)(𝑥⃗𝑥) ≠ 0 

令𝑦⃗𝑦 = 𝑞𝑞(𝒜𝒜)(𝑥⃗𝑥) ≠ 0,设𝑈𝑈 = ℝ[𝒜𝒜] ⋅ 𝑦⃗𝑦 

𝑝𝑝(𝒜𝒜)(𝑦⃗𝑦) = 𝑝𝑝(𝒜𝒜)𝑞𝑞(𝒜𝒜)𝑥⃗𝑥 = 𝑝𝑝𝑝𝑝(𝒜𝒜)𝑥⃗𝑥 = 𝜇𝜇𝒜𝒜(𝑥⃗𝑥) = 0 ⇒ 𝜇𝜇𝒜𝒜𝑦𝑦��⃗
│𝑝𝑝 

⇒ deg𝜇𝜇𝒜𝒜,𝑦𝑦�⃗ ≤ 2 ⇒ 0 < dim𝑈𝑈 ≤ 2  �第二章命题 5.4(𝑖𝑖𝑖𝑖)� 

又因为 ℝ[𝒜𝒜] ⋅ 𝑦⃗𝑦是𝒜𝒜−不变的,所以引理成立           ∎ 
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§2.2 正规矩阵的标准型 

【引理 2.3】上三角分块正规矩阵对角 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)正规 

𝐴𝐴可表为�𝐴𝐴1 𝐴𝐴2
𝑂𝑂 𝐴𝐴3

 �的形式,𝐴𝐴1 ∈ 𝑀𝑀𝑑𝑑(ℝ), 0 < 𝑑𝑑 < 𝑛𝑛 

则𝐴𝐴2 = 𝑂𝑂𝑑𝑑×(𝑛𝑛−𝑑𝑑) 

证:正规 ⇒ 𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑡𝑡 ⇒ �
𝐴𝐴1𝑡𝑡 𝑂𝑂
𝐴𝐴2𝑡𝑡 𝐴𝐴3𝑡𝑡

� �𝐴𝐴1 𝐴𝐴2
𝑂𝑂 𝐴𝐴3

 � = �𝐴𝐴1 𝐴𝐴2
𝑂𝑂 𝐴𝐴3

 ��
𝐴𝐴1𝑡𝑡 𝑂𝑂
𝐴𝐴2𝑡𝑡 𝐴𝐴3𝑡𝑡

� 

由此 𝐴𝐴1𝑡𝑡𝐴𝐴1 = 𝐴𝐴1𝐴𝐴1𝑡𝑡 + 𝐴𝐴2𝐴𝐴2𝑡𝑡  

tr(𝐴𝐴1𝑡𝑡𝐴𝐴1) = tr(𝐴𝐴1𝐴𝐴1𝑡𝑡 + 𝐴𝐴2𝐴𝐴2𝑡𝑡 ) = tr(𝐴𝐴1𝐴𝐴1𝑡𝑡 ) + tr(𝐴𝐴2𝐴𝐴2𝑡𝑡 ) 

⇒ tr(𝐴𝐴2𝐴𝐴2𝑡𝑡 ) = 0 

由引理 2.1 𝐴𝐴2 = 𝑂𝑂𝑑𝑑×(𝑛𝑛−𝑑𝑑)          ∎ 

 

【引理 2.4】正交补保持不变子空间 

设𝒜𝒜 ∈ ℒ(𝑉𝑉)正规,如果𝑈𝑈 ⊆ 𝑉𝑉是𝒜𝒜−不变子空间 

则𝑈𝑈⊥也是𝒜𝒜−不变子空间 

证:设𝑒𝑒1���⃗ , … , 𝑒𝑒𝑑𝑑����⃗是𝑈𝑈的一组单位正交基 

由命题 1.5(𝑖𝑖𝑖𝑖) dim𝑈𝑈⊥ = 𝑛𝑛 − 𝑑𝑑 

设𝑈𝑈⊥的一组单位正交基是𝑒𝑒𝑑𝑑+1 ���������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ,𝑛𝑛 = dim𝑉𝑉 

则𝑒𝑒1���⃗ , … 𝑒𝑒𝑑𝑑����⃗ , 𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的单位正交基 

设𝐴𝐴是𝒜𝒜在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵,则 

𝐴𝐴 = �𝐴𝐴1 𝐴𝐴2
𝑂𝑂 𝐴𝐴3

� ,𝐴𝐴1 ∈ 𝑀𝑀𝑑𝑑(ℝ)    �第二章定理 3.1� 

由定理 2.3   𝐴𝐴是正规矩阵 ⇒ 𝐴𝐴2 = 𝑂𝑂 

由第二章定理 3.2 及其证明,𝑈𝑈⊥是𝒜𝒜−不变的      ∎ 
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【引理 2.5】正规算子正交补直和二维分解 

设𝒜𝒜 ∈ ℒ(𝑉𝑉)正规,则存在𝒜𝒜−不可分子空间𝑈𝑈1, … ,𝑈𝑈𝑙𝑙 

使得(𝑖𝑖)𝑉𝑉 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑙𝑙 

(𝑖𝑖𝑖𝑖)∀𝑖𝑖, 𝑗𝑗 ∈ {1, … , 𝑙𝑙}, 𝑖𝑖 ≠ 𝑗𝑗, ∀𝑢𝑢𝚤𝚤���⃗ ∈ 𝑈𝑈𝑖𝑖,𝑢𝑢𝚥𝚥���⃗ ∈ 𝑈𝑈𝑗𝑗 , 𝑢𝑢𝚤𝚤���⃗ ⊥ 𝑢𝑢𝚥𝚥���⃗  

此性质记为𝑈𝑈𝑖𝑖 ⊥ 𝑈𝑈𝑗𝑗 

(𝑖𝑖𝑖𝑖𝑖𝑖)0 < dim𝑈𝑈𝑖𝑖 ≤ 2, 𝑖𝑖 = 1, … , 𝑙𝑙 

证:设𝑛𝑛 = dim𝑉𝑉 ,对𝑛𝑛归纳, 𝑛𝑛 = 1 时显然 

当𝑛𝑛 = 2 时,如果𝑉𝑉是𝒜𝒜−不可分的,则引理成立 

否则,存在 1 维𝒜𝒜−子空间𝑈𝑈,由引理 2.4,𝑈𝑈⊥也是𝒜𝒜−子空间 

由𝑉𝑉 = 𝑈𝑈⊕𝑈𝑈⊥   引理成立      

设dim𝑉𝑉 < 𝑛𝑛 时引理成立,考虑dim𝑉𝑉 = 𝑛𝑛且𝑛𝑛 ≥ 3 的情形 

由引理 2.2,𝑉𝑉有一个𝒜𝒜不变子空间𝑈𝑈,维数为 1 或 2 

由引理 3.4,𝑈𝑈⊥是𝒜𝒜−不变的 

由命题 1.5(𝑖𝑖𝑖𝑖),𝑉𝑉 = 𝑈𝑈⊕𝑈𝑈⊥ 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑑𝑑����⃗是𝑈𝑈的单位正交基�𝑑𝑑 = 1 或 2� 

𝑒𝑒𝑑𝑑+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗是𝑈𝑈⊥的单位正交基 

则𝒜𝒜在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵是𝐴𝐴 = �𝐴𝐴1 𝑂𝑂
𝑂𝑂 𝐴𝐴2

� ,其中𝐴𝐴1 ∈ 𝑀𝑀𝑑𝑑(ℝ) 

∵ 𝐴𝐴𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡𝐴𝐴,所以𝐴𝐴𝑖𝑖𝑡𝑡𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑡, 𝑖𝑖 = 1,2 

⇒ 𝒜𝒜│𝑈𝑈和𝒜𝒜│𝑈𝑈⊥都是正规的 

对𝒜𝒜│𝑈𝑈 ,𝑈𝑈用𝑛𝑛 = 1 或𝑛𝑛 = 2 的结论,对𝒜𝒜│𝑈𝑈⊥ ,𝑈𝑈⊥用归纳假设即可       ∎ 

 

【例 2.2.1】二维正规矩阵的形式 

𝑛𝑛 = 1,𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)正规,𝐴𝐴 = (𝛼𝛼)正规 

𝑛𝑛 = 2,𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)正规 ,考虑dim𝑉𝑉 = 2,𝒜𝒜 ∈ ℒ(𝑉𝑉),且𝑉𝑉是不可分的 
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设𝑒𝑒1���⃗ , 𝑒𝑒2���⃗是𝑉𝑉的一组单位正交基 

则∃𝛼𝛼,𝛽𝛽 ∈ ℝ,𝛽𝛽 ≠ 0 使得𝒜𝒜在𝑒𝑒1���⃗ , 𝑒𝑒2���⃗下的矩阵为�𝛼𝛼 −𝛽𝛽
𝛽𝛽 𝛼𝛼 � 

证:设𝒜𝒜在𝑒𝑒1���⃗ ,𝑒𝑒2���⃗下的矩阵是𝐴𝐴 = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� ,𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ ℝ 

由𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑡𝑡 ,得到 �
𝑎𝑎2 + 𝑏𝑏2 = 𝑎𝑎2 + 𝑐𝑐2
𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏
𝑏𝑏2 + 𝑑𝑑2 = 𝑐𝑐2 + 𝑑𝑑2

 

由第一式, 𝑐𝑐2 = 𝑏𝑏2 ⇒ 𝑐𝑐 = 𝑏𝑏或𝑐𝑐 = −𝑏𝑏 

情形 1   𝑐𝑐 = 𝑏𝑏 

𝐴𝐴 = �𝑎𝑎 𝑏𝑏
𝑏𝑏 𝑑𝑑� ,𝒳𝒳𝐴𝐴 = 𝑡𝑡2 + (𝑎𝑎 + 𝑑𝑑)𝑡𝑡 + 𝑎𝑎𝑎𝑎 − 𝑏𝑏2 

Δ = (𝑎𝑎 − 𝑑𝑑)2 + 4𝑏𝑏2 ≥ 0 ⇒ 𝒳𝒳𝐴𝐴有实根 ⇒ 𝒜𝒜有一维不变子空间 

由命题 1.5 和引理 2.4,𝑉𝑉是𝐴𝐴可分的,矛盾 

情形 2 𝑐𝑐 = −𝑏𝑏且𝑏𝑏 ≠ 0 

由第二式,得到𝑎𝑎 = 𝑑𝑑,令𝑎𝑎 = 𝛼𝛼,𝑏𝑏 = −𝛽𝛽,得𝐴𝐴 = �𝛼𝛼 −𝛽𝛽
𝛽𝛽 𝛼𝛼 � 

可直接验证𝐴𝐴是正规的    ∎ 

 

【定义 2.2.1】2 阶正规块 

设𝛼𝛼,𝛽𝛽 ∈ ℝ,记𝑁𝑁2(𝛼𝛼,𝛽𝛽) = �𝛼𝛼 −𝛽𝛽
𝛽𝛽 𝛼𝛼 � ,称为一个 2 阶正规块 

注:𝑁𝑁2(𝛼𝛼,𝛽𝛽)无实特征根 

 

【定理 2.2】正规算子的规范型 

设𝒜𝒜 ∈ ℒ(𝑉𝑉)正规 

则存在𝑉𝑉的一组单位正交基𝑒𝑒1���⃗ ,𝑒𝑒2���⃗ , … , 𝑒𝑒2𝑠𝑠−1����������⃗ , 𝑒𝑒2𝑠𝑠�����⃗ , 𝑒𝑒2𝑠𝑠+1����������⃗ , … , 𝑒𝑒𝑛𝑛����⃗  

使得𝒜𝒜在该基下的矩阵为diag(𝑁𝑁2(𝛼𝛼1,𝛽𝛽1), … ,𝑁𝑁2(𝛼𝛼𝑠𝑠,𝛽𝛽𝑠𝑠), 𝜆𝜆2𝑠𝑠+1, … , 𝜆𝜆𝑛𝑛) 

证:由引理 2.5 
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𝑉𝑉 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑠𝑠 ⊕𝑈𝑈2𝑠𝑠+1 ⊕⋯⊕𝑈𝑈𝑛𝑛     [∗] 

其中𝑈𝑈1, … ,𝑈𝑈𝑠𝑠是 2 维𝒜𝒜−子空间,𝑈𝑈2𝑠𝑠+1, … ,𝑈𝑈𝑛𝑛是 1 维𝒜𝒜−子空间 

且𝑈𝑈𝑖𝑖 ⊥ 𝑈𝑈𝑗𝑗 , 𝑖𝑖 ≠ 𝑗𝑗, 𝑖𝑖, 𝑗𝑗 ∈ {1, … , 𝑠𝑠, 2𝑠𝑠 + 1, … ,𝑛𝑛} 

设𝑒𝑒2𝚤𝚤−1���������⃗ , 𝑒𝑒2𝚤𝚤�����⃗是𝑈𝑈𝑖𝑖的单位正交基, 𝑖𝑖 = 1, … , 𝑠𝑠 

𝑒𝑒𝚥𝚥��⃗是𝑈𝑈𝑗𝑗的单位正交基, 𝑗𝑗 = 2𝑠𝑠 + 1, … ,𝑛𝑛 

由上述例子𝒜𝒜│𝑈𝑈𝑖𝑖上的矩阵为𝑁𝑁2(𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖),其中𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖 ∈ ℝ,𝛽𝛽𝑖𝑖 ≠ 0 

𝒜𝒜│𝑈𝑈𝑗𝑗上的矩阵为𝜆𝜆𝑗𝑗 ,由[∗]定理成立     ∎ 

 

【定理 2.3】正规矩阵的规范型 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)正规,则𝐴𝐴~o diag(𝑁𝑁2(𝛼𝛼1,𝛽𝛽1), … ,𝑁𝑁2(𝛼𝛼𝑠𝑠,𝛽𝛽𝑠𝑠), 𝜆𝜆2𝑠𝑠+1, … , 𝜆𝜆𝑛𝑛) 

证:设𝐴𝐴是𝒜𝒜在某组单位正交基𝐵𝐵1下的矩阵,则𝒜𝒜正规 

由定理 2.2,𝒜𝒜在某组单位正交基𝐵𝐵2下的矩阵为 

𝐴𝐴′ = diag(𝑁𝑁2(𝛼𝛼1,𝛽𝛽1), … ,𝑁𝑁2(𝛼𝛼𝑠𝑠,𝛽𝛽𝑠𝑠), 𝜆𝜆2𝑠𝑠+1, … , 𝜆𝜆𝑛𝑛) 

则𝐴𝐴~𝑜𝑜𝐴𝐴′         ∎ 
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§3 特殊正规矩阵 

§3.1 实对称矩阵 

一阶 (𝛼𝛼)       二阶 𝑁𝑁2(𝛼𝛼,𝛽𝛽) = �𝛼𝛼 −𝛽𝛽
𝛽𝛽 𝛼𝛼 � ,𝛽𝛽 ≠ 0 

𝐴𝐴正规 ⇒ 𝐴𝐴~𝑜𝑜𝐵𝐵 ≔ diag(𝑁𝑁2(𝛼𝛼1,𝛽𝛽1), … ,𝑁𝑁2(𝛼𝛼𝑠𝑠,𝛽𝛽𝑠𝑠), 𝜆𝜆2𝑠𝑠+1, … , 𝜆𝜆𝑛𝑛)  

 

【定理 3.1】实对称矩阵的正交规范型 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称,则𝐴𝐴~𝑜𝑜 diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) 

其中𝛼𝛼1, … ,𝛼𝛼𝑛𝑛是𝐴𝐴的特征根,特别地,实对称方阵的特征根都是实数 

证:因为𝐴𝐴对称,所以𝐴𝐴正规 

由定理 2.2,𝐴𝐴~𝑜𝑜𝐵𝐵,即∃𝑃𝑃 ∈ 𝑂𝑂𝑛𝑛(ℝ)使得𝐵𝐵 = 𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 = 𝑃𝑃−1𝐴𝐴𝐴𝐴 

⇒ 𝐵𝐵~𝑐𝑐𝐴𝐴 ⇒ 𝐵𝐵对称 ⇒ 𝑠𝑠 = 0 

于是𝐵𝐵 = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛)且𝜆𝜆1, … , 𝜆𝜆𝑛𝑛是𝐴𝐴的特征根,且𝜆𝜆1, … , 𝜆𝜆𝑛𝑛 ∈ ℝ 

𝐵𝐵~𝑠𝑠𝐴𝐴 ⇒ 𝐴𝐴的特征根都是实数    ∎ 

 

【推论 3.1】正定性与特征根正负的联系 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称, (𝑖𝑖)𝐴𝐴正定⇔ 𝐴𝐴的特征根都为正实数 

(𝑖𝑖𝑖𝑖)𝐴𝐴半正定⇔ 𝐴𝐴的特征根都是非负实数 

证: (𝑖𝑖) ∵ 𝐴𝐴对称  ∴ 𝐴𝐴~𝑜𝑜 diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) 

于是diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)正定,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛为𝐴𝐴的特征根 

由此可知,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ ℝ+ �惯性定理或𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆判别法� 

(𝑖𝑖𝑖𝑖)类似      ∎ 
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§3.2 斜对称矩阵 

𝑁𝑁2(𝛼𝛼,𝛽𝛽)斜对称⇔ 𝛼𝛼 = 0 

 

【定理 3.2】斜对称矩阵的正交规范型 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)斜对称,则𝐴𝐴~𝑜𝑜 diag(𝑁𝑁2(0,𝛽𝛽1), … ,𝑁𝑁2(0,𝛽𝛽𝑆𝑆), 0, … ,0) 

其中𝛽𝛽1, … ,𝛽𝛽𝑠𝑠 ∈ ℝ ∖ {0} 

特别地,𝐴𝐴的特征根都是纯虚数或 0 

证:类似定理 3.1 证明,𝐴𝐴~𝑜𝑜𝐵𝐵 ⇒ 𝐵𝐵斜对称 ⇒ 𝛼𝛼1 = ⋯ = 𝛼𝛼𝑠𝑠 = 0 

𝐴𝐴~𝑜𝑜𝐵𝐵 ⇒ 𝐴𝐴~𝑠𝑠𝐵𝐵 ⇒ 𝒳𝒳𝐴𝐴 = 𝒳𝒳𝐵𝐵 = |𝑡𝑡𝑡𝑡 − 𝐵𝐵| = 𝒳𝒳𝑁𝑁2(0,𝛽𝛽1)⋯𝒳𝒳𝑁𝑁2(0,𝛽𝛽𝑠𝑠)𝑡𝑡𝑛𝑛−2𝑠𝑠 

= (𝑡𝑡 + 𝛽𝛽12)⋯ (𝑡𝑡 + 𝛽𝛽𝑠𝑠2)𝑡𝑡𝑛𝑛−2𝑠𝑠  

由此可知𝐴𝐴的特征根 是 ± 𝛽𝛽1√−1, … , ±𝛽𝛽𝑠𝑠√−1 和 0  ∎ 
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§3.3 正交矩阵 

一阶正交矩阵(1), (−1) 

设𝑁𝑁2(𝛼𝛼,𝛽𝛽)是正交的,即 � 𝛼𝛼 𝛽𝛽
−𝛽𝛽 𝛼𝛼��

𝛼𝛼 −𝛽𝛽
𝛽𝛽 𝛼𝛼 � = �1 0

0 1� 

⇒ 𝛼𝛼2 + 𝛽𝛽2 = 1 且𝛽𝛽 ≠ 0 

令𝛽𝛽 = sin𝜃𝜃 ,𝜃𝜃 ≠ 𝑘𝑘𝑘𝑘, 𝑘𝑘 ∈ ℤ 则可取𝛼𝛼 = cos𝜃𝜃 

𝑁𝑁2(𝛼𝛼,𝛽𝛽) = �cos𝜃𝜃 − sin𝜃𝜃
sin 𝜃𝜃 cos𝜃𝜃 �   

 

【定理 3.3】正交矩阵的正交规范型 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)正交 

则𝐴𝐴~𝑜𝑜 diag(𝑁𝑁2(cos𝜃𝜃1 , sin𝜃𝜃1), … ,𝑁𝑁2(cos𝜃𝜃𝑠𝑠 , sin 𝜃𝜃𝑠𝑠),𝐸𝐸𝑘𝑘 ,−𝐸𝐸𝑙𝑙) 

其中𝜃𝜃𝑖𝑖 ≠ 𝑘𝑘𝑘𝑘,𝑘𝑘 + 𝑙𝑙 = 𝑛𝑛 − 2𝑠𝑠 

证:由定理 2.2,𝐴𝐴~𝑜𝑜𝐵𝐵,即∃𝑃𝑃 ∈ 𝑂𝑂𝑛𝑛(ℝ)使得𝐵𝐵 = 𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 

由命题 1.4 ⇒ 𝐵𝐵是正交的 ⇒ 𝑁𝑁2(𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖)和�𝜆𝜆𝑗𝑗�都正交 

于是𝑁𝑁2(𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖) = 𝑁𝑁2(cos𝜃𝜃𝑖𝑖 , sin𝜃𝜃𝑖𝑖),𝜆𝜆𝑗𝑗 = ±1 

调整下标后𝐵𝐵 =  diag(𝑁𝑁2(cos𝜃𝜃1 , sin𝜃𝜃1), … ,𝑁𝑁2(cos𝜃𝜃𝑠𝑠 , sin 𝜃𝜃𝑠𝑠),𝐸𝐸𝑘𝑘 ,−𝐸𝐸𝑙𝑙)∎ 

 

【推论 3.2】复正交矩阵的特征根模长为 1 

正交矩阵在 ℂ的特征根的模长都是 1 

证:由定理 3.3 只要证𝑁𝑁2(cos𝜃𝜃 , sin𝜃𝜃),𝜃𝜃 ≠ 𝑘𝑘𝑘𝑘特征根的模长为 1 即可 

𝒳𝒳𝑁𝑁2(cos𝜃𝜃,sin𝜃𝜃) = �𝑡𝑡 − cos𝜃𝜃 sin 𝜃𝜃
− sin𝜃𝜃 𝑡𝑡 − cos𝜃𝜃� = (𝑡𝑡 − cos𝜃𝜃)2 + sin2 𝜃𝜃 

于是𝑁𝑁2(cos𝜃𝜃 , sin𝜃𝜃)的特征根为 cos𝜃𝜃 ± sin𝜃𝜃 √−1 

∴特征根的模长为 cos2 𝜃𝜃 + sin2 𝜃𝜃 = 1       ∎ 
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   §4 特殊正规算子 

§4.1 （斜）对称算子 

【定义 4.1.1】（斜）对称算子 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),如果𝒜𝒜∗ = 𝒜𝒜�或𝒜𝒜∗ = −𝒜𝒜� 

则称𝒜𝒜为对称算子�斜对称算子�  

 

【命题 4.1】（斜）对称算子的判定 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),则𝒜𝒜是对称的�斜对称的� 

⇔𝒜𝒜在𝑉𝑉的任一单位正交基下的矩阵是对称�斜对称�的 

证:只考虑对称情形,斜对称类似 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的一组单位正交基 

𝒜𝒜在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵为𝐴𝐴 

则𝒜𝒜∗在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵为𝐴𝐴𝑡𝑡   �定理 2.1� 

𝒜𝒜对称⇔𝒜𝒜∗ = 𝒜𝒜 ⇔ 𝐴𝐴𝑡𝑡 = 𝐴𝐴 ⇔ 𝐴𝐴对称     ∎ 

 

【命题 4.2】（斜）对称算子的特征根和规范型 

设𝒜𝒜 ∈ ℒ(𝑉𝑉)是对称�斜对称�的 

(𝑖𝑖)𝒜𝒜的所有特征根都是实数�纯虚数或 0� 

(𝑖𝑖𝑖𝑖)在𝑉𝑉某组单位正交基下,𝒜𝒜的矩阵为diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) , 𝜆𝜆1, … , 𝜆𝜆𝑛𝑛 ∈ ℝ 

�diag�� 0 −𝛽𝛽1
𝛽𝛽1 0 � , … , � 0 −𝛽𝛽𝑠𝑠

𝛽𝛽𝑠𝑠 0 � , 0, … ,0�  ,𝛽𝛽1, … ,𝛽𝛽𝑠𝑠 ∈ ℝ ∖ {0}� 

证:由命题 4.1 和定理 3.1�定理 3.2�直接得出 
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【命题 4.3】对称算子特征子空间互相垂直 

设𝒜𝒜 ∈ ℒ(𝑉𝑉)对称,设𝛼𝛼,𝛽𝛽是𝒜𝒜的两个不同特征根,则𝑉𝑉𝛼𝛼 ⊥ 𝑉𝑉𝛽𝛽 

证:设𝑢𝑢�⃗ ∈ 𝑉𝑉𝛼𝛼 , 𝑣⃗𝑣 ∈ 𝑉𝑉𝛽𝛽,𝒜𝒜(𝑢𝑢�⃗ ) ⋅ 𝑣⃗𝑣 = 𝑢𝑢�⃗ ⋅ 𝒜𝒜(𝑣⃗𝑣) 

∵ 𝒜𝒜(𝑢𝑢�⃗ ) ⋅ 𝑣⃗𝑣 = 𝛼𝛼𝑢𝑢�⃗ ⋅ 𝑣⃗𝑣, 𝑢𝑢�⃗ ⋅ 𝒜𝒜(𝑣⃗𝑣) = 𝛽𝛽𝑢𝑢�⃗ ⋅ 𝑣⃗𝑣 

∴ (𝛼𝛼 − 𝛽𝛽)𝑢𝑢�⃗ ⋅ 𝑣⃗𝑣 = 0 

𝛼𝛼 ≠ 𝛽𝛽 ⇒ 𝑢𝑢�⃗ ⋅ 𝑣⃗𝑣 = 0 ⇒ 𝑢𝑢�⃗ ⊥ 𝑣⃗𝑣 ⇒ 𝑉𝑉𝛼𝛼 ⊥ 𝑉𝑉𝛽𝛽       ∎ 

 

【例 4.3.1】求正交规范型转换矩阵例 

设𝐴𝐴 = �

0 1 1 −1
1 0 −1 1
1 −1 0 1
−1 1 1 0

� ,求正交矩阵𝑇𝑇使得𝑇𝑇𝑡𝑡𝐴𝐴𝐴𝐴是对角阵 

解:𝒳𝒳𝐴𝐴 = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = (𝑡𝑡 − 1)3(𝑡𝑡 + 3),特征根𝜆𝜆1 = 1, 𝜆𝜆2 = −3 

𝑉𝑉𝜆𝜆1是�

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

��

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� = �

0
0
0
0

�的解空间 

𝑉𝑉𝜆𝜆1 = �
1
√2

�

1
1
0
0

� ,
1
√6

�

1
−1
2
0

� ,
1
√12

�

−1
1
1
3

�� 

类似,𝑉𝑉𝜆𝜆2 = �
1
2
�

1
−1
−1
1

�� 

𝑇𝑇 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1
√2

1
√6

−
1
√12

1
2

 

1
√2

−
1
√6

1
√12

−
1
2

0
2
√6

1
√12

−
1
2

0 0
3
√12

1
2 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

,𝑇𝑇𝑡𝑡𝐴𝐴𝐴𝐴 = diag(1,1,1,−3)    
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§4.2正交算子 

【定义 4.2】正交算子 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),如果∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉, 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = 𝒜𝒜(𝑥⃗𝑥) ⋅ 𝒜𝒜(𝑦⃗𝑦) 

则称𝒜𝒜是正交算子�保内算子� 

 

【命题 4.4】正交算子的矩阵和保长性 

设𝒜𝒜 ∈ ℒ(𝑉𝑉),则下列断言等价 

(𝑖𝑖)𝒜𝒜是正交算子 

(𝑖𝑖𝑖𝑖)𝒜𝒜在𝑉𝑉的任一组单位正交基下的矩阵都是正交矩阵 

(𝑖𝑖𝑖𝑖𝑖𝑖)∀𝑥⃗𝑥 ∈ 𝑉𝑉, �|𝑥⃗𝑥|� = �|𝒜𝒜(𝑥⃗𝑥)|�    �保长的� 

证: (𝑖𝑖) ⇒ (𝑖𝑖𝑖𝑖):设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的一组单位正交基 

�𝒜𝒜(𝑒𝑒1���⃗ ), … ,𝒜𝒜(𝑒𝑒𝑛𝑛����⃗ )� = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴 

𝒜𝒜(𝑒𝑒𝚤𝚤��⃗ ) ⋅ 𝒜𝒜�𝑒𝑒𝚥𝚥��⃗ � = �(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴(𝚤𝚤)������⃗ � ⋅ �(𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴(𝚥𝚥)�������⃗ � 

= �𝐴𝐴(𝚤𝚤)������⃗ �
𝑡𝑡
𝐴𝐴(𝚥𝚥)�������⃗ = (𝐴𝐴𝑡𝑡)𝚤𝚤����������⃗ 𝐴𝐴(𝚥𝚥)�������⃗ = 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ {1, . . ,𝑛𝑛} ⇒ 𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐸𝐸 

(𝑖𝑖𝑖𝑖) ⇒ (𝑖𝑖𝑖𝑖𝑖𝑖)设𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗  

�|𝑥⃗𝑥|�2 = 𝑥⃗𝑥 ⋅ 𝑥⃗𝑥 = 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2 

�|𝒜𝒜(𝑥⃗𝑥)|�2 = 𝒜𝒜(𝑥⃗𝑥) ⋅ 𝒜𝒜(𝑥⃗𝑥) = �𝐴𝐴�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
��

𝑡𝑡

𝐴𝐴 �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

= (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴𝑡𝑡𝐴𝐴�
𝐸𝐸
�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2 = �|𝑥⃗𝑥|� 

(𝑖𝑖𝑖𝑖𝑖𝑖) ⇒ (𝑖𝑖):设𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉,∵ �|𝑥⃗𝑥 + 𝑦⃗𝑦|� = �|𝒜𝒜(𝑥⃗𝑥 + 𝑦⃗𝑦)|� 

∴ (𝑥⃗𝑥 + 𝑦⃗𝑦) ⋅ (𝑥⃗𝑥 + 𝑦⃗𝑦) = �𝒜𝒜(𝑥⃗𝑥 + 𝑦⃗𝑦)� ⋅ �𝒜𝒜(𝑥⃗𝑥 + 𝑦⃗𝑦)� 
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∴ �|𝑥⃗𝑥|�2 + 2𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 + �|𝑦⃗𝑦|�2 = �|𝒜𝒜(𝑥⃗𝑥)|�2 + 2𝒜𝒜(𝑥⃗𝑥) ⋅ 𝒜𝒜(𝑦⃗𝑦) + �|𝒜𝒜(𝑦⃗𝑦)|�2 

∵ �|𝑥⃗𝑥|�2 = �|𝒜𝒜(𝑥⃗𝑥)|�2, �|𝑦⃗𝑦|�2 = �|𝒜𝒜(𝑦⃗𝑦)|�2 

∴ 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = 𝒜𝒜(𝑥⃗𝑥) ⋅ 𝒜𝒜(𝑦⃗𝑦)            ∎ 

 

【命题 4.5】正交算子的规范型 

设𝒜𝒜 ∈ ℒ(𝑉𝑉)正交,则𝒜𝒜在𝑉𝑉的某组单位正交基下的矩阵为 

diag(𝑁𝑁2(cos𝜃𝜃1 , sin 𝜃𝜃1), . . ,𝑁𝑁2(cos𝜃𝜃𝑠𝑠 , sin 𝜃𝜃𝑠𝑠),𝐸𝐸𝑘𝑘 ,−𝐸𝐸𝑙𝑙) 

𝜃𝜃𝑖𝑖 ≠ 𝑞𝑞𝑞𝑞,𝑞𝑞 ∈ ℤ     𝒜𝒜的特征根模长为 1 

证:由定理 3.3,命题 4.4(𝑖𝑖𝑖𝑖)直接可得 

 

【例 4.2.1】正交矩阵规范型的应用 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)正交,−1 不是𝐴𝐴的特征根 

证明 det(𝐸𝐸 + 𝐴𝐴) > 0 

证:∃正交矩阵𝑃𝑃使得𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 = 𝐵𝐵且𝑙𝑙 = 0 

𝑃𝑃𝑡𝑡(𝐸𝐸 + 𝐴𝐴)𝑃𝑃 = 𝑃𝑃𝑡𝑡𝑃𝑃 + 𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 = 𝐸𝐸 + 𝐵𝐵 

= diag(𝑁𝑁2(1 + cos𝜃𝜃1 , sin𝜃𝜃1), … ,𝑁𝑁𝑠𝑠(1 + cos𝜃𝜃𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑠𝑠), 2𝐸𝐸𝑛𝑛−2𝑠𝑠) 

于是只需证 �1 + cos𝜃𝜃 − sin𝜃𝜃
sin 𝜃𝜃 1 + cos𝜃𝜃� > 0,其中𝜃𝜃 ≠ 𝑞𝑞𝑞𝑞,𝑞𝑞 ∈ ℤ 

计算即得行列式(1 + cos𝜃𝜃)2 + sin2 𝜃𝜃 > 0      ∎ 
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§5 正交矩阵与实二次型 

【定理 5.1】实二次型的规范型 

设𝑞𝑞:𝑉𝑉 → ℝ是二次型,𝑞𝑞在𝑉𝑉的某组单位正交基下的矩阵为𝐴𝐴 

则存在𝑉𝑉的另一组单位正交基 

使得𝑉𝑉在新的基下的矩阵为diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) ,且𝐴𝐴~𝑜𝑜 diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)  

证:设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的单位正交基, 𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ +⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗  

𝑞𝑞(𝑥⃗𝑥) = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� ,𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称 

由定理 3.3,∃𝑃𝑃 ∈ 𝑂𝑂𝑛𝑛(ℝ),使得𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 = diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) 

令(𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝑃𝑃,由定理 1.3, 𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是单位正交基 

设𝑥⃗𝑥 = 𝑦𝑦1𝜀𝜀1���⃗ + ⋯+ 𝑦𝑦𝑛𝑛𝜀𝜀𝑛𝑛���⃗  

𝑞𝑞(𝑥⃗𝑥) = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = (𝑦𝑦1 ⋯ 𝑦𝑦𝑛𝑛)𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴�

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

= (𝑦𝑦1 ⋯ 𝑦𝑦𝑛𝑛) diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)�
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = 𝛼𝛼1𝑦𝑦12 + ⋯+ 𝛼𝛼𝑛𝑛𝑦𝑦𝑛𝑛2        ∎ 

 

【例 5.1.1】求二次型规范型例 

设ℝ2为标准欧氏空间, 𝑥⃗𝑥 = �
𝑥𝑥1
𝑥𝑥2� , 𝑞𝑞(𝑥⃗𝑥) = 𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥1𝑥𝑥2 

计算ℝ2的一组单位正交基,使得𝑞𝑞(𝑥⃗𝑥)在该基下是规范型 

解:令𝐴𝐴 = �
1

1
2

1
2

1
� ,则𝑞𝑞(𝑥⃗𝑥) = (𝑥𝑥1 𝑥𝑥2)𝐴𝐴�

𝑥𝑥1
𝑥𝑥2 � 

𝒳𝒳𝐴𝐴(𝑡𝑡) = �𝑡𝑡 −
1
2
� �𝑡𝑡 −

3
2
� , 𝜆𝜆1 =

1
2

, 𝜆𝜆2 =
3
2
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𝑉𝑉𝜆𝜆1 = �
1
√2

� 1
−1������
𝑣𝑣1����⃗

� ,𝑉𝑉𝜆𝜆2 = �
1
√2

�1
1������

𝑣𝑣2����⃗

� 

𝑃𝑃 =

⎝

⎜
⎛

1
√2

1
√2

−
1
√2

1
√2⎠

⎟
⎞

,𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 = �𝜆𝜆1 0
0 𝜆𝜆2

� = �

1
2

0

0
3
2

� 

令(𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ ) = (𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ )𝑃𝑃 = �1 0
0 1�𝑃𝑃 = (𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ), 

 𝑥⃗𝑥 = 𝑦𝑦1𝑣𝑣1����⃗ + 𝑦𝑦2𝑣𝑣2����⃗ = (𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ) �
𝑦𝑦1
𝑦𝑦2� = (𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ )𝑃𝑃 �

𝑦𝑦1
𝑦𝑦2� 

𝑞𝑞(𝑥⃗𝑥) = (𝑦𝑦1,𝑦𝑦2)�

1
2

0

0
3
2

 
��

𝑦𝑦1
𝑦𝑦2� =

1
2
𝑦𝑦12 +

3
2
𝑦𝑦22          

 

【定义 5.1.1】完全正交等方组 

设𝑊𝑊是域𝐹𝐹上的线性空间,𝜎𝜎1, … ,𝜎𝜎𝑚𝑚 ∈ ℒ(𝑊𝑊)如果 

(𝑖𝑖)∀𝑖𝑖, 𝑗𝑗 ∈ {𝜎𝜎1, … ,𝜎𝜎𝑚𝑚},𝜎𝜎𝑖𝑖 ∘ 𝜎𝜎𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖 

(𝑖𝑖𝑖𝑖)𝜎𝜎1 + ⋯+ 𝜎𝜎𝑚𝑚 = ℰ 

则称𝜎𝜎1, … ,𝜎𝜎𝑚𝑚是完全正交等方组 

 

【例 5.1.2】平行投影完全正交等方组 

设𝑊𝑊1, … ,𝑊𝑊𝑚𝑚 ⊂ 𝑊𝑊是子空间,𝑊𝑊 = 𝑊𝑊1⊕⋯⊕𝑊𝑊𝑚𝑚 

则∀𝑥⃗𝑥 ∈ 𝑊𝑊,∃!𝑥𝑥1���⃗ ∈ 𝑊𝑊1, … ,𝑥𝑥𝑚𝑚�����⃗ ∈ 𝑊𝑊𝑚𝑚使得𝑥⃗𝑥 = 𝑥𝑥1���⃗ + ⋯+ 𝑥𝑥𝑚𝑚�����⃗  

令𝜋𝜋𝑖𝑖:𝑊𝑊 →𝑊𝑊𝑖𝑖 , 𝑥⃗𝑥 ↦ 𝑥𝑥𝚤𝚤���⃗ ,则𝜋𝜋1, … ,𝜋𝜋𝑚𝑚是完全正交等方组 

𝑊𝑊 = im𝜋𝜋1 ⊕⋯⊕ im𝜋𝜋𝑚𝑚 
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【引理 5.1】一正定可同时对角化 

设𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称,如果𝐴𝐴正定, 

则∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ)使得𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 = 𝐸𝐸,且𝑃𝑃𝑡𝑡𝐵𝐵𝐵𝐵为对角矩阵 

证:由第一章定理 17.3 可知,∃𝑄𝑄 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ),使得𝐴𝐴 = 𝑄𝑄𝑡𝑡𝑄𝑄 

令𝑃𝑃1 = 𝑄𝑄−1,则𝑃𝑃1𝑡𝑡𝐴𝐴𝑃𝑃1 = 𝐸𝐸     �∵ (𝑄𝑄𝑡𝑡)−1 = �𝑄𝑄−1𝑡𝑡�� 

∵ 𝐵𝐵对称   ∴ 𝑃𝑃1𝑡𝑡𝐵𝐵𝐵𝐵也对称    

由定理 3.1, ∃𝑃𝑃2 ∈ 𝑂𝑂𝑛𝑛(ℝ)使得𝑃𝑃2𝑡𝑡(𝑃𝑃1𝑡𝑡𝐵𝐵𝐵𝐵)𝑃𝑃2是对角的 

令𝑃𝑃 = 𝑃𝑃1𝑃𝑃2, 𝑃𝑃𝑡𝑡𝐵𝐵𝐵𝐵 = (𝑃𝑃1𝑃𝑃2)𝑡𝑡𝐵𝐵(𝑃𝑃1𝑃𝑃2) = 𝑃𝑃2𝑡𝑡(𝑃𝑃1𝑡𝑡𝐵𝐵𝐵𝐵)𝑃𝑃2 是对角阵 

𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 = (𝑃𝑃1𝑃𝑃2)𝑡𝑡𝐴𝐴(𝑃𝑃1𝑃𝑃2) = 𝑃𝑃2𝑡𝑡 (𝑃𝑃1𝑡𝑡𝐴𝐴𝑃𝑃1)�����
𝐸𝐸

𝑃𝑃2 = 𝑃𝑃2𝑡𝑡𝑃𝑃2 = 𝐸𝐸    �∵ 𝑃𝑃2正交�   ∎ 

 

【例 5.1.3】正定矩阵行列式和不等式 

设𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(ℝ)正定,证明det(𝐴𝐴 + 𝐵𝐵) ≥ det𝐴𝐴 + det𝐵𝐵 

证:由引理 5.1,∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ)使得𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 = 𝐸𝐸,𝑃𝑃𝑡𝑡𝐵𝐵𝐵𝐵 = diag(𝛽𝛽1, … ,𝛽𝛽𝑛𝑛) 

∵ 𝐵𝐵正定   ∴ 𝛽𝛽1, … ,𝛽𝛽𝑛𝑛 > 0 

𝑃𝑃𝑡𝑡(𝐴𝐴 + 𝐵𝐵)𝑃𝑃 = 𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 + 𝑃𝑃𝑡𝑡𝐵𝐵𝐵𝐵 

= 𝐸𝐸 + diag(𝛽𝛽1, … ,𝛽𝛽𝑛𝑛) = diag(1 + 𝛽𝛽1, … ,1 + 𝛽𝛽𝑛𝑛) 

∴ (det𝑃𝑃)2 det(𝐴𝐴 + 𝐵𝐵) = det(𝑃𝑃𝑡𝑡(𝐴𝐴+ 𝐵𝐵)𝑃𝑃) = �(1 + 𝛽𝛽𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

(det𝑃𝑃)2(det𝐴𝐴 + det𝐵𝐵) = det(𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴) + det(𝑃𝑃𝑡𝑡𝐵𝐵𝐵𝐵) 

= det𝐸𝐸 + det diag(𝛽𝛽1, … ,𝛽𝛽𝑛𝑛) = 1 + 𝛽𝛽1 ⋯𝛽𝛽𝑛𝑛 

∵�(1 + 𝛽𝛽𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

> 1 + 𝛽𝛽1 ⋯𝛽𝛽𝑛𝑛    ∴ det(𝐴𝐴 + 𝐵𝐵) ≥ det𝐴𝐴 + det𝐵𝐵     ∎ 
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§5 正交矩阵与实二次型 

 

【定理 5.2】引理 5.1 的二次型版 

设𝑊𝑊是𝑛𝑛维实线性空间,𝑝𝑝,𝑞𝑞是𝑊𝑊上的两个二次型,且𝑝𝑝正定 

则存在𝑊𝑊的一组基𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗使得∀𝑥⃗𝑥 = 𝑥𝑥1𝜀𝜀1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝜀𝜀𝑛𝑛���⃗  

𝑝𝑝(𝑥⃗𝑥) = 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2,𝑞𝑞(𝑥⃗𝑥) = 𝛼𝛼1𝑥𝑥12 +⋯+ 𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛2,其中𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ ℝ 

证:设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑊𝑊的一组基,𝑝𝑝, 𝑞𝑞在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵为𝐴𝐴,𝐵𝐵 

则𝐴𝐴,𝐵𝐵对称且𝐴𝐴正定,由引理 5.1,存在𝑀𝑀 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ) 

使得𝑀𝑀𝑡𝑡𝐴𝐴𝐴𝐴 = 𝐸𝐸,𝑀𝑀𝑡𝑡𝐵𝐵𝐵𝐵 = diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) ,其中𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ ℝ 

令(𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝑀𝑀 

则𝜀𝜀1���⃗  , . . . , 𝜀𝜀𝑛𝑛���⃗下𝑝𝑝, 𝑞𝑞的矩阵分别为𝐸𝐸和diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)       ∎ 
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§6 正定算子 

【定义 6.1.1】正定算子 

设𝒜𝒜 ∈ ℒ(𝑉𝑉)对称,如果∀𝑥⃗𝑥 ∈ 𝑉𝑉 ∖ �0�⃗ �,𝒜𝒜(𝑥⃗𝑥) ⋅ 𝑥⃗𝑥 > 0 

则称𝒜𝒜是𝑉𝑉上的正定算子 

 

【命题 6.1】线性算子正定的判定 

设𝒜𝒜 ∈ ℒ(𝑉𝑉)对称,则𝒜𝒜正定⇔𝒜𝒜在𝑉𝑉任一组单位正交基下的矩阵正定 

证:设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑉𝑉的一组单位正交基,𝒜𝒜在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵为𝐴𝐴 

设∀𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ≠ 0�⃗  

𝒜𝒜(𝑥⃗𝑥) ⋅ 𝑥⃗𝑥 = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�          �𝐴𝐴对称� 

𝒜𝒜(𝑥⃗𝑥) ⋅ 𝑥⃗𝑥 > 0 ⇔ (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� > 0 ⇔ 𝐴𝐴正定     ∎ 

 

【定理 6.1】谱分解定理 

设𝑊𝑊是域𝐹𝐹上的𝑛𝑛维线性空间,𝒜𝒜 ∈ ℒ(𝑊𝑊)可对角化 

则∃!𝛼𝛼1, … ,𝛼𝛼𝑚𝑚 ∈ 𝐹𝐹两两不同和完全正交等方组𝜎𝜎1, … ,𝜎𝜎𝑚𝑚 

使得𝒜𝒜 = 𝛼𝛼1𝜎𝜎1 + ⋯+ 𝛼𝛼𝑚𝑚𝜎𝜎𝑚𝑚,且𝜎𝜎1, … ,𝜎𝜎𝑚𝑚 ∈ 𝐹𝐹[𝒜𝒜] 

证: �存在性� ∵ 𝐴𝐴可对角化   

∴ 𝒜𝒜的互不相同特征根𝜆𝜆1, … , 𝜆𝜆𝑚𝑚 ∈ 𝐹𝐹 

满足𝑊𝑊 = 𝑊𝑊𝜆𝜆1 ⊕⋯⊕𝑊𝑊𝜆𝜆𝑚𝑚 ,𝑊𝑊𝜆𝜆𝑖𝑖是𝜆𝜆𝑖𝑖对应的特征子空间 

设𝜎𝜎𝑖𝑖为从𝑊𝑊到𝑊𝑊𝜆𝜆𝑖𝑖 ⊂ 𝑊𝑊上的投射, 𝑖𝑖 = 1, … ,𝑚𝑚 

则𝜎𝜎1, … ,𝜎𝜎𝑚𝑚是完全正交等方组 
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验证:𝒜𝒜 = 𝜆𝜆1𝜎𝜎1 +⋯+ 𝜆𝜆𝑚𝑚𝜎𝜎𝑚𝑚 

设𝑥⃗𝑥 ∈ 𝑊𝑊,∃!𝑥𝑥1���⃗ ∈ 𝑊𝑊𝜆𝜆1 , … , 𝑥𝑥𝑚𝑚�����⃗ ∈ 𝑊𝑊𝜆𝜆𝑚𝑚使得𝑥⃗𝑥 = 𝑥𝑥1���⃗ + ⋯+ 𝑥𝑥𝑚𝑚�����⃗  

由𝜎𝜎1, … ,𝜎𝜎𝑚𝑚定义,𝜎𝜎𝑖𝑖(𝑥⃗𝑥) = 𝑥𝑥𝚤𝚤���⃗  

于是𝑥⃗𝑥 = 𝜎𝜎1(𝑥⃗𝑥) + ⋯+ 𝜎𝜎𝑚𝑚(𝑥⃗𝑥) 

𝒜𝒜(𝑥⃗𝑥) = 𝒜𝒜�𝜎𝜎1(𝑥⃗𝑥)�+⋯+ 𝒜𝒜�𝜎𝜎𝑚𝑚(𝑥⃗𝑥)� = 𝜆𝜆1𝜎𝜎1(𝑥⃗𝑥) + ⋯+ 𝜆𝜆𝑚𝑚𝜎𝜎𝑚𝑚(𝑥⃗𝑥) 

= (𝜆𝜆1𝜎𝜎1 + ⋯+ 𝜆𝜆𝑚𝑚𝜎𝜎𝑚𝑚)(𝑥⃗𝑥)     验证完毕 

 

唯一性:设𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝐹𝐹两两不同, 𝜏𝜏1, … , 𝜏𝜏𝑘𝑘是完全正交等方组 

且𝒜𝒜 = 𝛼𝛼1𝜏𝜏1 +⋯+ 𝛼𝛼𝑘𝑘𝜏𝜏𝑘𝑘 

∀𝑤𝑤��⃗ ∈ im 𝜏𝜏1 ,∃𝑣⃗𝑣 ∈ 𝑊𝑊  使得𝑤𝑤��⃗ = 𝜏𝜏1(𝑣𝑣1����⃗ ) 

𝒜𝒜(𝑤𝑤��⃗ ) = (𝛼𝛼1𝜏𝜏1 + ⋯+ 𝛼𝛼𝑘𝑘𝜏𝜏𝑘𝑘)�𝜏𝜏1(𝑣⃗𝑣)� 

= 𝛼𝛼1𝜏𝜏12(𝑣⃗𝑣) + 𝛼𝛼2𝜏𝜏2𝜏𝜏1(𝑣⃗𝑣) + ⋯+ 𝛼𝛼𝑘𝑘𝜏𝜏𝑘𝑘𝜏𝜏1(𝑣⃗𝑣) = 𝛼𝛼1𝜏𝜏1(𝑣⃗𝑣) = 𝛼𝛼1𝑤𝑤��⃗  

⇒ 𝑤𝑤��⃗ 是以𝛼𝛼1为特征根的特征向量 

于是𝛼𝛼1, … ,𝛼𝛼𝑘𝑘是𝒜𝒜的不同的特征根, im 𝜏𝜏1 ⊂ 𝑊𝑊𝛼𝛼1 , … , im 𝜏𝜏𝑘𝑘 ⊂ 𝑊𝑊𝛼𝛼𝑘𝑘 

适当调整下标后𝛼𝛼1 = 𝜆𝜆1, … ,𝛼𝛼𝑘𝑘 = 𝜆𝜆𝑘𝑘 

𝑊𝑊 = 𝑊𝑊𝜆𝜆1�
⊃im𝜏𝜏1

⊕⋯⊕ 𝑊𝑊𝜆𝜆𝑘𝑘�
⊃im𝜏𝜏𝑘𝑘

⊕⋯⊕𝑊𝑊𝜆𝜆𝑚𝑚 

且𝑊𝑊 = im 𝜏𝜏1 ⊕⋯⊕ im 𝜏𝜏𝑘𝑘 

∴ 𝑘𝑘 = 𝑚𝑚, 𝜏𝜏1 = 𝜎𝜎1, … , 𝜏𝜏𝑘𝑘 = 𝜎𝜎𝑚𝑚 

 

要证:∀𝑖𝑖 ∈ {𝜎𝜎1, … ,𝜎𝜎𝑚𝑚},∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹[𝒜𝒜],使得𝜎𝜎𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝒜𝒜) 

由𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿插值或中国剩余定理 

∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹[𝑡𝑡],满足𝑓𝑓𝑖𝑖(𝜆𝜆1) = ⋯ = 𝑓𝑓𝑖𝑖(𝜆𝜆𝑖𝑖−1) = 0 

𝑓𝑓𝑖𝑖(𝜆𝜆𝑖𝑖+1) = ⋯ = 𝑓𝑓𝑖𝑖(𝜆𝜆𝑚𝑚) = 0,𝑓𝑓𝑖𝑖(𝜆𝜆𝑖𝑖) = 1 

或𝑓𝑓𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡 − 𝜆𝜆1),⋯𝑓𝑓𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡 − 𝜆𝜆𝑖𝑖−1), 

𝑓𝑓𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡 − 𝜆𝜆𝑖𝑖)  
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𝑓𝑓𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡 − 𝜆𝜆𝑖𝑖+1),⋯ ,𝑓𝑓𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡 − 𝜆𝜆𝑚𝑚) 

断言𝜎𝜎𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝒜𝒜), 𝑖𝑖 = 1, … ,𝑚𝑚 

断言的证明   只需验证𝜎𝜎1 = 𝑓𝑓1(𝒜𝒜) 

𝑓𝑓1(𝑡𝑡) = 𝑔𝑔𝑗𝑗(𝑡𝑡)�𝑡𝑡 − 𝜆𝜆𝑗𝑗�, 𝑗𝑗 = 2, … ,𝑚𝑚, 𝑔𝑔𝑗𝑗 ∈ 𝐹𝐹[𝑡𝑡] 

𝑓𝑓1(𝑡𝑡) = 𝑔𝑔1(𝑡𝑡)(𝑡𝑡 − 𝜆𝜆1) + 1, 𝑔𝑔1 ∈ 𝐹𝐹[𝑡𝑡] 

设𝑥⃗𝑥 ∈ 𝑊𝑊,则𝑥⃗𝑥 = 𝑥𝑥1���⃗ + ⋯+ 𝑥𝑥𝑚𝑚�����⃗ ,其中𝑥𝑥𝚤𝚤���⃗ ∈ 𝑊𝑊𝜆𝜆𝑖𝑖 = im𝜎𝜎𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚 

𝜎𝜎1(𝑥⃗𝑥) = 𝑥𝑥1���⃗   

𝑓𝑓1(𝒜𝒜)(𝑥⃗𝑥) = 𝑓𝑓1(𝒜𝒜)(𝑥𝑥1���⃗ ) + ⋯+ 𝑓𝑓1(𝒜𝒜)(𝑥𝑥2����⃗ ) + ⋯+ 𝑓𝑓1(𝒜𝒜)(𝑥𝑥𝑚𝑚�����⃗ ) 

= (𝑔𝑔1(𝒜𝒜)(𝒜𝒜− 𝜆𝜆1ℰ) + ℰ)(𝑥𝑥1���⃗ ) + �𝑔𝑔2(𝒜𝒜)(𝒜𝒜− 𝜆𝜆2ℰ)�(𝑥𝑥2����⃗ ) 

+⋯+ �𝑔𝑔𝑚𝑚(𝒜𝒜)(𝒜𝒜− 𝜆𝜆𝑚𝑚ℰ)�(𝑥𝑥𝑚𝑚�����⃗ ) 

∵ 𝑥𝑥𝚤𝚤���⃗ ∈ 𝑊𝑊𝜆𝜆𝑖𝑖    ∴ 𝒜𝒜(𝑥𝑥𝚤𝚤���⃗ ) = 𝜆𝜆𝑖𝑖𝑥𝑥𝚤𝚤���⃗ ⇒ (𝒜𝒜− 𝜆𝜆𝑖𝑖ℰ)(𝑥𝑥𝚤𝚤���⃗ ) = 0�⃗  

于是𝑓𝑓1(𝒜𝒜)(𝑥⃗𝑥) = ℰ(𝑥𝑥1���⃗ ) = 𝑥𝑥1���⃗ = 𝜎𝜎1(𝑥⃗𝑥)        ∎ 

 

【定理 6.2】实正定矩阵唯一正定平方根存在性 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)正定,则∃!正定矩阵𝐵𝐵使得𝐴𝐴 = 𝐵𝐵2,且𝐵𝐵 ∈ ℝ[𝐴𝐴] 

证:由定理 3.1,推论 3.1 

∃𝑃𝑃 ∈ 𝑂𝑂𝑛𝑛(ℝ)使得𝐴𝐴 = 𝑃𝑃𝑡𝑡 diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)𝑃𝑃 

其中𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ ℝ+ 

令𝐵𝐵 = 𝑃𝑃𝑡𝑡 diag��𝛼𝛼1, … ,�𝛼𝛼𝑛𝑛�𝑃𝑃,则𝐵𝐵正定 

𝐵𝐵2 = 𝑃𝑃𝑡𝑡 diag��𝛼𝛼1, … ,�𝛼𝛼𝑛𝑛�𝑃𝑃𝑃𝑃𝑡𝑡 diag��𝛼𝛼1, … ,�𝛼𝛼𝑛𝑛�𝑃𝑃 

= 𝑃𝑃𝑡𝑡 diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)𝑃𝑃 = 𝐴𝐴,存在性成立 

设𝐶𝐶 ∈ 𝑀𝑀𝑛𝑛(ℝ)正定使得𝐴𝐴 = 𝐶𝐶2 

∵ 𝐶𝐶可对角化  �定理 3.1�   ∴由谱分解定理,把𝐶𝐶看作线性算子𝒞𝒞 

𝒞𝒞 = 𝛽𝛽1𝜏𝜏1 + ⋯+ 𝛽𝛽𝑚𝑚𝜏𝜏𝑚𝑚 
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其中𝛽𝛽1, … ,𝛽𝛽𝑚𝑚是两两不同的实数, 𝜏𝜏1, … , 𝜏𝜏𝑚𝑚是完全正交等方组 

同样𝐵𝐵对应的线性算子 ℬ也有谱分解 

ℬ = �𝛼𝛼1𝜎𝜎1 +⋯+ �𝛼𝛼𝑘𝑘𝜎𝜎𝑘𝑘,𝜎𝜎1, … ,𝜎𝜎𝑘𝑘是完全正交等方组 

𝒜𝒜 = 𝒞𝒞2 = (𝛽𝛽1𝜏𝜏1 + ⋯+ 𝛽𝛽𝑚𝑚𝜏𝜏𝑚𝑚) ∘ (𝛽𝛽1𝜏𝜏1 + ⋯+ 𝛽𝛽𝑚𝑚𝜏𝜏𝑚𝑚) 

= 𝛽𝛽12𝜏𝜏12 + ⋯+ 𝛽𝛽𝑚𝑚2 𝜏𝜏𝑚𝑚2 = 𝛽𝛽12𝜏𝜏1 + ⋯+ 𝛽𝛽𝑚𝑚2 𝜏𝜏𝑚𝑚 

同样𝒜𝒜 = ℬ2 = 𝛼𝛼1𝜎𝜎1 + ⋯+ 𝛼𝛼𝑘𝑘𝜎𝜎𝑘𝑘 

由谱分解定理的唯一性,𝑘𝑘 = 𝑚𝑚 

不妨设𝛼𝛼1 = 𝛽𝛽12, … ,𝛼𝛼𝑘𝑘 = 𝛽𝛽𝑘𝑘2, 𝜏𝜏𝑘𝑘 = 𝜎𝜎𝑘𝑘 ,则𝐵𝐵 = 𝐶𝐶 

∵ 𝜎𝜎𝑖𝑖 ∈ ℝ[𝐴𝐴], 𝑖𝑖 = 1, … ,𝑚𝑚�谱分解定理� ⇒ 𝐵𝐵 ∈ ℝ[𝐴𝐴] 

 

【定理 6.3】极化分解 

设𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ),则∃!正定矩阵𝑆𝑆和正交矩阵𝑇𝑇,使得𝐴𝐴 = 𝑆𝑆𝑆𝑆 

�𝑆𝑆代表长度,𝑇𝑇代表方向� 

证:由第一章定理 17.3,𝐴𝐴𝐴𝐴𝑡𝑡正定 

由定理 6.2,∃正定矩阵𝑆𝑆,使得𝐴𝐴𝐴𝐴𝑡𝑡 = 𝑆𝑆2 

令𝑇𝑇 = 𝑆𝑆−1𝐴𝐴,则𝐴𝐴 = 𝑆𝑆𝑆𝑆,下面验证𝑇𝑇是正交的 

𝑇𝑇𝑇𝑇𝑡𝑡 = (𝑆𝑆−1𝐴𝐴)(𝑆𝑆−1𝐴𝐴)𝑡𝑡 = 𝑆𝑆−1𝐴𝐴𝐴𝐴𝑡𝑡(𝑆𝑆−1)𝑡𝑡 = 𝑆𝑆−1𝑆𝑆2𝑆𝑆−1 = 𝐸𝐸  

唯一性:设𝑆𝑆′正定,𝑇𝑇′正交,使得𝑆𝑆𝑆𝑆 = 𝑆𝑆′𝑇𝑇′ 

则𝑇𝑇𝑡𝑡𝑆𝑆𝑡𝑡 = 𝑇𝑇′𝑡𝑡𝑆𝑆′𝑡𝑡 ⇒ 𝑆𝑆𝑆𝑆𝑇𝑇𝑡𝑡𝑆𝑆𝑡𝑡 = 𝑆𝑆′𝑇𝑇′𝑇𝑇′𝑡𝑡𝑆𝑆′𝑡𝑡 

⇒ 𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑆𝑆′𝑆𝑆′𝑡𝑡 ⇒ 𝑆𝑆2 = 𝑆𝑆′2 ⇒ 𝑆𝑆 = 𝑆𝑆′  �定理 6.2 中唯一性�    

⇒ 𝑇𝑇 = 𝑇𝑇′    ∎ 
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§7 最小二乘法 

§7.1 向量到子空间的距离 

【定义 7.1.1】向量到空间的距离 

设𝑣⃗𝑣 ∈ 𝑉𝑉,𝑊𝑊 ⊂ 𝑉𝑉是子空间, 𝑣⃗𝑣到𝑊𝑊的距离定义为 min
𝑤𝑤��⃗ ∈𝑊𝑊

|𝑣⃗𝑣 − 𝑤𝑤��⃗ | 

 

【引理 7.1】正交投影唯一性 

设𝑊𝑊 ⊂ 𝑉𝑉是子空间, 𝑣⃗𝑣 ∈ 𝑉𝑉,则∃! 𝑥⃗𝑥 ∈ 𝑊𝑊使得⟨𝑣⃗𝑣 − 𝑥⃗𝑥⟩ ⊥ 𝑊𝑊 

证:𝑉𝑉 = 𝑊𝑊⊕𝑊𝑊⊥ ⇒ ∃! 𝑥⃗𝑥 ∈ 𝑊𝑊, 𝑦⃗𝑦 ∈ 𝑊𝑊⊥使得𝑣⃗𝑣 = 𝑥⃗𝑥 + 𝑦⃗𝑦 

⇒ 𝑦⃗𝑦 = 𝑣⃗𝑣 − 𝑥⃗𝑥 ∈ 𝑊𝑊⊥ ⇒ ⟨𝑣⃗𝑣 − 𝑥⃗𝑥⟩ ⊥ 𝑊𝑊 

唯一性:设𝑧𝑧 ∈ 𝑊𝑊且⟨𝑣⃗𝑣 − 𝑧𝑧⟩ ⊥ 𝑊𝑊,则𝑣⃗𝑣 − 𝑧𝑧 ∈ 𝑊𝑊⊥ 

𝑣⃗𝑣 = 𝑧𝑧⏟
∈𝑊𝑊

+ (𝑣⃗𝑣 − 𝑧𝑧)�����
∈𝑊𝑊⊥

⇒ 𝑧𝑧 = 𝑥⃗𝑥 

注:称𝑥⃗𝑥为𝑣⃗𝑣在𝑊𝑊中的正交投影 

 

【例 7.1.1】正交投影的计算 

设𝑣⃗𝑣 ∈ 𝑉𝑉,𝑊𝑊 = ⟨𝑤𝑤1����⃗ , … ,𝑤𝑤𝑑𝑑�����⃗ ⟩, dim𝑊𝑊 = 𝑑𝑑 

设𝑥⃗𝑥 = 𝑥𝑥1𝑤𝑤1����⃗ + ⋯+ 𝑥𝑥𝑑𝑑𝑤𝑤𝑑𝑑�����⃗  为𝑣⃗𝑣 在𝑊𝑊中的正交投影 

⟨𝑣⃗𝑣 − 𝑥⃗𝑥⟩ ⊥ 𝑊𝑊 ⇔ (𝑣⃗𝑣 − 𝑥⃗𝑥) ⋅ 𝑤𝑤𝚤𝚤����⃗ = 0, 𝑖𝑖 = 1, … ,𝑑𝑑 

⇔ 𝑤𝑤𝚤𝚤����⃗ ⋅ 𝑥⃗𝑥 = 𝑤𝑤𝚤𝚤����⃗ ⋅ 𝑣⃗𝑣, 𝑖𝑖 = 1, … ,𝑑𝑑 

⇔ 𝑤𝑤𝚤𝚤����⃗ ⋅ ��𝑥𝑥𝑗𝑗𝑤𝑤𝚥𝚥����⃗
𝑑𝑑

𝑗𝑗=1

� = 𝑤𝑤𝚤𝚤����⃗ ⋅ 𝑣⃗𝑣 ⇔�𝑥𝑥𝑗𝑗�𝑤𝑤𝚤𝚤����⃗ ⋅ 𝑤𝑤𝚥𝚥����⃗ �
𝑑𝑑

𝑗𝑗=1

= 𝑤𝑤𝚤𝚤����⃗ ⋅ 𝑣⃗𝑣 
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⇔ 𝐺𝐺(𝑤𝑤1����⃗ , … ,𝑤𝑤𝑑𝑑�����⃗ )�
𝑥𝑥1
⋮
𝑥𝑥𝑑𝑑
� = �

𝑣⃗𝑣 ⋅ 𝑤𝑤1����⃗
⋮

𝑣⃗𝑣 ⋅ 𝑤𝑤𝑑𝑑�����⃗
� 

𝐺𝐺(𝑤𝑤1����⃗ , … ,𝑤𝑤𝑑𝑑�����⃗ )满秩,则�
𝑥𝑥1
⋮
𝑥𝑥𝑑𝑑
� = 𝐺𝐺(𝑤𝑤1����⃗ , … ,𝑤𝑤𝑑𝑑�����⃗ )−1 �

𝑣⃗𝑣 ⋅ 𝑤𝑤1����⃗
⋮

𝑣⃗𝑣 ⋅ 𝑤𝑤𝑑𝑑�����⃗
� 

注:若𝑊𝑊 = ⟨𝑤𝑤1����⃗ , … ,𝑤𝑤𝑛𝑛�����⃗ ⟩,𝑤𝑤1����⃗ , … ,𝑤𝑤𝑛𝑛�����⃗线性相关 

则此时𝐺𝐺(𝑤𝑤1����⃗ , … ,𝑤𝑤𝑛𝑛�����⃗ )不满秩,解不唯一 

但只是因为从𝑤𝑤1����⃗ , … ,𝑤𝑤𝑛𝑛�����⃗中选取的𝑊𝑊的基底不同, 

所以𝑥⃗𝑥的坐标不唯一.  真实的投影向量𝑥⃗𝑥仍然是唯一的 

 

【例 7.1.2】正交投影和距离计算实例 

设𝑣⃗𝑣 = �
1
1
1
� ,𝑤𝑤1����⃗ = �

1
1
0
� ,𝑤𝑤2�����⃗ = �

0
1
1
�  

计算𝑣⃗𝑣在⟨𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ⟩中的正交投影和距离 

解:𝐺𝐺(𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ) = �𝑤𝑤1����⃗ ⋅ 𝑤𝑤1����⃗ 𝑤𝑤1����⃗ ⋅ 𝑤𝑤2�����⃗
𝑤𝑤2�����⃗ ⋅ 𝑤𝑤1����⃗ 𝑤𝑤2�����⃗ ⋅ 𝑤𝑤2�����⃗

� = �2 1
1 2� 

𝑣⃗𝑣 ⋅ 𝑤𝑤1����⃗ = 2, 𝑣⃗𝑣 ⋅ 𝑤𝑤2�����⃗ = 2 

�2 1
1 2� �

𝑥𝑥1
𝑥𝑥2� = �2

2�      �
𝑥𝑥1 =

2
3

𝑥𝑥2 =
2
3

 

正交投影𝑥⃗𝑥 = 𝑥𝑥1𝑤𝑤1����⃗ + 𝑥𝑥2𝑤𝑤2�����⃗ =
2
3
�

1
1
0
�+

2
3
�

0
1
1
� = �

2/3
4/3
2/3

� 

𝑣⃗𝑣到⟨𝑤𝑤1����⃗ ,𝑤𝑤2�����⃗ ⟩的距离为|𝑣⃗𝑣 − 𝑥⃗𝑥| =
1
√3

 

 

  

281／363



李子明老师的线性代数讲义 

 

§7.2 最小二乘法 

【问题】求最小二乘解 

设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�𝑚𝑚×𝑛𝑛
,𝑏𝑏�⃗ = �

𝑏𝑏1
⋮
𝑏𝑏𝑚𝑚
� ,𝑎𝑎𝑖𝑖𝑖𝑖 ,𝑏𝑏𝑗𝑗 ∈ ℝ, 𝑥⃗𝑥 = �

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

求解线性方程 𝐴𝐴𝑥⃗𝑥 = 𝑏𝑏�⃗  

方程有解⇔ ∃𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ ℝ 使得𝛼𝛼1𝐴𝐴(1)�������⃗ + ⋯+ 𝛼𝛼𝑛𝑛𝐴𝐴(𝑛𝑛)��������⃗ = 𝑏𝑏�⃗  

⇔ 𝑏𝑏�⃗ ∈ �𝐴𝐴(1)�������⃗ , … ,𝐴𝐴(𝑛𝑛)��������⃗ � = 𝑉𝑉𝑐𝑐(𝐴𝐴) 

⇔ 𝑏𝑏�⃗  到𝑉𝑉𝑐𝑐(𝐴𝐴)的距离为零 

方程的“最小二乘解”: 

求𝛽𝛽1, … ,𝛽𝛽𝑛𝑛 ∈ ℝ使得 �𝛽𝛽1𝐴𝐴(1)�������⃗ + ⋯+ 𝛽𝛽𝑛𝑛𝐴𝐴(𝑛𝑛)��������⃗ − 𝑏𝑏�⃗ �最小 

即𝛽𝛽1𝐴𝐴(1)�������⃗ + ⋯+ 𝛽𝛽𝑛𝑛𝐴𝐴(𝑛𝑛)��������⃗是𝑏𝑏�⃗在𝑉𝑉𝑐𝑐(𝐴𝐴)上的正交投影 

 

【例 7.2.1】最小二乘法应用 

𝑥𝑥— —成分   𝑦𝑦— —成品率 

𝑥𝑥% 3.6 3.7 3.8 4.0 4.1 4.2
𝑦𝑦 1.0 0.9 0.9 0.6 0.56 0.35 

𝑦𝑦 = 𝑎𝑎(𝑥𝑥%) + 𝑏𝑏     

�二次拟合使用:𝑎𝑎(𝑥𝑥%)2 + 𝑏𝑏𝑏𝑏% + 𝑐𝑐� 

 

�

3.6𝑎𝑎 + 𝑏𝑏 = 1.0
3.7𝑎𝑎 + 𝑏𝑏 = 0.9

⋮
4.2𝑎𝑎 + 𝑏𝑏 = 0.35

    求最小二乘解,得𝑎𝑎 = −1.05,𝑏𝑏 = 4.81 

𝑦𝑦 = −1.05(𝑥𝑥%) + 4.81 
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§8 Hermite空间简介 

【对比 8.1】正定和不可约多项式 

设𝑉𝑉是𝑛𝑛维实空间,𝑊𝑊是𝑛𝑛维复空间 

基域上的不同: 

∀𝑥𝑥 ∈ ℝ ∖ {0},𝑥𝑥2 > 0, ℝ[𝑥𝑥] ∖ ℝ中不可约多项式次数为 1 或 2 

∀𝑧𝑧 ∈ ℂ ∖ {0}, 𝑧𝑧𝑧𝑧̅ > 0, ℂ[𝑥𝑥] ∖ ℂ中不可约多项式次数为 1 

 

【定义 8.1.1】半双线性型 

𝑓𝑓:𝑊𝑊 × 𝑊𝑊 → ℂ称为半双线性型,如果 

(𝑖𝑖)∀𝑥⃗𝑥, 𝑦⃗𝑦, 𝑧𝑧 ∈ 𝑊𝑊,𝛼𝛼,𝛽𝛽 ∈ ℂ 

𝑓𝑓(𝛼𝛼𝑥⃗𝑥 + 𝛽𝛽𝑦⃗𝑦, 𝑧𝑧) = 𝛼𝛼𝛼𝛼(𝑥⃗𝑥, 𝑧𝑧) + 𝛽𝛽(𝑦⃗𝑦, 𝑧𝑧) 

𝑓𝑓(𝑥⃗𝑥,𝛼𝛼𝑦⃗𝑦 + 𝛽𝛽𝑧𝑧) = 𝛼𝛼�𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) + 𝛽̅𝛽𝑓𝑓(𝑥⃗𝑥, 𝑧𝑧) 

 

【定义 8.1.2】Hermite 型 

设𝑓𝑓是𝑊𝑊上的半双线性型,如果∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑊𝑊, 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = 𝑓𝑓(𝑦⃗𝑦, 𝑥⃗𝑥)��������� 

则称𝑓𝑓是𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒型 

注:𝑓𝑓是𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻型 ⇒ 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) = 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)��������� ⇒ 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) ∈ ℝ 

如果∀𝑥⃗𝑥 ∈ 𝑊𝑊 ∖ �0�⃗ �,𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥) > 0,则称𝑓𝑓是正定的 

 

【例 8.1.1】半双线性型的矩阵及正定性 

设𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是𝑊𝑊的一组基 

𝑥⃗𝑥 = 𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ , 𝑦⃗𝑦 = 𝑦𝑦1𝑒𝑒1���⃗ +⋯+ 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛����⃗  
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𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦) = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛)𝐴𝐴�
𝑦𝑦1���
⋮
𝑦𝑦𝑛𝑛���
� ,其中𝐴𝐴 = �𝑓𝑓�𝑒𝑒𝚤𝚤��⃗ ,𝑒𝑒𝚥𝚥��⃗ ��𝑚𝑚×𝑛𝑛

 

若𝑓𝑓是𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒的,则𝐴̅𝐴𝑡𝑡 = 𝐴𝐴 

此时称𝐴𝐴是𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻矩阵 

𝑓𝑓是正定的,则𝑓𝑓对应的矩阵称为正定的  

 

【对比 8.2】内积空间 

𝑉𝑉 (𝑉𝑉, 𝑓𝑓) 𝑓𝑓对称双线性型 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)正定 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 ≔ 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦)
𝑊𝑊 (𝑊𝑊,𝑓𝑓) 𝑓𝑓 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑓𝑓(𝑥⃗𝑥, 𝑥⃗𝑥)正定 (𝑥⃗𝑥|𝑦⃗𝑦) ≔ 𝑓𝑓(𝑥⃗𝑥, 𝑦⃗𝑦)

 

𝑊𝑊称为𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒空间 

 

【对比 8.3】范数和正交性 

𝑉𝑉 |𝑥⃗𝑥| = �𝑥⃗𝑥 ⋅ 𝑥⃗𝑥 𝑥⃗𝑥 ⊥ 𝑦⃗𝑦 ⇔ 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = 0 𝐺𝐺. 𝑆𝑆.正交化

𝑊𝑊 |𝑥⃗𝑥| = �(𝑥⃗𝑥|𝑥⃗𝑥) 𝑥⃗𝑥 ⊥ 𝑦⃗𝑦 ⇔ (𝑥⃗𝑥|𝑦⃗𝑦) = 0 𝐺𝐺. 𝑆𝑆.正交化
 

 

【对比 8.4】单位正交基和正交相似 

𝑉𝑉:𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ), (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴, 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是单位正交基 

则𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是单位正交基⇔ 𝐴𝐴是正交矩阵 

𝑊𝑊:𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℂ), (𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐴𝐴, 𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗是单位正交基 

则𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗是单位正交基⇔ 𝐴̅𝐴𝑡𝑡𝐴𝐴 = 𝐸𝐸     称𝐴𝐴为酉矩阵 

正交相似:𝐴𝐴~𝑜𝑜𝐵𝐵, 酉相似:𝐴𝐴~𝑢𝑢𝐵𝐵 
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【对比 8.5】正规算子与正规矩阵 

欧氏空间: 

𝑎𝑎1)𝒜𝒜 ∈ ℒ(𝑉𝑉),𝒜𝒜∗ ∈ ℒ(𝑉𝑉)为𝒜𝒜的伴随算子 

𝑎𝑎2)如果∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉, 𝑥⃗𝑥 ⋅ 𝒜𝒜(𝑦⃗𝑦) = 𝒜𝒜∗(𝑥⃗𝑥) ⋅ 𝑦⃗𝑦 

𝑎𝑎3)若𝒜𝒜∗ ∘ 𝒜𝒜 = 𝒜𝒜 ∘𝒜𝒜∗,则称𝒜𝒜正规 

𝑎𝑎4)𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)是正规⇔ 𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑡𝑡 

𝑎𝑎5)�斜�对称: (−1)𝐴𝐴𝑡𝑡 = 𝐴𝐴,正交:𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐸𝐸  

𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 

𝑏𝑏1)𝒜𝒜 ∈ ℒ(𝑊𝑊),𝒜𝒜∗ ∈ ℒ(𝑊𝑊)为𝒜𝒜的伴随算子 

𝑏𝑏2)如果∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ 𝑉𝑉, 𝑥⃗𝑥 ⋅ 𝒜𝒜(𝑦⃗𝑦) = 𝒜𝒜∗(𝑥⃗𝑥) ⋅ 𝑦⃗𝑦 

𝑏𝑏3)若𝒜𝒜∗ ∘ 𝒜𝒜 = 𝒜𝒜 ∘𝒜𝒜∗,则称𝒜𝒜正规 

𝑏𝑏4)𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ)正规⇔ 𝐴̅𝐴𝑡𝑡𝐴𝐴 = 𝐴𝐴𝐴̅𝐴𝑡𝑡 

𝑏𝑏5)�斜�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻: (−1)𝐴̅𝐴𝑡𝑡 = 𝐴𝐴,酉矩阵: 𝐴̅𝐴𝑡𝑡𝐴𝐴 = 𝐸𝐸 
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§8 Hermite 空间简介 

 

【对比 8.6】标准型 

𝑉𝑉: 

𝑎𝑎1)𝑈𝑈 ⊂ 𝑉𝑉子空间,则𝑉𝑉 = 𝑈𝑈⊕𝑈𝑈⊥ 

𝑎𝑎2)若𝒜𝒜正规,𝑈𝑈是𝒜𝒜−不变的,则𝑈𝑈⊥也𝒜𝒜−不变 

𝑎𝑎3)𝒜𝒜有一维或二维不变子空间 ⇒ 𝑉𝑉 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑙𝑙 

𝑎𝑎4)𝑈𝑈𝑖𝑖是一维或二维𝒜𝒜−子空间   

𝑎𝑎5)𝐴𝐴正规:𝐴𝐴~𝑜𝑜 diag(𝑁𝑁2(𝛼𝛼1,𝛽𝛽1), … ,𝑁𝑁2(𝛼𝛼𝑠𝑠,𝛽𝛽𝑠𝑠), 𝜆𝜆2𝑠𝑠+1, … , 𝜆𝜆𝑛𝑛) 

𝑎𝑎6)𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ)对称,𝐴𝐴~𝑜𝑜 diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) 

𝑎𝑎7)𝐴𝐴斜对称:𝐴𝐴~𝑜𝑜 diag�� 0 −𝛽𝛽1
𝛽𝛽1 0 � , … , � 0 −𝛽𝛽𝑠𝑠

𝛽𝛽𝑠𝑠 0 � , 0, … ,0� ,𝛽𝛽𝑖𝑖 ∈ ℝ ∖ {0} 

𝑎𝑎8)𝐴𝐴正交:𝐴𝐴~𝑜𝑜 diag(𝑁𝑁2(cos𝜃𝜃1 , sin𝜃𝜃1), …𝑁𝑁2(cos𝜃𝜃𝑠𝑠 , sin𝜃𝜃𝑠𝑠), ±1, … , ±1)   

𝑊𝑊: 

𝑏𝑏1)𝑈𝑈 ⊂ 𝑊𝑊子空间,则𝑉𝑉 = 𝑈𝑈⊕𝑈𝑈⊥ 

𝑏𝑏2)若𝒜𝒜正规,𝑈𝑈是𝒜𝒜−不变的,则𝑈𝑈⊥也𝒜𝒜−不变 

𝑏𝑏3)𝒜𝒜有一维不变子空间 ⇒𝑊𝑊 = 𝑈𝑈1 ⊕⋯⊕𝑈𝑈𝑛𝑛 

𝑏𝑏4)𝑈𝑈𝑖𝑖是一维𝒜𝒜−子空间    �𝒜𝒜正规� 

𝑏𝑏5)𝒜𝒜正规:𝐴𝐴~𝑢𝑢 diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) 

𝑏𝑏6)𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ),𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐴𝐴~𝑢𝑢 diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) ,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ ℝ 

𝑏𝑏7)𝐴𝐴斜𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒:𝐴𝐴~𝑢𝑢 diag�𝛼𝛼1√−1, … ,𝛼𝛼𝑛𝑛√−1� ,𝛼𝛼𝑖𝑖 ∈ ℝ 

𝑏𝑏8)𝐴𝐴酉矩阵:𝐴𝐴~𝑢𝑢 diag�𝑒𝑒𝜃𝜃1√−1, … , 𝑒𝑒𝜃𝜃𝑛𝑛√−1�    𝑒𝑒𝜃𝜃√−1 = cos𝜃𝜃 + √−1 sin𝜃𝜃 

 

【对比 8.7】三个定理 

同时化对角线,平方根定理,极化定理对𝑀𝑀𝑛𝑛(ℂ)中的方阵均成立 

此时正交矩阵变为酉矩阵,对称矩阵变为𝐻𝐻𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚矩阵  
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总结 

∙ 消元与降维    𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎消去,归纳法

∙ 利用等价关系分类,在等价类中找标准型

· ~𝑒𝑒, ~𝑐𝑐, ~𝑠𝑠~𝑜𝑜, ~𝑢𝑢

∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

· 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷:多项式因式分解,𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒关系,直和分解

· 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜: 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽块,二维正规块 

· 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜: lcm,乘法,中国剩余定理,插值, 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜标准型 
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习题课选集 

【2-1】循环行列式的计算 

证明 �
�

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 ⋯ 𝑥𝑥𝑛𝑛−1
𝑥𝑥𝑛𝑛−1 𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛−2
𝑥𝑥𝑛𝑛−2 𝑥𝑥𝑛𝑛−1 𝑥𝑥0 ⋯ 𝑥𝑥𝑛𝑛−3
⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 ⋯ 𝑥𝑥0

�
� = ��𝑥𝑥𝑖𝑖𝜉𝜉𝑖𝑖𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

𝑛𝑛−1

𝑘𝑘=0

其中𝜉𝜉是 1 的一个𝑛𝑛次本原根 

证:令𝑓𝑓(𝑡𝑡) = 𝑥𝑥0 + 𝑥𝑥1𝑡𝑡 + ⋯+ 𝑥𝑥𝑛𝑛−1𝑡𝑡𝑛𝑛−1, 𝜀𝜀𝑘𝑘 = 𝜉𝜉𝑘𝑘 

则等号右端为�𝑓𝑓(𝜀𝜀𝑘𝑘)
𝑛𝑛−1

𝑘𝑘=0

令𝑃𝑃 = �

1 1 ⋯ 1
𝜀𝜀0 𝜀𝜀1 ⋯ 𝜀𝜀𝑛𝑛−1
⋮ ⋮ ⋱ ⋮

𝜀𝜀0𝑛𝑛−1 𝜀𝜀1𝑛𝑛−1 ⋯ 𝜀𝜀𝑛𝑛−1𝑛𝑛−1

� ,𝐴𝐴为所求行列式对应的矩阵 

则易验证𝐴𝐴𝐴𝐴 = �

𝑓𝑓(𝜀𝜀0) 𝑓𝑓(𝜀𝜀1) ⋯ 𝑓𝑓(𝜀𝜀𝑛𝑛−1)
𝜀𝜀0𝑓𝑓(𝜀𝜀0) 𝜀𝜀1𝑓𝑓(𝜀𝜀1) ⋯ 𝜀𝜀𝑛𝑛−1𝑓𝑓(𝜀𝜀𝑛𝑛−1)

⋮ ⋮ ⋱ ⋮
𝜀𝜀0𝑛𝑛−1𝑓𝑓(𝜀𝜀0) 𝜀𝜀1𝑛𝑛−1𝑓𝑓(𝜀𝜀1) ⋯ 𝜀𝜀𝑛𝑛−1𝑛𝑛−1𝑓𝑓(𝜀𝜀𝑛𝑛−1)

� 

于是det𝐴𝐴 det𝑃𝑃 = det𝐴𝐴𝐴𝐴 = ��𝑓𝑓(𝜀𝜀𝑘𝑘)
𝑛𝑛−1

𝑘𝑘=0

�det𝑃𝑃 

由于𝜉𝜉为本原单位根,则𝜀𝜀𝑘𝑘两两不同,

因此作为范德蒙行列式det𝑃𝑃 ≠ 0 

则det𝐴𝐴 = �𝑓𝑓(𝜀𝜀𝑘𝑘)
𝑛𝑛−1

𝑘𝑘=0

  ∎ 
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习题课选集 

 

【2-2】范德蒙行列式与对称多项式 

考虑范德蒙行列式△ (𝑥𝑥, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = �

1 1 ⋯ 1
𝑥𝑥 𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛 𝑥𝑥1𝑛𝑛 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

� 

将𝑥𝑥视为变量,𝑥𝑥1, … ,𝑥𝑥𝑛𝑛为两两不同的常亮, 

得到函数𝑔𝑔(𝑥𝑥) =△ (𝑥𝑥,𝑥𝑥1, … ,𝑥𝑥𝑛𝑛) 

将第一列展开,可知𝑔𝑔(𝑥𝑥)是一个𝑛𝑛次多项式 

且𝑥𝑥𝑛𝑛的系数为𝑎𝑎𝑛𝑛 =△ (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 

所以
𝑔𝑔(𝑥𝑥)
𝑎𝑎𝑛𝑛

在𝑥𝑥𝑑𝑑处的系数就是𝑔𝑔(𝑥𝑥)的根的 

第𝑛𝑛 − 𝑑𝑑个初等对称多项式�差一个符号� 

即设 
𝑔𝑔(𝑥𝑥)
𝑎𝑎𝑛𝑛

= 𝑥𝑥𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0 = (𝑥𝑥 − 𝑐𝑐1)⋯ (𝑥𝑥 − 𝑐𝑐𝑛𝑛) 

则𝑎𝑎𝑑𝑑 = (−1)𝑑𝑑𝑠𝑠𝑛𝑛−𝑑𝑑(𝑐𝑐1, … , 𝑐𝑐𝑛𝑛) 

然而,需要注意到𝑔𝑔(𝑥𝑥𝑖𝑖) = 0,𝑥𝑥𝑖𝑖 = 1, … ,𝑛𝑛,可令𝑐𝑐𝑖𝑖 = 𝑥𝑥𝑖𝑖 

另一方面,对第一列展开,直接得到𝑥𝑥𝑑𝑑的系数为 

(−1)𝑑𝑑
�

�

1 1 ⋯ 1
⋮ ⋮ ⋮

𝑥𝑥1𝑑𝑑−1 𝑥𝑥2𝑑𝑑−1 ⋯ 𝑥𝑥𝑛𝑛𝑑𝑑−1

𝑥𝑥1𝑑𝑑+1 𝑥𝑥2𝑑𝑑+1 ⋯ 𝑥𝑥𝑛𝑛𝑑𝑑+1

⋮ ⋮ ⋮
𝑥𝑥1𝑛𝑛 𝑥𝑥2𝑛𝑛 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

�

�
 

对比可知
�

�

1 1 ⋯ 1
⋮ ⋮ ⋮

𝑥𝑥1𝑑𝑑−1 𝑥𝑥2𝑑𝑑−1 ⋯ 𝑥𝑥𝑛𝑛𝑑𝑑−1

𝑥𝑥1𝑑𝑑+1 𝑥𝑥2𝑑𝑑+1 ⋯ 𝑥𝑥𝑛𝑛𝑑𝑑+1

⋮ ⋮ ⋮
𝑥𝑥1𝑛𝑛 𝑥𝑥2𝑛𝑛 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

�

�
= 𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛−𝑑𝑑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 

=△ (𝑥𝑥1, … ,𝑥𝑥𝑛𝑛)𝑠𝑠𝑛𝑛−𝑑𝑑(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 
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【3-1】限制条件的多项式空间 

由所有的一个变元𝑥𝑥的次数 ≤ 𝑛𝑛的满足条件𝑓𝑓(1) = 0 的 

多项式组成的空间的维数是多少？并找出这个空间的一个基底 

解:令𝑉𝑉 = {𝑓𝑓 ∈ 𝐹𝐹[𝑥𝑥]| deg𝑓𝑓 ≤ 𝑛𝑛,𝑓𝑓(1) = 0} 

对𝑓𝑓 ∈ 𝑉𝑉,设𝑓𝑓(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 

则𝑓𝑓(1) = 𝑎𝑎0 + 𝑎𝑎1 + ⋯+ 𝑎𝑎𝑛𝑛 = 0 

据此可猜测𝑆𝑆 = �𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖�𝑖𝑖 = 0, … ,𝑛𝑛 − 1�为𝑉𝑉的基 

一方面,设�𝑏𝑏𝑖𝑖�𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖�
𝑛𝑛−1

𝑖𝑖=0

= 0    对∀𝑥𝑥成立 

则𝑏𝑏𝑛𝑛−1𝑥𝑥𝑛𝑛 + �(𝑏𝑏𝑖𝑖−1 − 𝑏𝑏𝑖𝑖)𝑥𝑥𝑖𝑖
𝑛𝑛−1

𝑖𝑖=1

− 𝑏𝑏0 = 0 

则由零多项式的定义,𝑏𝑏𝑛𝑛−1 = 𝑏𝑏𝑛𝑛−2 − 𝑏𝑏𝑛𝑛−1 = ⋯ = 𝑏𝑏0 − 𝑏𝑏1 = −𝑏𝑏0 = 0 

⇒ 𝑏𝑏𝑛𝑛−1 = 𝑏𝑏𝑛𝑛−2 = ⋯ = 𝑏𝑏1 = 𝑏𝑏0 = 0 

即𝑆𝑆线性无关 

另一方面,对𝑓𝑓(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛,𝑎𝑎0 + ⋯+ 𝑎𝑎𝑛𝑛 = 0 

则对𝑏𝑏𝑛𝑛−1, … , 𝑏𝑏1,𝑏𝑏0 ∈ 𝐹𝐹 

�𝑏𝑏𝑖𝑖�𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖�
𝑛𝑛−1

𝑖𝑖=0

= 𝑏𝑏𝑛𝑛−1𝑥𝑥𝑛𝑛 + �(𝑏𝑏𝑖𝑖−1 − 𝑏𝑏𝑖𝑖)𝑥𝑥𝑖𝑖
𝑛𝑛−1

𝑖𝑖=1

− 𝑏𝑏0 

与𝑓𝑓(𝑥𝑥)比较系数可解出恰当的𝑏𝑏0, … , 𝑏𝑏𝑛𝑛−1,于是𝑉𝑉 = ⟨𝑆𝑆⟩ 

从而𝑆𝑆为𝑉𝑉的基底,且 dim𝑉𝑉 = 𝑛𝑛 

注:也可以用基底{(𝑥𝑥 − 1), … , (𝑥𝑥 − 1)𝑛𝑛} 
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【3-2】有理多项式复根生成的空间维数 

设𝜃𝜃是 ℚ上不可约多项式𝑓𝑓 ∈ ℚ[𝑡𝑡]的一个复根 

求空间 ℚ[𝜃𝜃] = ⟨1,𝜃𝜃, … , 𝜃𝜃𝑘𝑘 , … ⟩ℚ在 ℚ上的维数 

解:设deg𝑓𝑓 = 𝑑𝑑,则dimℚ ℚ[𝜃𝜃] = 𝑑𝑑 

且有一组基底𝑆𝑆 = {1,𝜃𝜃, … , 𝜃𝜃𝑑𝑑−1} 

设𝑎𝑎0 + 𝑎𝑎1𝜃𝜃 + ⋯+ 𝑎𝑎𝑑𝑑−1𝜃𝜃𝑑𝑑−1 = 0 

如果存在不全为零的𝑎𝑎𝑖𝑖使上式成立, 

则令𝑔𝑔(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯+ 𝑎𝑎𝑑𝑑−1𝑥𝑥𝑑𝑑−1 

则𝑔𝑔(𝜃𝜃) = 0,𝜃𝜃为𝑔𝑔的根,即为𝑔𝑔与𝑓𝑓在 ℂ中的公共根 

于是deg gcd(𝑔𝑔, 𝑓𝑓) ≥ 1 

又deg gcd(𝑔𝑔,𝑓𝑓) ≤ deg𝑔𝑔 ≤ 𝑑𝑑 − 1 

则𝑓𝑓有非平凡因子,这与𝑓𝑓不可约矛盾 

于是𝑎𝑎0 = ⋯ = 𝑎𝑎𝑑𝑑−1 = 0,即𝑆𝑆线性无关 

另一方面,∀𝑥𝑥 ∈ ℚ[𝜃𝜃],∃ℎ ∈ ℚ[𝑥𝑥],使得𝑥𝑥 = ℎ(𝜃𝜃) 

ℎ对𝑓𝑓作带余除法,即 ℎ(𝑥𝑥) = 𝑞𝑞(𝑥𝑥)𝑓𝑓(𝑥𝑥) + 𝑟𝑟(𝑥𝑥), deg 𝑟𝑟 ≤ 𝑑𝑑 − 1 

则 ℎ(𝜃𝜃) = 𝑞𝑞(𝜃𝜃)𝑓𝑓(𝜃𝜃) + 𝑟𝑟(𝜃𝜃) = 𝑟𝑟(𝜃𝜃),即𝑥𝑥 = 𝑟𝑟(𝜃𝜃) ∈ ⟨𝑆𝑆⟩ 

综上,𝑆𝑆为 ℚ[𝜃𝜃]的基底,且dimℚ 𝑄𝑄[𝜃𝜃] = 𝑑𝑑  

 

 

【3-3】由一些点值推断函数线性无关 

在Func(ℝ,ℝ)中,向量𝑓𝑓1, … ,𝑓𝑓𝑛𝑛线性无关⇔ ∃𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 ∈ ℝ 

使得det �𝑓𝑓𝑖𝑖�𝑎𝑎𝑗𝑗�� ≠ 0 

证:⇐:∃𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 ∈ ℝ,使得det �𝑓𝑓𝑖𝑖�𝑎𝑎𝑗𝑗�� ≠ 0 
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假设𝑓𝑓1, … , 𝑓𝑓𝑛𝑛线性相关,则存在𝜆𝜆1, … , 𝜆𝜆𝑛𝑛不全为零 

使得𝜆𝜆1𝑓𝑓1 + ⋯+ 𝜆𝜆𝑛𝑛𝑓𝑓𝑛𝑛 = 0 

于是对这个等式在𝑎𝑎1, … , 𝑎𝑎𝑛𝑛赋值 

则有�

𝑓𝑓1(𝑎𝑎1) 𝑓𝑓2(𝑎𝑎1) ⋯ 𝑓𝑓𝑛𝑛(𝑎𝑎1)
𝑓𝑓1(𝑎𝑎2) 𝑓𝑓2(𝑎𝑎2) ⋯ 𝑓𝑓𝑛𝑛(𝑎𝑎2)
⋮ ⋮ ⋱ ⋮

𝑓𝑓1(𝑎𝑎𝑛𝑛) 𝑓𝑓2(𝑎𝑎𝑛𝑛) ⋯ 𝑓𝑓𝑛𝑛(𝑎𝑎𝑛𝑛)

��

𝜆𝜆1
𝜆𝜆2
⋮
𝜆𝜆𝑛𝑛

� = �

0
0
⋮
0

� 

即此线性方程组有非零解(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛)𝑡𝑡 

这与det �𝑓𝑓𝑖𝑖�𝑎𝑎𝑗𝑗�� ≠ 0 矛盾  故𝑓𝑓1, … , 𝑓𝑓𝑛𝑛线性无关 

⇒若𝑓𝑓1, … ,𝑓𝑓𝑛𝑛线性无关,欲证∃𝑎𝑎1, … ,𝑎𝑎𝑛𝑛使得det �𝑓𝑓𝑖𝑖�𝑎𝑎𝑗𝑗�� ≠ 0 

对𝑛𝑛归纳,若𝑛𝑛 = 1,𝑓𝑓1(𝑥𝑥)线性无关 ⇒ 𝑓𝑓1(𝑥𝑥)不是零函数 

则∃𝑎𝑎1 ∈ ℝ,使得𝑓𝑓1(𝑎𝑎1) ≠ 0 

对𝑓𝑓1, … ,𝑓𝑓𝑘𝑘线性无关,且找到了𝑎𝑎1, … ,𝑎𝑎𝑘𝑘使得det �𝑓𝑓𝑖𝑖�𝑎𝑎𝑗𝑗�� ≠ 0 

对线性无关的𝑓𝑓1, … , 𝑓𝑓𝑘𝑘+1,对其中的𝑓𝑓1, … ,𝑓𝑓𝑘𝑘用归纳假设 

取𝑎𝑎1, … ,𝑎𝑎𝑘𝑘使得det �𝑓𝑓𝑖𝑖�𝑎𝑎𝑗𝑗�� ≠ 0,1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑘𝑘 

考虑𝐹𝐹(𝑥𝑥) = �
�

𝑓𝑓1(𝑎𝑎1) 𝑓𝑓2(𝑎𝑎1) ⋯ 𝑓𝑓𝑘𝑘(𝑎𝑎1) 𝑓𝑓𝑘𝑘+1(𝑎𝑎1)
𝑓𝑓1(𝑎𝑎1) 𝑓𝑓2(𝑎𝑎2) ⋯ 𝑓𝑓𝑘𝑘(𝑎𝑎2) 𝑓𝑓𝑘𝑘+1(𝑎𝑎2)
⋮ ⋮ ⋱ ⋮ ⋮

𝑓𝑓1(𝑎𝑎𝑘𝑘) 𝑓𝑓2(𝑎𝑎𝑘𝑘) ⋯ 𝑓𝑓𝑘𝑘(𝑎𝑎𝑘𝑘) 𝑓𝑓𝑘𝑘+1(𝑎𝑎𝑘𝑘)
𝑓𝑓1(𝑥𝑥) 𝑓𝑓2(𝑥𝑥) ⋯ 𝑓𝑓𝑘𝑘(𝑥𝑥) 𝑓𝑓𝑘𝑘+1(𝑥𝑥)

�
�
 

对最后一行展开,由𝐹𝐹(𝑥𝑥) = 𝑐𝑐1𝑓𝑓1(𝑥𝑥) +⋯+ 𝑐𝑐𝑘𝑘+1𝑓𝑓𝑘𝑘+1(𝑥𝑥) 

则𝑐𝑐𝑘𝑘+1 = det �𝑓𝑓𝑖𝑖�𝑎𝑎𝑗𝑗�� ≠ 0 

于是由𝑓𝑓1, … 𝑓𝑓𝑘𝑘+1线性无关可知𝐹𝐹(𝑥𝑥)不恒为零 

则∃𝑎𝑎𝑘𝑘+1 ∈ ℝ使得𝐹𝐹(𝑎𝑎𝑘𝑘+1) ≠ 0 
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【4-1】求子空间和与交的基 

设𝑢𝑢1����⃗ = (1,2,1)𝑡𝑡,𝑢𝑢2����⃗ = (1,1,−1)𝑡𝑡,𝑢𝑢3����⃗ = (1,3,3)𝑡𝑡  

𝑣𝑣1����⃗ = (1,2,2)𝑡𝑡,𝑣𝑣2����⃗ = (2,3,−1)𝑡𝑡,𝑣𝑣3����⃗ = (1,1,−3)𝑡𝑡 

𝑈𝑈 = ⟨𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ,𝑢𝑢3����⃗ ⟩,𝑉𝑉 = ⟨𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ,𝑣𝑣3����⃗ ⟩,求𝑈𝑈 + 𝑉𝑉和𝑈𝑈 ∩ 𝑉𝑉的基 

解:进行列变换 

(𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ,𝑢𝑢3����⃗ ) = �
1 1 1
2 1 3
1 −1 3

� → �
1 0 0
2 −1 1
1 −2 2

� → �
1 0 0
2 −1 0
1 −2 0

� 

∴ dim𝑈𝑈 = 2,可取𝑈𝑈 = ⟨𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ⟩ 

(𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ,𝑣𝑣3����⃗ ) = �
1 2 1
2 3 1
2 −1 −3

� → �
1 0 0
2 −1 −1
2 −5 −5

� → �
1 0 0
2 −1 0
2 −5 0

� 

∴ dim𝑉𝑉 = 2,可取𝑉𝑉 = ⟨𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ⟩ 

考虑(𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ,𝑣𝑣3����⃗ ) = �
1 1 1
2 1 1
1 −1 −3

� → �
1 0 0
2 −1 −1
1 −2 −4

� 

→ �
1 0 0
2 −1 0
1 −2 −2

�    ∴ dim(𝑈𝑈 + 𝑉𝑉) ≥ 3 

∵ 𝑈𝑈 + 𝑉𝑉 ⊂ ℝ3   ∴ dim(𝑈𝑈 + 𝑉𝑉) ≤ 3    

∴ dim(𝑈𝑈 + 𝑉𝑉) = 3,𝑢𝑢1����⃗ ,𝑢𝑢2����⃗ ,𝑣𝑣3����⃗是𝑈𝑈 + 𝑉𝑉的一组基 

由维数公式可得dim(𝑈𝑈 ∩ 𝑉𝑉) = dim𝑈𝑈 + dim𝑉𝑉 − dim(𝑈𝑈 + 𝑉𝑉) = 1 

令𝑥⃗𝑥 ∈ 𝑈𝑈 ∩ 𝑉𝑉,则可设𝑥⃗𝑥 = 𝛼𝛼1𝑢𝑢1����⃗ + 𝛼𝛼2𝑢𝑢2����⃗ = 𝛽𝛽1𝑣𝑣1����⃗ + 𝛽𝛽2𝑣𝑣2����⃗  

则有 �
𝛼𝛼1 + 𝛼𝛼2 − 𝛽𝛽1 − 2𝛽𝛽2 = 0

2𝛼𝛼1 + 𝛼𝛼2 − 2𝛽𝛽1 − 3𝛽𝛽2 = 0
𝛼𝛼1 − 𝛼𝛼2 − 2𝛽𝛽1 + 𝛽𝛽2 = 0

 

即�
1 1 −1 −2
2 1 −2 −3
1 −1 −2 1

��

𝛼𝛼1
𝛼𝛼2
𝛽𝛽1
𝛽𝛽2

� = �
0
0
0
� 

进行行变换 
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�
1 1 −1 −2
2 1 −2 −3
1 −1 −2 1

� → �
1 1 −1 −2
0 −1 0 1
0 −2 −1 3

� → �
1 1 −1 −2
0 −1 0 1
0 0 −1 1

� 

则可解得(𝛼𝛼1,𝛼𝛼2,𝛽𝛽1,𝛽𝛽2) = 𝑘𝑘(2,1,1,1) 

则有 2𝑢𝑢1����⃗ + 𝑢𝑢2����⃗ = 𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ ∈ 𝑈𝑈 ∩ 𝑉𝑉,显然 2𝑢𝑢1����⃗ + 𝑢𝑢2����⃗ ≠ 0 

则 2𝑢𝑢1����⃗ + 𝑢𝑢2����⃗为𝑈𝑈 ∩ 𝑉𝑉的基 

【4-2】商空间与线性映射 

(1)对线性空间𝑉𝑉,𝑊𝑊 ⊆ 𝑉𝑉是子空间

𝑉𝑉/𝑊𝑊= {𝑣⃗𝑣 +𝑊𝑊|𝑣⃗𝑣 ∈ 𝑉𝑉}

𝑣⃗𝑣 +𝑊𝑊是一个记号,表示集合𝑣⃗𝑣 + 𝑊𝑊 = {𝑣⃗𝑣 + 𝑤𝑤��⃗ |𝑤𝑤��⃗ ∈ 𝑊𝑊},称为一个陪集 

故商空间是一个集合的集合,𝑉𝑉/𝑊𝑊⊆ 𝑉𝑉的写法是错误的

𝑉𝑉/𝑊𝑊可由等价关系给出:在𝑉𝑉上定义𝑣𝑣1����⃗ ~𝑣𝑣2����⃗ ⇔ 𝑣𝑣1����⃗ − 𝑣𝑣2����⃗ ∈ 𝑊𝑊

则可验证~为等价关系,从而𝑉𝑉/𝑊𝑊= 𝑉𝑉/~,而每个陪集是一个等价类

如𝑣⃗𝑣 ∈ ℝ2, 𝑣⃗𝑣 ≠ 0�⃗ ,𝑊𝑊 = ⟨𝑣⃗𝑣⟩是一条线

而商空间是𝑊𝑊的所有平行线的集合 

值得注意的是,可以对陪集定义运算 

(𝑣𝑣1����⃗ + 𝑊𝑊) + (𝑣𝑣2����⃗ + 𝑊𝑊) ≔ (𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ ) + 𝑊𝑊

𝑘𝑘(𝑣𝑣1����⃗ + 𝑊𝑊) = 𝑘𝑘𝑣𝑣1����⃗ +𝑊𝑊

几何上来看,就是不同的线也可以做线性运算 

294／363



习题课选集 

 

(2)如何从几何上理解𝜑𝜑 ∈ Hom(𝑉𝑉,𝑊𝑊) ,𝑉𝑉/ker𝜑𝜑≃ im𝜑𝜑 

例:𝜑𝜑:ℝ2 ≔ 𝑉𝑉1 → ℝ2 ≔ 𝑉𝑉2, (𝑥𝑥, 𝑦𝑦) ↦ �
𝑥𝑥 − 𝑦𝑦
√2

, 0� = (𝑥𝑥′,𝑦𝑦′) 

  

观察可知𝜑𝜑将𝑅𝑅2中的任何点到ker𝜑𝜑的有向距离定义为𝑥𝑥′ 

令𝑦𝑦′总为零的线性映射,于是 im𝜑𝜑 = 𝑥𝑥′轴 

对陪集𝑣⃗𝑣 + ker𝜑𝜑即一条ker𝜑𝜑的平行线 

它上面任何一点到ker𝜑𝜑的距离都为一个固定值 

这距离不变性从代数上解释,即有分解 

𝑉𝑉1
𝜑𝜑
→ im𝜑𝜑 ⊆ 𝑉𝑉2

↘ ↗
 𝜋𝜋 𝑉𝑉1/ker𝜑𝜑  𝜑𝜑�  

 

且对每个实数𝑑𝑑,存在唯一的一条ker𝜑𝜑的平行线𝑣⃗𝑣 + ker𝜑𝜑�⃗  

使得𝜑𝜑(𝑣⃗𝑣) = (𝑑𝑑, 0) 

存在性即 𝑉𝑉1/ker𝜑𝜑→ im𝜑𝜑是满射 

唯一性即 𝑉𝑉1/ker𝜑𝜑→ im𝜑𝜑是单射 

所以在此例中𝑉𝑉1/ker𝜑𝜑≃ im𝜑𝜑 

即是ker𝜑𝜑的平行线与实数有一个一一对应的关系 
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【5-1】正合序列 

假设存在一列有限维线性空间与映射 

0
𝜑𝜑0��𝑉𝑉1

𝜑𝜑1��𝑉𝑉2
𝜑𝜑2��⋯

𝜑𝜑𝑛𝑛−1�⎯⎯�𝑉𝑉𝑛𝑛
𝜑𝜑𝑛𝑛��0 

其中𝜑𝜑0 = 𝜑𝜑𝑛𝑛 = 0,同时满足ker𝜑𝜑𝑖𝑖 = im𝜑𝜑𝑖𝑖−1 , 𝑖𝑖 = 1, … ,𝑛𝑛 

求证�(−1)𝑖𝑖 dim𝑉𝑉𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0 

证:对每个𝑉𝑉𝑖𝑖用维数公式,得 

dim𝑉𝑉𝑖𝑖 = dim ker𝜑𝜑𝑖𝑖 + dim im𝜑𝜑𝑖𝑖 = dim ker𝜑𝜑𝑖𝑖 + dim ker𝜑𝜑𝑖𝑖+1 

则− dim𝑉𝑉1 = −dim ker𝜑𝜑𝑖𝑖 − dim ker𝜑𝜑2 

dim𝑉𝑉2 = dim ker𝜑𝜑2 + dim ker𝜑𝜑3 

… 

(−1)𝑛𝑛−1 dim𝑉𝑉𝑛𝑛−1 = (−1)𝑛𝑛−1 dim ker𝜑𝜑𝑛𝑛−1 + (−1)𝑛𝑛−1 dim ker𝜑𝜑𝑛𝑛 

(−1)𝑛𝑛 dim𝑉𝑉𝑛𝑛 = (−1)𝑛𝑛 dim ker𝜑𝜑𝑛𝑛 

相加消去即得�(−1)𝑖𝑖 dim𝑉𝑉𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= −dim ker𝜑𝜑1 

然而 ∵ 𝜑𝜑0是零映射,∴ ker𝜑𝜑1 = im𝜑𝜑0 = �0�⃗ � 

则�(−1)𝑖𝑖 dim𝑉𝑉𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0 

注:这样的线性空间的线性映射的序列被称为正合序列 

在拓扑学,代数几何,理论物理中常见 

如著名的欧拉公式𝑉𝑉 − 𝐸𝐸 + 𝐹𝐹 = 2 可利用图论结合此法证明 
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【6-1】求对偶基 

𝑣𝑣1����⃗ = (1,0,−1)𝑡𝑡,𝑣𝑣2����⃗ = (1,1,1)𝑡𝑡,𝑣𝑣3����⃗ = (0,1,1)𝑡𝑡构成ℝ3的一组基 

求其对偶基 

解:设𝐴𝐴 = (𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ,𝑣𝑣3����⃗ ) = �
1 1 0
0 1 1
−1 1 1

� 

由讲义第一章命题 9.1,𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ,𝑣𝑣3����⃗的对偶基满足 

(𝑣𝑣1∗,𝑣𝑣2∗,𝑣𝑣3∗) = (𝑋𝑋1,𝑋𝑋2,𝑋𝑋3)(𝐴𝐴𝑡𝑡)−1 

于是仅需计算(𝐴𝐴𝑡𝑡)−1 = �
0 1 −1
1 −1 2
−1 1 −1

� ,过程略 

从而𝑣𝑣1∗ = 𝑋𝑋2 − 𝑋𝑋3,𝑣𝑣2∗ = 𝑋𝑋1 − 𝑋𝑋2 + 𝑋𝑋3,𝑣𝑣3∗ = −𝑋𝑋1 + 2𝑋𝑋2 − 𝑋𝑋3 

 

【6-2】线性函数可表为迹函数 

证明𝑉𝑉上的每一个线性函数𝑓𝑓必形如𝑓𝑓(𝑋𝑋) = tr𝐴𝐴𝐴𝐴 

其中矩阵𝐴𝐴 = 𝐴𝐴𝑓𝑓是唯一确定的 

证:设𝑒𝑒𝑖𝑖𝑖𝑖为第𝑖𝑖行第𝑗𝑗列为 1,其余位置为 0 的矩阵 

则知 tr�𝑒𝑒𝑗𝑗𝑗𝑗𝑋𝑋� = 𝑥𝑥𝑖𝑖𝑖𝑖 ,那么𝑋𝑋 = � 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖
1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛

 

特别地, tr�𝑒𝑒𝑗𝑗𝑗𝑗𝑒𝑒𝑠𝑠𝑠𝑠� = 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗当且仅当𝑖𝑖 = 𝑠𝑠且𝑗𝑗 = 𝑡𝑡时为 1 

于是𝑓𝑓𝑖𝑖𝑖𝑖(𝑋𝑋) = tr�𝑒𝑒𝑗𝑗𝑗𝑗𝑋𝑋�为𝑒𝑒𝑖𝑖𝑖𝑖的对偶基 

于是∀𝑓𝑓 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)∗,𝑓𝑓 = ∑𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖   𝑎𝑎𝑖𝑖𝑖𝑖只与𝑓𝑓有关 

令𝐴𝐴 = � 𝑎𝑎𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖
1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛

,则𝐴𝐴由𝑓𝑓唯一确定 

且𝑓𝑓(𝑥𝑥) = � 𝑎𝑎𝑖𝑖𝑖𝑖 tr�𝑒𝑒𝑗𝑗𝑗𝑗𝑋𝑋�
1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛

= tr�� � 𝑎𝑎𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖
1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛

�𝑋𝑋� = tr𝐴𝐴𝐴𝐴    ∎ 
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【6-3】核相等则对偶向量线性相关 

设𝑉𝑉是线性空间,𝑓𝑓,𝑔𝑔 ∈ 𝑉𝑉∗,且 ker𝑓𝑓 = ker𝑔𝑔 

证明:必有纯量𝜆𝜆使得𝑔𝑔 = 𝜆𝜆𝜆𝜆 

法 1:若 ker𝑓𝑓 = ker𝑔𝑔 = 𝑉𝑉,则𝑓𝑓 = 𝑔𝑔 = 0 

不妨取𝜆𝜆 = 1,则𝑓𝑓 = 𝜆𝜆𝜆𝜆 

若 ker𝑓𝑓 = ker𝑔𝑔 = 𝑊𝑊 ⊊ 𝑉𝑉,则𝑉𝑉/𝑊𝑊≃ im𝑓𝑓 ≃ im𝑔𝑔 ⊆ 𝐹𝐹 

且dim𝑉𝑉/𝑊𝑊 ≠ 0,则dim𝑉𝑉/𝑊𝑊 = dim𝐹𝐹 = 1 

由映射分解,存在𝜋𝜋:𝑉𝑉 → 𝑉𝑉/𝑊𝑊, 𝑓𝑓̅, 𝑔̅𝑔:𝑉𝑉/𝑊𝑊→ 𝐹𝐹 

使得𝑓𝑓 = 𝑓𝑓̅ ∘ 𝜋𝜋,𝑔𝑔 = 𝑔̅𝑔 ∘ 𝜋𝜋 

且𝑓𝑓,𝑔𝑔非零⇒ 𝑓𝑓̅, 𝑔̅𝑔非零 

∵ dim𝑉𝑉/𝑊𝑊 = 1 ∴ dim Hom(𝑉𝑉/𝑊𝑊,𝐹𝐹) = 1 

于是𝑓𝑓,𝑔𝑔一定线性相关    ∎ 

 

法 2:令𝑈𝑈1 = ⟨𝑓𝑓⟩,𝑈𝑈2 = ⟨𝑔𝑔⟩是𝑉𝑉∗的子空间 

则由定义,𝑈𝑈1∘ = {𝑥⃗𝑥 ∈ 𝑉𝑉|𝑓𝑓(𝑥⃗𝑥) = 0} = ker 𝑓𝑓 

同理,𝑈𝑈2∘ = ker𝑔𝑔      于是𝑈𝑈1∘ = 𝑈𝑈2∘ 

然而由讲义定理 9.5(𝑖𝑖𝑖𝑖), ⟨𝑓𝑓⟩ = 𝑈𝑈1 = (𝑈𝑈1∘)∘, ⟨𝑔𝑔⟩ = 𝑈𝑈2 = (𝑈𝑈2∘)∘ 

于是⟨𝑓𝑓⟩ = ⟨𝑔𝑔⟩,即∃𝜆𝜆,𝑓𝑓 = 𝜆𝜆𝜆𝜆      ∎ 

注:定理 9.5 要求𝑉𝑉有限维的情况;而法 1 对无限维也适用 
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【6-4】存在基使得对偶函数能取一坐标 

设𝑉𝑉是𝑛𝑛维线性空间,𝑓𝑓 ∈ 𝑉𝑉∗ ∖ {0} 

则存在𝑉𝑉的一组基{𝑒𝑒𝚤𝚤��⃗ }使得𝑓𝑓(𝑥𝑥1𝑒𝑒1���⃗ + ⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ) = 𝑥𝑥1 

证:法 1:用自然同构𝑉𝑉 ≃ 𝑉𝑉∗∗ 

由于𝑓𝑓不是零函数,所以由基扩充 

可将𝑓𝑓扩充为𝑉𝑉∗的一组基𝑓𝑓1, … , 𝑓𝑓𝑛𝑛,其中𝑓𝑓 = 𝑓𝑓1 

现在取𝑓𝑓1, … ,𝑓𝑓𝑛𝑛的一组对偶基𝑓𝑓1∗, … 𝑓𝑓𝑛𝑛∗ ∈ 𝑉𝑉∗∗,𝑓𝑓𝑖𝑖∗�𝑓𝑓𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑖𝑖  

然而,由自然同构𝑉𝑉 ≃ 𝑉𝑉∗∗ 

则存在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗为𝑉𝑉的一组基,使得𝑓𝑓𝑖𝑖∗ = ℰ𝑒𝑒𝑖𝑖 

于是𝑓𝑓𝑖𝑖∗(𝑓𝑓1) = 𝑓𝑓1(𝑒𝑒𝑖𝑖) = 𝛿𝛿1𝑖𝑖  

那么𝑓𝑓(𝑥𝑥1𝑒𝑒1���⃗ +⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ) = �𝑥𝑥𝑖𝑖𝛿𝛿1𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝑥𝑥1     ∎ 

法 2:𝑓𝑓 ∈ 𝑉𝑉∗ ∖ {0},则 im𝑓𝑓 = 𝐹𝐹 

于是dim ker 𝑓𝑓 = 𝑛𝑛 − 1 

取𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ , … , 𝑒𝑒𝑛𝑛����⃗为ker 𝑓𝑓的一组基,并扩充一个向量𝑒𝑒1���⃗
′
 

使得𝑒𝑒1���⃗
′, 𝑒𝑒2���⃗ , … , 𝑒𝑒𝑛𝑛����⃗为𝑉𝑉的一组基 

∵ 𝑒𝑒1���⃗
′ ∉ ker𝑓𝑓则𝑓𝑓�𝑒𝑒1���⃗

′� ≠ 0  令𝑒𝑒1���⃗ =
1

𝑓𝑓�𝑒𝑒1���⃗
′�

 𝑒𝑒1���⃗
′
 

则𝑓𝑓(𝑒𝑒1���⃗ ) = 1 

于是𝑓𝑓(𝑥𝑥1𝑒𝑒1���⃗ +⋯+ 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛����⃗ ) = 𝑥𝑥1𝑓𝑓(𝑒𝑒1���⃗ ) + �𝑥𝑥𝑖𝑖𝑓𝑓(𝑒𝑒𝑖𝑖)
𝑛𝑛

𝑖𝑖=2

= 𝑥𝑥1   ∎ 
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【6-5】合同规范型的行列变换算法 

已经证明了若𝐴𝐴对称,则一定存在可逆方阵 

使得𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 = 𝐷𝐷 = diag(𝑑𝑑1, … ,𝑑𝑑𝑟𝑟 , 0, … ,0) , d1, … ,𝑑𝑑𝑟𝑟 ∈ 𝐹𝐹 

考虑分块矩阵 

�𝐶𝐶 𝑂𝑂
𝑂𝑂 𝐸𝐸�

𝑡𝑡
�𝐴𝐴 𝐸𝐸
𝐸𝐸 𝑂𝑂��

𝐶𝐶 𝑂𝑂
𝑂𝑂 𝐸𝐸� = �𝐶𝐶

𝑡𝑡 𝑂𝑂
𝑂𝑂 𝐸𝐸

� �𝐴𝐴 𝐸𝐸
𝐸𝐸 𝑂𝑂��

𝐶𝐶 𝑂𝑂
𝑂𝑂 𝐸𝐸� 

= �𝐶𝐶
𝑡𝑡𝐴𝐴𝐴𝐴 𝐶𝐶𝑡𝑡
𝐶𝐶 𝑂𝑂

� 

�𝐴𝐴 𝐸𝐸
𝐸𝐸 𝑂𝑂�右乘 �𝐶𝐶 𝑂𝑂

𝑂𝑂 𝐸𝐸�相当于对 �𝐴𝐴 𝐸𝐸
𝐸𝐸 𝑂𝑂�的前𝑛𝑛列做了一系列列变换 

�𝐴𝐴 𝐸𝐸
𝐸𝐸 𝑂𝑂�左乘 �𝐶𝐶 𝑂𝑂

𝑂𝑂 𝐸𝐸�
𝑡𝑡
相当于对 �𝐴𝐴 𝐸𝐸

𝐸𝐸 𝑂𝑂�的前𝑛𝑛行做了相同的行变换 

于是,若能对 �𝐴𝐴 𝐸𝐸
𝐸𝐸 𝑂𝑂�做若干对相同的行列变换使左上角变为对角 

则左上角为𝐴𝐴的规范型,且左下角给出了𝐶𝐶 

特别地,可以只对 �𝐴𝐴𝐸𝐸�作变换 

例:设𝐴𝐴 = �
1 1 −2
1 5 0
−2 0 4

� ,求𝐶𝐶使得𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴为对角矩阵 

⎝

⎜⎜
⎛

1 1 −2
1 5 0
−2 0 4
1

1
1 ⎠

⎟⎟
⎞
→

⎝

⎜⎜
⎛

1 0 −2
0 4 2
−2 2 4
1 −1

1
1 ⎠

⎟⎟
⎞
→

⎝

⎜⎜
⎛

1 0 0
0 4 2
0 2 0
1 −1 2

1
1⎠

⎟⎟
⎞

 

→

⎝

⎜
⎜
⎛

1 0 0
0 4 0
0 0 −1
1 −1 5/2

1 −1/2
1 ⎠

⎟
⎟
⎞
→

⎝

⎜⎜
⎛

1 0 0
0 4 0
0 0 −4
1 −1 5

1 −1
2 ⎠

⎟⎟
⎞

 

注意,乘以一个常数也需要对上方矩阵做两次 

即可取𝐶𝐶 = �
1 −1 5
0 1 −1
0 0 2

� ,𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 = �
1

4
−4

� 
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【7-1】二次型矩阵换基的转换公式 

设三维线性空间𝑉𝑉上的双线性型𝑓𝑓在基𝑒𝑒1���⃗ ,𝑒𝑒2���⃗ , 𝑒𝑒3���⃗下矩阵为�
1 2 3
4 5 6
7 8 9

 � 

求𝑓𝑓在另一组基𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ , 𝜀𝜀3���⃗下的矩阵 

其中𝜀𝜀1���⃗ = 𝑒𝑒1���⃗ − 𝑒𝑒2���⃗ , 𝜀𝜀2���⃗ = 𝑒𝑒1���⃗ + 𝑒𝑒3���⃗ , 𝜀𝜀3���⃗ = 𝑒𝑒1���⃗ + 𝑒𝑒2���⃗ + 𝑒𝑒3���⃗  

解:已证若{𝑒𝑒𝚤𝚤��⃗ }到{𝜀𝜀𝚤𝚤��⃗ }的转换矩阵为𝐶𝐶 

即(𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝐶𝐶 

且双线性型𝑓𝑓在{𝑒𝑒𝚤𝚤��⃗ }下矩阵为𝐴𝐴, 

则𝑓𝑓在{𝜀𝜀𝚤𝚤��⃗ }下矩阵为𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 

此处𝐶𝐶 = �
1 1 1
−1 0 1
0 1 1

� ,𝐴𝐴 = �
1 2 3
4 5 6
7 8 9

� 

则𝑓𝑓在{𝜀𝜀𝚤𝚤��⃗ }下矩阵为𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 = �
0 −6 −9
−2 20 30
−3 30 45

� 

 

【7-2】对称矩阵秩 1 分解 

求证:秩为𝑟𝑟的对称矩阵可以写成𝑟𝑟个秩为 1 的对称矩阵之和 

证:令𝐶𝐶可逆使得𝐶𝐶𝑡𝑡𝐴𝐴𝐴𝐴 = diag(𝑑𝑑1, … ,𝑑𝑑𝑟𝑟 , 0, … ,0) = 𝐷𝐷1 + ⋯+ 𝐷𝐷𝑟𝑟 

其中𝐷𝐷𝑖𝑖 = diag(0, … ,0,𝑑𝑑𝑖𝑖 , 0, … ,0) ,则 rank𝐷𝐷𝑖𝑖 = 1 

则𝐴𝐴 = (𝐶𝐶−1)𝑡𝑡(𝐷𝐷1 + ⋯+ 𝐷𝐷𝑟𝑟)𝐶𝐶−1 

= (𝐶𝐶−1)𝑡𝑡𝐷𝐷1𝐶𝐶−1 + ⋯+ (𝐶𝐶−1)𝑡𝑡𝐷𝐷𝑟𝑟𝐶𝐶−1 

注意 rank((𝐶𝐶−1)𝑡𝑡𝐷𝐷𝑖𝑖𝐶𝐶−1) = rank𝐷𝐷𝑖𝑖 = 1 

于是命题得证       ∎ 
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【7-3】复合二次型惯性指数减小 

设𝑓𝑓(𝑥⃗𝑥) = 𝑙𝑙12(𝑥⃗𝑥) + ⋯+ 𝑙𝑙𝑠𝑠2(𝑥⃗𝑥)− 𝑙𝑙𝑠𝑠+12 (𝑥⃗𝑥)−⋯− 𝑙𝑙𝑠𝑠+𝑡𝑡2 (𝑥⃗𝑥)为ℝ𝑛𝑛上二次型 

其中𝑙𝑙𝑖𝑖(𝑥⃗𝑥) = 𝑎𝑎𝑖𝑖1𝑥𝑥1 + ⋯+ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑛𝑛 

求证:𝑓𝑓的正惯性指数 ≤ 𝑠𝑠 

证:根据惯性定理,一定存在一个可逆线性变换𝑇𝑇,使得𝑦⃗𝑦 = 𝑇𝑇𝑥⃗𝑥 

线性变换将𝑓𝑓化为规范型,𝑝𝑝, 𝑞𝑞为𝑓𝑓的正、负惯性指数 

即𝑓𝑓(𝑇𝑇−1𝑦⃗𝑦) = 𝑓𝑓(𝑥⃗𝑥) ⇒ 

𝑦𝑦12 + ⋯+ 𝑦𝑦𝑝𝑝2 − 𝑦𝑦𝑝𝑝+12 − ⋯− 𝑦𝑦𝑝𝑝+𝑞𝑞2  

= 𝑙𝑙12(𝑥⃗𝑥) + ⋯+ 𝑙𝑙𝑠𝑠2(𝑥⃗𝑥)− 𝑙𝑙𝑠𝑠+12 (𝑥⃗𝑥)− 𝑙𝑙𝑠𝑠+𝑡𝑡2 (𝑥⃗𝑥)      [∗] 

假设𝑝𝑝 > 𝑠𝑠,则考虑到𝑙𝑙1(𝑥⃗𝑥) = ⋯ = 𝑙𝑙𝑠𝑠(𝑥⃗𝑥) = 0 = 𝑦𝑦𝑝𝑝+1 = ⋯𝑦𝑦𝑛𝑛 

是关于𝑛𝑛个变元𝑥𝑥1, … ,𝑥𝑥𝑛𝑛的齐次线性方程组,方程数为𝑠𝑠 + 𝑛𝑛 − 𝑝𝑝 

而𝑠𝑠 − 𝑝𝑝 < 0 ⇒ 𝑠𝑠 + 𝑛𝑛 − 𝑝𝑝 < 𝑛𝑛 ⇒方程组有非零解𝑥𝑥0����⃗  

对[∗]式两端应用𝑥𝑥0����⃗ ,设𝑦𝑦0����⃗ = 𝑇𝑇𝑥𝑥0����⃗ ≠ 0�⃗  

得𝑦𝑦012 + ⋯+ 𝑦𝑦0𝑝𝑝2 = −𝑙𝑙𝑠𝑠+12 (𝑥⃗𝑥)− 𝑙𝑙𝑠𝑠+𝑡𝑡2 (𝑥⃗𝑥) 

只能有𝑦𝑦01 = ⋯ = 𝑦𝑦0𝑝𝑝 = 0 ⇒ 𝑦⃗𝑦 = 0,矛盾 

因此假设不成立,𝑝𝑝 ≤ 𝑠𝑠   ∎ 
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【8-1】二次型与对偶空间 

设𝑉𝑉是𝐹𝐹上的有限维线性空间,𝑓𝑓 ∈ ℒ2(𝑉𝑉,𝐹𝐹) 

令𝜑𝜑:𝑉𝑉 → 𝑉𝑉∗, 𝑣⃗𝑣 → 𝑓𝑓𝑣𝑣,其中𝑓𝑓𝑣𝑣(𝑥⃗𝑥) = 𝑓𝑓(𝑥⃗𝑥, 𝑣⃗𝑣),证明: 

(𝑖𝑖)𝜑𝜑是线性映射 

(𝑖𝑖𝑖𝑖) dim𝐹𝐹 im𝜑𝜑 = rank 𝑓𝑓 

(𝑖𝑖𝑖𝑖𝑖𝑖)𝜑𝜑是线性同构⇔ rank 𝑓𝑓 = dim𝐹𝐹 𝑉𝑉 

证:由于𝑓𝑓对第二个变量线性,则𝜑𝜑是良定义的映射 

(𝑖𝑖)∀𝑥⃗𝑥, 𝑓𝑓𝑎𝑎𝑎𝑎+𝑏𝑏𝑏𝑏(𝑥⃗𝑥) = 𝑓𝑓(𝑥⃗𝑥,𝑎𝑎𝑣⃗𝑣 + 𝑏𝑏𝑤𝑤��⃗ ) = 𝑎𝑎𝑎𝑎(𝑥⃗𝑥, 𝑣⃗𝑣) + 𝑏𝑏𝑏𝑏(𝑥⃗𝑥,𝑤𝑤��⃗ ) 

= (𝑎𝑎𝑓𝑓𝑣𝑣 + 𝑏𝑏𝑓𝑓𝑤𝑤)(𝑥⃗𝑥) 

⇒ 𝜑𝜑(𝑎𝑎𝑣⃗𝑣 + 𝑏𝑏𝑤𝑤��⃗ ) = 𝑓𝑓𝑎𝑎𝑎𝑎+𝑏𝑏𝑏𝑏 = 𝑎𝑎𝑓𝑓𝑣𝑣 + 𝑏𝑏𝑓𝑓𝑤𝑤 = 𝑎𝑎𝑎𝑎(𝑣⃗𝑣) + 𝑏𝑏𝑏𝑏(𝑤𝑤��⃗ ) 

∴ 𝜑𝜑线性 

 

(𝑖𝑖𝑖𝑖)取𝑉𝑉的一组基{𝑒𝑒𝚤𝚤��⃗ } 

则由于𝜑𝜑线性,故有 im𝜑𝜑 = ⟨𝜑𝜑(𝑒𝑒1���⃗ ), … ,𝜑𝜑(𝑒𝑒𝑛𝑛����⃗ )⟩ = �𝑓𝑓𝑒𝑒1 , … ,𝑓𝑓𝑒𝑒𝑛𝑛� ⊆ 𝑉𝑉∗ 

由第一章推论 9.4, dim im𝜑𝜑 = rank �𝑓𝑓𝑒𝑒𝑖𝑖�𝑒𝑒𝚥𝚥��⃗ �� = rank 𝑓𝑓�𝑒𝑒𝚤𝚤��⃗ ,𝑒𝑒𝚥𝚥��⃗ � = rank 𝑓𝑓 

 

(𝑖𝑖𝑖𝑖𝑖𝑖) ⇐:由(𝑖𝑖𝑖𝑖), rank 𝑓𝑓 = dim im𝜑𝜑 

由条件, rank 𝑓𝑓 = dim𝑉𝑉 

而𝑉𝑉有限维,则dim𝑉𝑉 = dim𝑉𝑉∗ 

则dim im𝜑𝜑 = dim𝑉𝑉∗ ,∵ im𝜑𝜑 ⊆ 𝑉𝑉∗    ∴ im𝜑𝜑 = 𝑉𝑉∗ 

即𝜑𝜑是满射,且dim ker𝜑𝜑 = dim𝑉𝑉 − dim im𝜑𝜑 = 0 ⇒ ker𝜑𝜑 = �0�⃗ � 

则𝜑𝜑是单射,从而𝜑𝜑是线性同构 

⇒:𝜑𝜑线性同构 ⇒ 𝜑𝜑满射 ⇒ dim im𝜑𝜑 = dim𝑉𝑉∗ = dim𝑉𝑉 

由(𝑖𝑖𝑖𝑖), rank 𝑓𝑓 = dim im𝜑𝜑 ⇒ rank𝑓𝑓 = dim𝑉𝑉      ∎ 
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【8-2】合同关系等价类个数 

已知合同关系是𝑆𝑆𝑛𝑛(ℝ)�𝑛𝑛阶对称矩阵�上的等价关系 

试问这个关系有多少个等价类? 

解:由惯性定理,两个𝑛𝑛阶实对称矩阵合同 

⇔它们有相同的秩和正惯性指数 

则合同关系的等价类由秩和正惯性指数刻画 

秩 0−正惯性指数 0 ⇒ 1 类 

秩 1−正惯性指数 0,1 ⇒ 2 类 

…. 

秩𝑟𝑟 −正惯性指数 0,1, … , 𝑟𝑟 ⇒ 𝑟𝑟 + 1 类 

… 

秩𝑛𝑛 −正惯性指数 0,1, … ,𝑛𝑛 ⇒ 𝑛𝑛 + 1 类 

因此共有
(𝑛𝑛 + 1)(𝑛𝑛 + 2)

2
类 

 

 

 

【8-3】Jacobi 公式应用 

用𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎公式,求下列二次型的规范型 

𝑞𝑞(𝑥⃗𝑥) = �𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

+ � 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
1≤𝑖𝑖<𝑗𝑗≤𝑛𝑛

 

解:易知𝑞𝑞在标准基下的矩阵为𝐴𝐴 = �

1 1/2 ⋯ 1/2
1/2 1 ⋯ 1/2
⋮ ⋮ ⋱ ⋮

1/2 1/2 ⋯ 1

� 

由𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎公式,只要△𝑘𝑘=△𝑘𝑘 (𝐴𝐴) ≠ 0,𝑘𝑘 = 1, … ,𝑛𝑛 
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则𝑞𝑞有规范型𝑞𝑞(𝑦⃗𝑦) =
△1

△0
𝑦𝑦12 + ⋯+

△𝑛𝑛

△𝑛𝑛−1
𝑦𝑦𝑛𝑛2 

下面计算△𝑘𝑘 (𝐴𝐴).注意到相似性,只需计算△𝑛𝑛 (𝐴𝐴) = 𝑓𝑓(𝑛𝑛) 

则△𝑘𝑘 (𝐴𝐴) = 𝑓𝑓(𝑘𝑘) 

又△𝑛𝑛 (𝐴𝐴) = |𝐴𝐴| = �

1 1/2 ⋯ 1/2
1/2 1 ⋯ 1/2
⋮ ⋮ ⋱ ⋮

1/2 1/2 ⋯ 1

� 

= �
�

1 1/2 ⋯ 1/2 0
1/2 1 ⋯ 1/2 0
⋮ ⋮ ⋱ ⋮ 0

1/2 1/2 ⋯ 1 0
1/2 1/2 ⋯ 1/2 1

�
� = �

�

1/2 0 ⋯ 0 −1
0 1/2 ⋯ 0 −1
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1/2 −1

1/2 1/2 ⋯ 1/2 1

�
� 

= �
�

1/2 0 ⋯ 0 0
0 1/2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1/2 0

1/2 1/2 ⋯ 1/2 𝑛𝑛 + 1

�
� =

𝑛𝑛 + 1
2𝑛𝑛

 

则△𝑘𝑘=
𝑘𝑘 + 1

2𝑘𝑘
,于是𝑞𝑞有规范型𝑞𝑞(𝑦⃗𝑦) = 𝑦𝑦12 +

3
4
𝑦𝑦22 + ⋯+

𝑛𝑛 + 1
2𝑛𝑛

𝑦𝑦𝑛𝑛2 

注:规范基𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗与标准基的转换矩阵为 

⎝

⎜
⎛

1 −1/2 −1/3 ⋯ −1/𝑛𝑛
1 −1/3 ⋯ −1/𝑛𝑛

1 ⋯ −1/𝑛𝑛
⋱ ⋮

1 ⎠

⎟
⎞

 

 

【8-4】二次型在基上取 0 及物理意义 

设𝑞𝑞是ℝ𝑛𝑛上的二次型,且存在𝑥⃗𝑥, 𝑦⃗𝑦 ∈ ℝ𝑛𝑛,使得𝑞𝑞(𝑥⃗𝑥) > 0,𝑞𝑞(𝑦⃗𝑦) < 0 

试证存在𝑧𝑧 ∈ ℝ𝑛𝑛, 𝑧𝑧 ≠ 0 使得𝑞𝑞(𝑧𝑧) = 0 

证:由惯性定理,存在一组基𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗使得若𝑣⃗𝑣 = 𝑣𝑣1𝜀𝜀1���⃗ + ⋯+ 𝑣𝑣𝑛𝑛𝜀𝜀𝑛𝑛���⃗  

则𝑞𝑞(𝑣𝑣1, … ,𝑣𝑣𝑛𝑛) = 𝑣𝑣12 +⋯+ 𝑣𝑣𝑠𝑠2 − 𝑣𝑣𝑠𝑠+12 − ⋯− 𝑣𝑣𝑠𝑠+𝑡𝑡2  

现在存在𝑥⃗𝑥, 𝑦⃗𝑦使得𝑞𝑞(𝑥⃗𝑥) > 0,𝑞𝑞(𝑦⃗𝑦) < 0,则𝑠𝑠, 𝑡𝑡 > 0 

于是不妨取𝑧𝑧 = 𝜀𝜀1���⃗ − 𝜀𝜀𝑠𝑠+1��������⃗ ,即𝑣𝑣1 = 1,𝑣𝑣𝑠𝑠+1 = −1,其他坐标 = 0 
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从而𝑞𝑞(𝑧𝑧) = 12 + 0 + ⋯+ 0 − 12 − 0 −⋯− 0 = 0,且𝑧𝑧 ≠ 0�⃗    ∎ 

另外,记𝑟𝑟 ≔ rank 𝑞𝑞 = 𝑠𝑠 + 𝑡𝑡,考虑𝜀𝜀𝑘𝑘���⃗ , 𝑘𝑘 ∈ {𝑟𝑟 + 1, … ,𝑛𝑛} 

令𝛼𝛼𝚤𝚤𝚤𝚤�����⃗ = 𝜀𝜀𝚤𝚤��⃗ + 𝜀𝜀𝚥𝚥��⃗ ,𝛽𝛽𝚤𝚤𝚤𝚤�����⃗ = 𝜀𝜀𝚤𝚤��⃗ − 𝜀𝜀𝚥𝚥��⃗ , 𝑖𝑖 ∈ {1, … , 𝑠𝑠}, 𝑗𝑗 ∈ {𝑠𝑠 + 1, … , 𝑡𝑡} 

于是自然有𝑞𝑞�𝛼𝛼𝚤𝚤𝚤𝚤�����⃗ �  = 𝑞𝑞�𝛽𝛽𝚤𝚤𝚤𝚤�����⃗ � = 𝑞𝑞(𝜀𝜀𝑘𝑘���⃗ ) = 0 

注意,由于𝜀𝜀𝚤𝚤��⃗ =
1
2
�𝛼𝛼𝚤𝚤𝚤𝚤�����⃗ + 𝛽𝛽𝚤𝚤𝚤𝚤�����⃗ �, 𝜀𝜀𝚥𝚥��⃗ =

1
2
�𝛼𝛼𝚤𝚤𝚤𝚤�����⃗ − 𝛽𝛽𝚤𝚤𝚤𝚤�����⃗ �, 

𝑖𝑖 ∈ {1, … , 𝑠𝑠}, 𝑗𝑗 ∈ {𝑠𝑠 + 1, … , 𝑡𝑡} 

从而�𝛼𝛼𝚤𝚤𝚤𝚤�����⃗ ,𝛽𝛽𝚤𝚤𝚤𝚤�����⃗ , 𝜀𝜀𝑘𝑘���⃗ �与{𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ }等价 

于是可以从�𝛼𝛼𝚤𝚤𝚤𝚤�����⃗ ,𝛽𝛽𝚤𝚤𝚤𝚤�����⃗ , 𝜀𝜀𝑘𝑘���⃗ �中取出𝑛𝑛个线性无关的向量 

从而在�𝛼𝛼𝚤𝚤𝚤𝚤�����⃗ ,𝛽𝛽𝚤𝚤𝚤𝚤�����⃗ , 𝜀𝜀𝑘𝑘���⃗ �中有一组基{𝜂𝜂𝑖𝑖},使得𝑞𝑞(𝜂𝜂𝑖𝑖) = 0, 𝑖𝑖 = 1, … ,𝑛𝑛 

 

物理意义:考虑向量空间ℝ4,其中向量𝑣⃗𝑣 = (𝑡𝑡, 𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

由光速不变原理,在其上考虑二次型𝑔𝑔(𝑣⃗𝑣) = 𝑐𝑐2𝑡𝑡2 − 𝑥𝑥2 − 𝑦𝑦2 − 𝑧𝑧2 

或其配极𝑔𝑔(𝑣⃗𝑣, 𝑣⃗𝑣′) = 𝑐𝑐2𝑡𝑡𝑡𝑡′ − 𝑥𝑥𝑥𝑥′ − 𝑦𝑦𝑦𝑦′ − 𝑧𝑧𝑧𝑧′,其中𝑐𝑐为光速常数 

则将(ℝ4,𝑔𝑔) = ℝ1,3称为𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀时空 

对𝑣⃗𝑣 ∈ ℝ1,3,𝑔𝑔(𝑣⃗𝑣) > 0 ⇒称𝑣⃗𝑣为类时向量 

类时指的是能花时间办到的事 

𝑔𝑔(𝑣⃗𝑣) = 0 ⇒ 称𝑣⃗𝑣为类光向量�迷向向量�,就是光 

𝑔𝑔(𝑣⃗𝑣) < 0 ⇒称𝑣⃗𝑣为类空向量 

所谓类空就是花时间也办不到的事,除非超过光速 

𝐿𝐿𝐿𝐿 = {𝑣⃗𝑣 ∈ ℝ1,3|𝑔𝑔(𝑣⃗𝑣) = 0} = {𝑣⃗𝑣|(𝑐𝑐𝑐𝑐)2 = 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2} 

= {𝑣⃗𝑣|(𝑐𝑐𝑐𝑐)2 = 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2, 𝑡𝑡 ≥ 0} ∪ {𝑣⃗𝑣|(𝑐𝑐𝑐𝑐)2 = 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2, 𝑡𝑡 ≤ 0} 

≔ 𝐿𝐿𝐶𝐶+ ∪ 𝐿𝐿𝐶𝐶− 

𝐿𝐿𝐿𝐿称为光锥,𝐿𝐿𝐶𝐶+称为未来光锥,𝐿𝐿𝐶𝐶−称为过去光锥 
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【9-1】正定求参数范围 

求𝜆𝜆, 𝜇𝜇的范围,使得矩阵�
1 𝜆𝜆 𝜆𝜆
𝜆𝜆 1 𝜆𝜆
𝜆𝜆 𝜆𝜆 1

� ,�
1 1 𝜇𝜇
1 𝜇𝜇 1
𝜇𝜇 1 1

�正定 

𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦法:设𝐴𝐴 = �
1 𝜆𝜆 𝜆𝜆
𝜆𝜆 1 𝜆𝜆
𝜆𝜆 𝜆𝜆 1

� 

△1 (𝐴𝐴) = 1 > 0 

△2 (𝐴𝐴) = 1 − 𝜆𝜆2 > 0 

△3 (𝐴𝐴) = |𝐴𝐴| = (1− 𝜆𝜆)2(2𝜆𝜆 + 1) > 0 

解得𝜆𝜆 ∈ �−
1
2

, 1� 

行列变换法:设𝐵𝐵 = �
1 1 𝜇𝜇
1 𝜇𝜇 1
𝜇𝜇 1 1

� 

进行如习题 6− 5 的行列变换操作 

得到规范型为diag(1,𝜇𝜇 − 1,2− 𝜇𝜇 − 𝜇𝜇2) 

则𝐴𝐴正定⇔ �
𝜇𝜇 − 1 > 0

2 − 𝜇𝜇 − 𝜇𝜇2 > 0 ,𝜇𝜇不存在 
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【9-2】正定与二次型模长的上下界 

证明:设𝐴𝐴是实对称矩阵,则 

(𝑖𝑖)存在正实数𝑡𝑡,使得𝑡𝑡𝑡𝑡 ± 𝐴𝐴正定 

(𝑖𝑖𝑖𝑖)存在正实数𝐶𝐶 > 0,使得|𝑥⃗𝑥𝑡𝑡𝐴𝐴𝑥⃗𝑥| ≤ 𝐶𝐶𝑥⃗𝑥𝑡𝑡𝑥⃗𝑥 

证: (𝑖𝑖)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆判别法 

设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛,则𝑡𝑡𝑡𝑡 ± 𝐴𝐴 = �𝑡𝑡𝛿𝛿𝑖𝑖𝑖𝑖 ± 𝑎𝑎𝑖𝑖𝑖𝑖� 

考虑△𝑘𝑘 (𝑡𝑡𝑡𝑡 ± 𝐴𝐴) = �

𝑡𝑡 ± 𝑎𝑎11 ±𝑎𝑎12 ⋯ ±𝑎𝑎1𝑘𝑘
±𝑎𝑎21 𝑡𝑡 ± 𝑎𝑎22 ⋯ ±𝑎𝑎2𝑘𝑘
⋮ ⋮ ⋱ ⋮

±𝑎𝑎𝑘𝑘1 ±𝑎𝑎𝑘𝑘2 ⋯ 𝑡𝑡 ± 𝑎𝑎𝑘𝑘𝑘𝑘

� 

于是△𝑘𝑘 (𝑡𝑡𝑡𝑡 ± 𝐴𝐴) = 𝑡𝑡𝑘𝑘 ± (𝑎𝑎11 + ⋯+ 𝑎𝑎𝑘𝑘𝑘𝑘)𝑡𝑡𝑘𝑘−1 + ⋯+△𝑘𝑘 (±𝐴𝐴) 

注意△𝑘𝑘 (𝑡𝑡𝑡𝑡 ± 𝐴𝐴)是𝑡𝑡的𝑘𝑘次多项式函数,且首项系数为 1 

则存在 2𝑛𝑛个正实数𝑡𝑡𝑘𝑘,± > 0,𝑘𝑘 = 1,2, … ,𝑛𝑛 

使得只要𝑡𝑡 > 𝑡𝑡𝑘𝑘,±,则△𝑘𝑘 (𝑡𝑡𝑡𝑡 ± 𝐴𝐴) > 0 

因此取𝑡𝑡 = max�𝑡𝑡𝑘𝑘,±�+ 1,则有△𝑘𝑘 (𝑡𝑡𝑡𝑡 ± 𝐴𝐴) > 0,𝑘𝑘 = 1, . . ,𝑛𝑛 

由此得𝑡𝑡𝑡𝑡 ± 𝐴𝐴都正定 

 

(𝑖𝑖𝑖𝑖)取𝐶𝐶为(𝑖𝑖)中的𝑡𝑡,则由正定的定义, �𝑥⃗𝑥
𝑡𝑡(𝐶𝐶𝐶𝐶 + 𝐴𝐴)𝑥⃗𝑥 ≥ 0
𝑥⃗𝑥𝑡𝑡(𝐶𝐶𝐶𝐶 − 𝐴𝐴)𝑥⃗𝑥 ≥ 0

 

⇒ �𝑥⃗𝑥
𝑡𝑡𝐴𝐴𝑥⃗𝑥 ≥ −𝐶𝐶𝑥⃗𝑥𝑡𝑡𝑥⃗𝑥
𝑥⃗𝑥𝑡𝑡𝐴𝐴𝑥⃗𝑥 ≤ 𝐶𝐶𝑥⃗𝑥𝑡𝑡𝑥⃗𝑥

⇒ |𝑥⃗𝑥𝑡𝑡𝐴𝐴𝑥⃗𝑥| ≤ 𝐶𝐶𝑥⃗𝑥𝑡𝑡𝑥⃗𝑥    ∎ 

注:事实上(𝑖𝑖)(𝑖𝑖𝑖𝑖)本质是一道题,但是(𝑖𝑖𝑖𝑖)的视角不同 

用数学分析法解:考虑𝑞𝑞(𝑥⃗𝑥) = 𝑥⃗𝑥𝑡𝑡𝐴𝐴𝑥⃗𝑥, 𝑥⃗𝑥 ∈ 𝑆𝑆 = �𝑥⃗𝑥 ∈ ℝ𝑛𝑛�|𝑥𝑥| = √𝑥⃗𝑥𝑡𝑡𝑥⃗𝑥 = 1� 

则𝑆𝑆是有界闭集,从而是紧集. 

而𝑞𝑞是𝑆𝑆上的连续函数,则|𝑞𝑞|在𝑆𝑆上有最大值𝐶𝐶 

即∀𝑥⃗𝑥 ∈ 𝑆𝑆, |𝑞𝑞(𝑥⃗𝑥)| ≤ 𝐶𝐶 

对𝑥⃗𝑥 ≠ 0,
𝑥⃗𝑥

|𝑥⃗𝑥| ∈ 𝑆𝑆,则 �𝑞𝑞 �
𝑥⃗𝑥

|𝑥⃗𝑥|�� =
|𝑞𝑞(𝑥⃗𝑥)|
𝑥⃗𝑥𝑡𝑡𝑥⃗𝑥

≤ 𝐶𝐶 ⇒ |𝑞𝑞(𝑥⃗𝑥)| ≤ 𝐶𝐶𝑥⃗𝑥𝑡𝑡𝑥⃗𝑥      ∎ 
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【9-3】矩阵空间上的二次型 

(𝑖𝑖)证明𝑞𝑞(𝐴𝐴) = tr(𝐴𝐴𝑡𝑡𝐴𝐴)是𝑀𝑀𝑛𝑛(ℝ)上的正定二次型 

(𝑖𝑖𝑖𝑖)若𝐴𝐴𝐴𝐴𝑡𝑡 = 𝐴𝐴2,求证𝐴𝐴是对称矩阵 

证: (𝑖𝑖)设𝑓𝑓(𝐴𝐴,𝐵𝐵) = tr(𝐴𝐴𝑡𝑡𝐵𝐵) 

∵ tr𝐴𝐴 = tr𝐴𝐴𝑡𝑡    ∴ 𝑓𝑓(𝐵𝐵,𝐴𝐴) = tr(𝐵𝐵𝑡𝑡𝐴𝐴) = tr(𝐴𝐴𝑡𝑡𝐵𝐵) = 𝑓𝑓(𝐴𝐴,𝐵𝐵) 

𝑓𝑓(𝑎𝑎𝑎𝑎+ 𝑏𝑏𝑏𝑏,𝐶𝐶) = tr((𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏)𝑡𝑡𝐶𝐶) = tr(𝑎𝑎𝐴𝐴𝑡𝑡𝐶𝐶 + 𝑏𝑏𝐵𝐵𝑡𝑡𝐶𝐶) 

= 𝑎𝑎 tr(𝐴𝐴𝑡𝑡𝐶𝐶) + 𝑏𝑏 tr(𝐵𝐵𝑡𝑡𝐶𝐶) = 𝑎𝑎𝑎𝑎(𝐴𝐴,𝐶𝐶) + 𝑏𝑏𝑏𝑏(𝐵𝐵,𝐶𝐶) 

可知𝑓𝑓是双线性形式.由于𝑞𝑞(𝐴𝐴) = tr𝐴𝐴𝑡𝑡𝐴𝐴 = 𝑓𝑓(𝐴𝐴,𝐴𝐴),可知𝑞𝑞为二次型 

设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�,则(𝐴𝐴𝑡𝑡𝐴𝐴)𝑖𝑖𝑖𝑖 = �𝑎𝑎𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘𝑘𝑘

𝑛𝑛

𝑖𝑖=1

 

从而 tr(𝐴𝐴𝑡𝑡𝐴𝐴) = �(𝐴𝐴𝑡𝑡𝐴𝐴)𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= ��𝑎𝑎𝑘𝑘𝑘𝑘2
𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

≥ 0 

则𝑞𝑞(𝐴𝐴) = tr(𝐴𝐴𝑡𝑡𝐴𝐴) ≥ 0,且𝑞𝑞(𝐴𝐴) = 0 ⇔ 𝑎𝑎𝑘𝑘𝑘𝑘 = 0,∀𝑖𝑖,𝑘𝑘 ∈ {1, … ,𝑛𝑛} 

即𝑞𝑞(𝐴𝐴) = 0 ⇔ 𝐴𝐴 = 0,因此𝑞𝑞正定 

 

(𝑖𝑖𝑖𝑖)由于𝑞𝑞正定,则𝐴𝐴 = 𝐴𝐴𝑡𝑡 ⇔ 𝑞𝑞(𝐴𝐴 − 𝐴𝐴𝑡𝑡) = 0 

计算𝑞𝑞(𝐴𝐴 − 𝐴𝐴𝑡𝑡) = tr�(𝐴𝐴𝑡𝑡 − 𝐴𝐴)(𝐴𝐴 − 𝐴𝐴𝑡𝑡)� 

= tr(𝐴𝐴𝑡𝑡𝐴𝐴 − (𝐴𝐴𝑡𝑡)2 − 𝐴𝐴2 + 𝐴𝐴𝐴𝐴𝑡𝑡) = tr(𝐴𝐴𝑡𝑡𝐴𝐴 − (𝐴𝐴𝑡𝑡)2) 

对条件取转置,得到𝐴𝐴𝐴𝐴𝑡𝑡 = (𝐴𝐴2)𝑡𝑡 = (𝐴𝐴𝑡𝑡)2 

则𝑞𝑞(𝐴𝐴 − 𝐴𝐴𝑡𝑡) = tr(𝐴𝐴𝑡𝑡𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑡𝑡) = tr(𝐴𝐴𝑡𝑡𝐴𝐴)− tr(𝐴𝐴𝐴𝐴𝑡𝑡) 

= tr(𝐴𝐴𝑡𝑡𝐴𝐴)− tr(𝐴𝐴𝑡𝑡𝐴𝐴) = 0      [tr𝐴𝐴𝐴𝐴 = tr𝐵𝐵𝐵𝐵] 

因此𝐴𝐴 = 𝐴𝐴𝑡𝑡     ∎ 
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【9-4】半正定二次型的 Sylvester 判别法 

设𝐴𝐴实对称,则𝐴𝐴半正定⇔ 𝐴𝐴的所有主子式 

𝐴𝐴 �𝑖𝑖1, . . , 𝑖𝑖𝑘𝑘
𝑖𝑖1, … , 𝑖𝑖𝑘𝑘

� = �
𝑎𝑎𝑖𝑖1𝑖𝑖1 ⋯ 𝑎𝑎𝑖𝑖1𝑖𝑖𝑘𝑘
⋮  ⋮

𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖1 ⋯ 𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘
� ≥ 0 

证:记𝑞𝑞𝐴𝐴(𝑥⃗𝑥) = 𝑥⃗𝑥𝑡𝑡𝐴𝐴𝑥⃗𝑥为𝐴𝐴对应的二次型 

若𝐵𝐵为任何半正定矩阵,则𝐵𝐵 = 𝑃𝑃𝑡𝑡𝑃𝑃 ⇒ det𝐵𝐵 = |det𝑃𝑃|2 ≥ 0  [∗] 

⇒ :  𝐴𝐴半正定 ⇒ 𝑞𝑞𝐴𝐴半正定,考虑𝑞𝑞𝐴𝐴│𝑉𝑉,𝑉𝑉 = �𝑒𝑒𝚤𝚤1����⃗ , … , 𝑒𝑒𝚤𝚤𝑘𝑘�����⃗ � 

𝑞𝑞𝐴𝐴│𝑉𝑉也是半正定的,且𝑞𝑞𝐴𝐴│𝑉𝑉在�𝑒𝑒𝚤𝚤1����⃗ , … , 𝑒𝑒𝚤𝚤𝑘𝑘�����⃗ �下行列式恰为𝐴𝐴 �𝑖𝑖1, . . , 𝑖𝑖𝑘𝑘
𝑖𝑖1, … , 𝑖𝑖𝑘𝑘

� 

从而由𝑞𝑞𝐴𝐴│𝑉𝑉半正定和[∗]式可知𝐴𝐴 �𝑖𝑖1, . . , 𝑖𝑖𝑘𝑘
𝑖𝑖1, … , 𝑖𝑖𝑘𝑘

� ≥ 0 

⇐:若所有主子式𝐴𝐴 �𝑖𝑖1, . . , 𝑖𝑖𝑘𝑘
𝑖𝑖1, … , 𝑖𝑖𝑘𝑘

� ≥ 0 

考虑𝑓𝑓(𝑡𝑡) = |𝑡𝑡𝑡𝑡 + 𝐵𝐵| = 𝑡𝑡𝑛𝑛 + 𝑎𝑎1𝑡𝑡𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛 

易验证𝑎𝑎𝑖𝑖 = 𝐵𝐵的所有𝑖𝑖阶主子式之和 

断言 若𝑡𝑡 > 0,则𝑡𝑡𝐸𝐸 + 𝐴𝐴正定 

考虑𝑓𝑓𝑘𝑘(𝑡𝑡) = |𝑡𝑡𝐸𝐸𝑘𝑘 + 𝐴𝐴𝑘𝑘|,𝐴𝐴𝑘𝑘是𝐴𝐴的左上角的𝑘𝑘 × 𝑘𝑘方阵 

由条件得𝑓𝑓𝑘𝑘(𝑡𝑡) = 𝑡𝑡𝑘𝑘 + 𝑎𝑎𝑘𝑘1𝑡𝑡𝑘𝑘−1 + ⋯+ 𝑎𝑎𝑘𝑘𝑘𝑘满足𝑎𝑎𝑘𝑘𝑘𝑘 ≥ 0, 𝑖𝑖 = 1, … , 𝑘𝑘 

所以∀𝑡𝑡 > 0,𝑓𝑓𝑘𝑘(𝑡𝑡) > 0,𝑘𝑘 = 1, … ,𝑛𝑛 

所以由𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟判别法,对𝑡𝑡 > 0, 𝑡𝑡𝑡𝑡 + 𝐴𝐴正定 

于是由正定的定义, 𝑡𝑡 > 0,∀𝑥⃗𝑥 ∈ ℝ𝑛𝑛 ∖ �0�⃗ �, 𝑥⃗𝑥𝑡𝑡(𝑡𝑡𝑡𝑡 + 𝐴𝐴)𝑥⃗𝑥 > 0 

取极限𝑡𝑡 → 0+,则有𝑥⃗𝑥𝑡𝑡𝐴𝐴𝑥⃗𝑥 ≥ 0,∀𝑥⃗𝑥 ∈ ℝ𝑛𝑛,即𝐴𝐴半正定  ∎ 
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【10-1】线性映射矩阵换基公式 

设𝜑𝜑:𝑃𝑃3 → 𝑃𝑃3在{1,𝑥𝑥, 𝑥𝑥2}下的矩阵表示为�
0 0 1
0 1 0
1 0 0

� 

求𝜑𝜑在{3𝑥𝑥2 + 2𝑥𝑥 + 1,𝑥𝑥2 + 3𝑥𝑥 + 2,2𝑥𝑥2 + 𝑥𝑥 + 3} 

解:已证𝜑𝜑在𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗下的矩阵为𝐴𝐴,在𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗下的矩阵为𝐵𝐵 

转换矩阵𝑇𝑇满足(𝜀𝜀1���⃗  , … , 𝜀𝜀𝑛𝑛���⃗ ) = (𝑒𝑒1���⃗  , … , 𝑒𝑒𝑛𝑛����⃗ )𝑇𝑇 

则𝐵𝐵 = 𝑇𝑇−1𝐴𝐴𝐴𝐴 

此处𝐴𝐴 = �
0 0 1
0 1 0
1 0 0

� ,𝑇𝑇 = �
1 2 3
2 3 1
3 1 2

� 

从而𝐵𝐵 = 𝑇𝑇−1𝐴𝐴𝐴𝐴 = �
−1/3 2/3 2/3
2/3 2/3 −1/3
2/3 −1/3 2/3

�  计算过程略 

 

【10-2】维数相关的公式 

(𝑖𝑖)子空间的维数公式:若𝑈𝑈,𝑊𝑊 ⊆ 𝑉𝑉是线性子空间 

则dim𝑈𝑈 + dim𝑊𝑊 = dim(𝑈𝑈 +𝑊𝑊) + dim(𝑈𝑈 ∩𝑊𝑊) 

(𝑖𝑖𝑖𝑖)线性映射的维数公式:设𝜑𝜑:𝑉𝑉 → 𝑊𝑊是线性映射 

则dim𝑉𝑉 = dim im𝜑𝜑 + dim ker𝜑𝜑 = rank𝜑𝜑 + dim ker𝜑𝜑 �与𝑊𝑊无关!� 

(𝑖𝑖𝑖𝑖𝑖𝑖)维数不等式:若𝑈𝑈是𝑉𝑉的子空间,则dim𝑈𝑈 ≤ dim𝑉𝑉 
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【10-3】线性算子复合后的秩差 

证明:对𝑉𝑉上的任意线性算子𝒜𝒜,ℬ有等式 

rank𝒜𝒜 = rankℬ𝒜𝒜 + dim(im𝒜𝒜 ∩ kerℬ) 

证:由于𝒜𝒜是线性空间𝑉𝑉上的线性映射 

则𝑊𝑊 = im𝒜𝒜是𝑉𝑉的子空间 

考虑 ℬ在𝑊𝑊上的限制𝒯𝒯 = ℬ│𝑊𝑊:𝑊𝑊 → 𝑉𝑉 

即∀𝑤𝑤��⃗ ∈ 𝑊𝑊,𝒯𝒯(𝑤𝑤��⃗ ) = ℬ(𝑤𝑤��⃗ ) ∈ 𝑉𝑉 

于是(𝑎𝑎) im𝒯𝒯 = {𝒯𝒯(𝑤𝑤��⃗ )|𝑤𝑤��⃗ ∈ im𝒜𝒜} = {ℬ(𝑤𝑤��⃗ )|𝑤𝑤��⃗ ∈ im𝒜𝒜} 

= {ℬ(𝒜𝒜𝑣⃗𝑣)|𝑣⃗𝑣 ∈ 𝑉𝑉} = imℬ𝒜𝒜 

从而 rank𝒯𝒯 = rankℬ𝒜𝒜 

(𝑏𝑏) ker𝒯𝒯 = �𝑤𝑤��⃗ ∈ im𝒜𝒜 �𝒯𝒯(𝑤𝑤��⃗ ) = 0�⃗ � 

= �𝑤𝑤��⃗ ∈ im𝒜𝒜 �ℬ(𝑤𝑤��⃗ ) = 0�⃗ � = im𝒜𝒜 ∩ kerℬ 

从而dim ker𝒯𝒯 = dim(im𝒜𝒜 ∩ kerℬ) 

于是对𝒯𝒯使用维数公式dim𝑊𝑊 = rank𝒯𝒯 + dim ker𝒯𝒯 

得到 rank𝒜𝒜 = rankℬ𝒜𝒜 + dim(im𝒜𝒜 ∩ kerℬ)    ∎ 

 

【10-4】核空间运算的包含关系 

证明: (𝑖𝑖) ker𝒜𝒜 ∩ kerℬ ⊆ ker(𝒜𝒜 + ℬ) 

(𝑖𝑖𝑖𝑖) ker𝒜𝒜 + kerℬ ⊆ ker𝒜𝒜ℬ 

证: (𝑖𝑖)若𝑥⃗𝑥 ∈ ker𝒜𝒜 ∩ kerℬ ,则𝑥⃗𝑥 ∈ ker𝒜𝒜且𝑥⃗𝑥 ∈ kerℬ 

则𝒜𝒜𝑥⃗𝑥 = 0�⃗ ,ℬ𝑥⃗𝑥 = 0�⃗ ,从而(𝒜𝒜 + ℬ)𝑥⃗𝑥 = 𝒜𝒜𝑥⃗𝑥 + ℬ𝑥⃗𝑥 = 0�⃗  

即𝑥⃗𝑥 ∈ ker(𝒜𝒜 + ℬ)  因此 ker𝒜𝒜 ∩ kerℬ ⊆ ker(𝒜𝒜 + ℬ) 

(𝑖𝑖𝑖𝑖)若𝑥⃗𝑥 ∈ ker𝒜𝒜 + kerℬ ,则𝑥⃗𝑥 = 𝑦⃗𝑦 + 𝑧𝑧且𝒜𝒜𝑦⃗𝑦 = 0�⃗ ,ℬ𝑧𝑧 = 0�⃗  

于是𝒜𝒜ℬ𝑥⃗𝑥 = 𝒜𝒜ℬ𝑦⃗𝑦 + 𝒜𝒜ℬ𝑧𝑧 = 𝒜𝒜ℬ𝑦⃗𝑦 = ℬ𝒜𝒜𝑦⃗𝑦 = 0�⃗  

即𝑥⃗𝑥 ∈ ker𝒜𝒜ℬ  因此ker𝒜𝒜 + kerℬ ⊆ ker𝒜𝒜ℬ    ∎ 
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【mid-1】域特征对基的影响 

设𝐹𝐹是域,𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ , 𝑒𝑒4���⃗是𝐹𝐹上线性空间𝑉𝑉的一组基 

令𝜀𝜀1���⃗ = 𝑒𝑒1���⃗ + 𝑒𝑒2���⃗ , 𝜀𝜀2���⃗ = −𝑒𝑒1���⃗ + 𝑒𝑒2���⃗ , 𝜀𝜀3���⃗ = 2𝑒𝑒3���⃗ + 𝑒𝑒4���⃗ , 𝜀𝜀4���⃗ = 𝑒𝑒3���⃗ + 𝑒𝑒4���⃗  

当𝐹𝐹的特征为何值时, 𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ , 𝜀𝜀4���⃗不是𝑉𝑉的一组基? 

解:从{𝑒𝑒𝚤𝚤��⃗ }到{𝜀𝜀𝚤𝚤��⃗ }的转换矩阵为𝐴𝐴 = �

1 −1 0 0
1 1 0 0
0 0 2 −1
0 0 1 1

� 

由于det𝐴𝐴 = 6 = 2 × 3,则若 char𝐹𝐹 = 2 或 3 时, det𝐴𝐴 = 0 

从而(𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ , 𝜀𝜀4���⃗ )不是一组基 

 

【mid-2】商空间的基代表元可作为基 

设𝑉𝑉是𝐹𝐹上的线性空间,𝑈𝑈是𝑉𝑉的子空间,设𝑈𝑈的一组基是𝑣𝑣1����⃗ , … , 𝑣𝑣𝑑𝑑����⃗  

商空间𝑉𝑉/𝑈𝑈的一组基𝑣𝑣𝑑𝑑+1���������⃗ + 𝑈𝑈, … , 𝑣𝑣𝑛𝑛����⃗ + 𝑈𝑈 

证明:𝑣𝑣1����⃗ , … , 𝑣𝑣𝑑𝑑����⃗ ,𝑣𝑣𝑑𝑑+1���������⃗ , … , 𝑣𝑣𝑛𝑛����⃗是𝑉𝑉的一组基 

证:记𝜋𝜋:𝑉𝑉 → 𝑉𝑉/𝑈𝑈为自然投影 

(𝑖𝑖)先证线性无关 

令𝑎𝑎1𝑣𝑣1����⃗ + ⋯+ 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛����⃗ = 0 

𝜋𝜋(𝑎𝑎1𝑣𝑣1����⃗ +⋯+ 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛����⃗ ) = 0�⃗ + 𝑈𝑈 

而𝜋𝜋(𝑎𝑎1𝑣𝑣1����⃗ + ⋯+ 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛����⃗ ) = 𝑎𝑎1(𝑣𝑣1����⃗ + 𝑈𝑈) + ⋯+ 𝑎𝑎𝑛𝑛(𝑣𝑣𝑛𝑛����⃗ + 𝑈𝑈) 

= 𝑎𝑎𝑑𝑑+1(𝑣𝑣𝑑𝑑+1���������⃗ + 𝑈𝑈) + ⋯+ 𝑎𝑎𝑛𝑛(𝑣𝑣𝑛𝑛����⃗ + 𝑈𝑈)  

则由{𝑣𝑣𝑑𝑑+1���������⃗ + 𝑈𝑈, … ,𝑣𝑣𝑛𝑛����⃗ + 𝑈𝑈}为𝑉𝑉/𝑈𝑈的一组基可知𝑎𝑎𝑑𝑑+1 = ⋯ = 𝑎𝑎𝑛𝑛 = 0 

则有𝑎𝑎1𝑣𝑣1����⃗ + ⋯+ 𝑎𝑎𝑑𝑑𝑣𝑣𝑑𝑑����⃗ = 0�⃗  

由𝑣𝑣1����⃗ , … 𝑣𝑣𝑑𝑑����⃗为𝑈𝑈的一组基得𝑎𝑎1 = ⋯ = 𝑎𝑎𝑑𝑑 = 0 

从而𝑣𝑣1����⃗ , … , 𝑣𝑣𝑛𝑛����⃗线性无关 
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(𝑖𝑖𝑖𝑖)再证𝑉𝑉 = ⟨𝑣𝑣1����⃗ , … , 𝑣𝑣𝑛𝑛����⃗ ⟩ 

∀𝑣⃗𝑣 ∈ 𝑉𝑉,考虑𝜋𝜋(𝑣⃗𝑣) = 𝑣⃗𝑣 + 𝑈𝑈,则由{𝑣𝑣𝑑𝑑+1���������⃗ + 𝑈𝑈, … ,𝑣𝑣𝑛𝑛����⃗ + 𝑈𝑈}为𝑉𝑉/𝑈𝑈的基 

可知存在𝑎𝑎𝑑𝑑+1, … ,𝑎𝑎𝑛𝑛 

使得𝑣⃗𝑣 + 𝑈𝑈 = 𝑎𝑎𝑑𝑑+1(𝑣𝑣𝑑𝑑+1���������⃗ + 𝑈𝑈) +⋯+ 𝑎𝑎𝑛𝑛(𝑣𝑣𝑛𝑛����⃗ + 𝑈𝑈) 

= (𝑎𝑎𝑑𝑑+1𝑣𝑣𝑑𝑑+1���������⃗ + ⋯+ 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛����⃗ ) + 𝑈𝑈 

从而𝑣⃗𝑣 − (𝑎𝑎𝑑𝑑+1𝑣𝑣𝑑𝑑+1���������⃗ + ⋯+ 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛����⃗ ) ∈ 𝑈𝑈 

又𝑈𝑈 = ⟨𝑣𝑣1����⃗ , … , 𝑣𝑣𝑑𝑑����⃗ ⟩,则存在𝑎𝑎1, … , 𝑎𝑎𝑑𝑑使得 

𝑣⃗𝑣 − 𝑎𝑎𝑑𝑑+1𝑣𝑣𝑑𝑑+1���������⃗ − ⋯− 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛����⃗ = 𝑎𝑎1𝑣𝑣1����⃗ + ⋯+ 𝑎𝑎𝑑𝑑𝑣𝑣𝑑𝑑����⃗  

⇒ 𝑣⃗𝑣 = 𝑎𝑎1𝑣𝑣1����⃗ +⋯+ 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛����⃗  

则𝑉𝑉 = ⟨𝑣𝑣1����⃗ , … ,𝑣𝑣𝑛𝑛����⃗ ⟩ 

综上, {𝑣𝑣1����⃗ , … ,𝑣𝑣𝑛𝑛����⃗ }是𝑉𝑉的一组基    ∎ 

 

【mid-3】子空间维数公式的应用 

设𝑉𝑉1,𝑉𝑉2,𝑉𝑉3是线性空间𝑉𝑉的三个𝑘𝑘维子空间,其中𝑘𝑘 > 1 

设dim(𝑉𝑉1 ∩ 𝑉𝑉2) = dim(𝑉𝑉2 ∩ 𝑉𝑉3) = dim(𝑉𝑉3 ∩ 𝑉𝑉1) = 𝑘𝑘 − 1 

(𝑖𝑖)证明dim(𝑉𝑉1 + 𝑉𝑉2) = dim(𝑉𝑉2 + 𝑉𝑉3) = dim(𝑉𝑉3 + 𝑉𝑉1) = 𝑘𝑘 + 1 

(𝑖𝑖𝑖𝑖)证明dim(𝑉𝑉1 ∩ 𝑉𝑉2 ∩ 𝑉𝑉3) = 𝑘𝑘 − 1 或dim(𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3) = 𝑘𝑘 + 1 

证: (𝑖𝑖)利用维数公式, 

dim𝑉𝑉𝑖𝑖 + dim𝑉𝑉𝑗𝑗 = dim�𝑉𝑉𝑖𝑖 + 𝑉𝑉𝑗𝑗�+ dim�𝑉𝑉𝑖𝑖 ∩ 𝑉𝑉𝑗𝑗� , 𝑖𝑖 ≠ 𝑗𝑗, 𝑖𝑖, 𝑗𝑗 ∈ {1,2,3} 

得 2𝑘𝑘 = dim�𝑉𝑉𝑖𝑖 + 𝑉𝑉𝑗𝑗�+ 𝑘𝑘 − 1 ⇒ dim�𝑉𝑉𝑖𝑖 + 𝑉𝑉𝑗𝑗� = 𝑘𝑘 + 1 
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(𝑖𝑖𝑖𝑖)令𝑈𝑈 = 𝑉𝑉2 + 𝑉𝑉3,由维数公式得 

dim(𝑉𝑉1 + 𝑈𝑈) = dim𝑉𝑉1 + dim𝑈𝑈 − dim(𝑉𝑉1 ∩ 𝑈𝑈) 

= 2𝑘𝑘 + 1 − dim(𝑉𝑉1 ∩ 𝑈𝑈)   [∗] 

𝑘𝑘 − 1 = max
𝑖𝑖=2,3

{dim(𝑉𝑉1 ∩ 𝑉𝑉𝑖𝑖)} ≤ dim(𝑉𝑉1 ∩ 𝑈𝑈) ≤ min{dim𝑉𝑉1 , dim𝑈𝑈} = 𝑘𝑘 

若dim(𝑉𝑉1 ∩ 𝑈𝑈) = 𝑘𝑘 − 1,则𝑉𝑉1 ∩ (𝑉𝑉2 + 𝑉𝑉3) = 𝑉𝑉1 ∩ 𝑉𝑉2 = 𝑉𝑉1 ∩ 𝑉𝑉3 

则𝑉𝑉1 ∩ 𝑉𝑉2 ∩ 𝑉𝑉3 = 𝑉𝑉1 ∩ 𝑉𝑉3 ⇒ dim(𝑉𝑉1 ∩ 𝑉𝑉2 ∩ 𝑉𝑉3) = dim(𝑉𝑉1 ∩ 𝑉𝑉3) = 𝑘𝑘 − 1 

若dim(𝑉𝑉1 ∩ 𝑈𝑈) = 𝑘𝑘,则由维数公式[∗],有dim(𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3) = 𝑘𝑘 + 1 ∎ 

 

【12-1】迹与行列式和特征值的联系 

证明:𝑛𝑛阶方阵𝐴𝐴可逆⇔ 𝐴𝐴的所有特征值都非零 

证:𝒳𝒳𝐴𝐴(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = (𝑡𝑡 − 𝜆𝜆1)⋯ (𝑡𝑡 − 𝜆𝜆𝑛𝑛) 

则𝒳𝒳𝐴𝐴(0) = det(−𝐴𝐴) = (−1)𝑛𝑛 det𝐴𝐴 

而𝒳𝒳𝐴𝐴(0) = (−𝜆𝜆1)⋯ (−𝜆𝜆𝑛𝑛) = (−1)𝑛𝑛𝜆𝜆1⋯𝜆𝜆𝑛𝑛 

则有det𝐴𝐴 = 𝜆𝜆1 ⋯𝜆𝜆𝑛𝑛 

从而𝐴𝐴可逆⇔ det𝐴𝐴 ≠ 0 ⇔ ∀𝑖𝑖 ∈ {1, … ,𝑛𝑛}, 𝜆𝜆𝑖𝑖 ≠ 0  ∎ 

注:将𝒳𝒳𝐴𝐴(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴|按行列式定义展开,则 

𝒳𝒳𝐴𝐴(𝑡𝑡) = 𝑡𝑡𝑛𝑛 − (𝑎𝑎11 + ⋯+ 𝑎𝑎𝑛𝑛𝑛𝑛)𝑡𝑡−1 + ⋯+ (−1)𝑛𝑛 det𝐴𝐴 

又𝒳𝒳𝐴𝐴(𝑡𝑡) = (𝑡𝑡 − 𝜆𝜆1)⋯ (𝑡𝑡 − 𝜆𝜆𝑛𝑛) 

= 𝑡𝑡𝑛𝑛 − (𝜆𝜆1 + ⋯+ 𝜆𝜆𝑛𝑛)𝑡𝑡𝑛𝑛−1 + ⋯+ (−1)𝑛𝑛𝜆𝜆1 ⋯𝜆𝜆𝑛𝑛 

则有 �tr𝐴𝐴 = 𝜆𝜆1 +⋯+ 𝜆𝜆𝑛𝑛
det𝐴𝐴 = 𝜆𝜆1⋯𝜆𝜆𝑛𝑛
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【12-2】逆算子保不变子空间 

证明:如果𝒜𝒜是可逆线性算子, 

则𝒜𝒜的不变子空间也是𝒜𝒜−1的不变子空间 

证:令𝑊𝑊 ⊆ 𝑉𝑉是𝒜𝒜的不变子空间,由定义有𝒜𝒜𝒜𝒜 ⊆𝑊𝑊 

考虑𝒜𝒜│𝑊𝑊:𝑊𝑊 →𝑊𝑊 作为𝑊𝑊上的线性算子 

由于𝒜𝒜为单射,则𝒜𝒜│𝑊𝑊仍然单射 

由维数公式dim im𝒜𝒜│𝑊𝑊 = dim𝑊𝑊 − dim ker𝒜𝒜│𝑊𝑊 = dim𝑊𝑊 

因此可知𝒜𝒜│𝑊𝑊:𝑊𝑊 →𝑊𝑊也是满射,从而𝒜𝒜𝒜𝒜 = 𝑊𝑊 

∀𝑤𝑤��⃗ ∈ 𝑊𝑊,由于𝒜𝒜𝒜𝒜 = 𝑊𝑊,则存在𝑣⃗𝑣 ∈ 𝑊𝑊 使得𝑤𝑤��⃗ = 𝒜𝒜𝑣⃗𝑣 

则𝒜𝒜−1𝑤𝑤��⃗ = 𝒜𝒜−1(𝒜𝒜𝑣⃗𝑣) = 𝑣⃗𝑣 ∈ 𝑊𝑊,即𝒜𝒜−1𝑤𝑤��⃗ ∈ 𝑊𝑊 

故𝒜𝒜−1𝑊𝑊 ⊆ 𝑊𝑊,即𝑊𝑊也是𝒜𝒜−1的不变子空间    ∎ 

 

【12-3】循环矩阵的特征值解法 

设有下列复矩阵,其中𝑎𝑎0, … , 𝑎𝑎𝑛𝑛−1 ∈ ℂ 

𝐴𝐴 =

⎝

⎜
⎛

𝑎𝑎0 𝑎𝑎1 𝑎𝑎2 ⋯ 𝑎𝑎𝑛𝑛−1
𝑎𝑎𝑛𝑛−1 𝑎𝑎0 𝑎𝑎1 ⋯ 𝑎𝑎𝑛𝑛−2
𝑎𝑎𝑛𝑛−2 𝑎𝑎𝑛𝑛−1 𝑎𝑎0 ⋯ 𝑎𝑎𝑛𝑛−3
⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 ⋯ 𝑎𝑎0 ⎠

⎟
⎞

 

(𝑖𝑖)令𝜉𝜉 = 𝑒𝑒
2𝜋𝜋𝜋𝜋
𝑛𝑛 , 𝜀𝜀𝑘𝑘 = 𝜉𝜉𝑘𝑘 

按照定义验证𝑣𝑣𝑘𝑘����⃗ = (1, 𝜀𝜀𝑘𝑘 , … , 𝜀𝜀𝑘𝑘𝑛𝑛−1)𝑡𝑡,𝑘𝑘 = 0, … ,𝑛𝑛 − 1 

是𝐴𝐴的𝑛𝑛个线性无关的特征向量,并写出对应的特征值 

(𝑖𝑖𝑖𝑖)求det𝐴𝐴 

(𝑖𝑖)证:𝐴𝐴𝑣𝑣𝑘𝑘����⃗ =

⎝

⎜⎜
⎛

𝑎𝑎0 + 𝑎𝑎1𝜀𝜀𝑘𝑘 + 𝑎𝑎2𝜀𝜀𝑘𝑘2 +⋯+ 𝑎𝑎𝑛𝑛−1𝜀𝜀𝑘𝑘𝑛𝑛−1

𝑎𝑎𝑛𝑛−1 + 𝑎𝑎0𝜀𝜀𝑘𝑘 + 𝑎𝑎1𝜀𝜀𝑘𝑘2 + ⋯+ 𝑎𝑎𝑛𝑛−2𝜀𝜀𝑘𝑘𝑛𝑛−1

𝑎𝑎𝑛𝑛−2 + 𝑎𝑎𝑛𝑛−1𝜀𝜀𝑘𝑘 + 𝑎𝑎0𝜀𝜀𝑘𝑘2 + ⋯+ 𝑎𝑎𝑛𝑛−3𝜀𝜀𝑘𝑘𝑛𝑛−1
⋮

𝑎𝑎1 + 𝑎𝑎2𝜀𝜀𝑘𝑘 + 𝑎𝑎3𝜀𝜀𝑘𝑘2 + ⋯+ 𝑎𝑎0𝜀𝜀𝑘𝑘𝑛𝑛−1 ⎠

⎟⎟
⎞
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=

⎝

⎜⎜
⎛

[𝑎𝑎0 + 𝑎𝑎1𝜀𝜀𝑘𝑘 + 𝑎𝑎2𝜀𝜀𝑘𝑘2 + ⋯+ 𝑎𝑎𝑛𝑛−1𝜀𝜀𝑘𝑘𝑛𝑛−1]1
[𝑎𝑎𝑛𝑛−1𝜀𝜀𝑘𝑘−1 + 𝑎𝑎0 + 𝑎𝑎1𝜀𝜀𝑘𝑘1 + ⋯+ 𝑎𝑎𝑛𝑛−2𝜀𝜀𝑘𝑘𝑛𝑛−2]𝜀𝜀𝑘𝑘

[𝑎𝑎𝑛𝑛−2𝜀𝜀𝑘𝑘−2 + 𝑎𝑎𝑛𝑛−1𝜀𝜀𝑘𝑘−1 + 𝑎𝑎0 + ⋯+ 𝑎𝑎𝑛𝑛−3𝜀𝜀𝑘𝑘𝑛𝑛−3]𝜀𝜀𝑘𝑘2
⋮

[𝑎𝑎1𝜀𝜀𝑘𝑘1−𝑛𝑛 + 𝑎𝑎2𝜀𝜀𝑘𝑘2−𝑛𝑛 + 𝑎𝑎3𝜀𝜀𝑘𝑘3−𝑛𝑛 + ⋯+ 𝑎𝑎0]𝜀𝜀𝑘𝑘𝑛𝑛−1 ⎠

⎟⎟
⎞

 

由于𝜀𝜀𝑘𝑘是一个𝑛𝑛次单位根,即𝜀𝜀𝑘𝑘𝑛𝑛 = 𝜉𝜉𝑛𝑛𝑛𝑛 = 1 

则𝜀𝜀𝑘𝑘
−𝑗𝑗 = 𝜀𝜀𝑘𝑘

𝑛𝑛−𝑗𝑗 ,∀𝑗𝑗 ∈ ℤ  

从而令𝑓𝑓(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯+ 𝑎𝑎𝑛𝑛−1𝑥𝑥𝑛𝑛−1,有𝐴𝐴𝑣𝑣𝑘𝑘����⃗ = 𝑓𝑓(𝜀𝜀𝑘𝑘)𝑣𝑣𝑘𝑘����⃗  

则知𝑣𝑣𝑘𝑘����⃗是𝐴𝐴的以𝑓𝑓(𝜀𝜀𝑘𝑘)为特征值的特征向量 

考虑行列式det(𝑣𝑣0����⃗ , … ,𝑣𝑣𝑛𝑛−1���������⃗ )是一个范德蒙行列式,值不为零 

∴ 𝑣𝑣0����⃗ , … ,𝑣𝑣𝑛𝑛−1���������⃗线性无关    ∎ 

 

(𝑖𝑖𝑖𝑖)由(𝑖𝑖) det𝐴𝐴 = 𝑓𝑓(𝜀𝜀0)⋯𝑓𝑓(𝜀𝜀𝑛𝑛−1) 

 

【12-4】特征不等特征向量相加不特征 

设𝒜𝒜为𝑉𝑉上的线性算子,𝑣𝑣1����⃗ ,𝑣𝑣2����⃗为𝒜𝒜的特征向量,对应的特征值为𝜆𝜆1, 𝜆𝜆2 

证明:若𝜆𝜆1 ≠ 𝜆𝜆2,则𝑣𝑣1����⃗ + 𝑣𝑣2����⃗不是𝒜𝒜的特征向量 

证:由条件得𝒜𝒜𝑣𝑣1����⃗ = 𝜆𝜆1𝑣𝑣1����⃗ ,𝒜𝒜𝑣𝑣2����⃗ = 𝜆𝜆2𝑣𝑣2����⃗ , 𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ≠ 0�⃗  

则𝒜𝒜(𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ ) = 𝜆𝜆1𝑣𝑣1����⃗ + 𝜆𝜆2𝑣𝑣2����⃗  

假设𝒜𝒜(𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ ) = 𝜆𝜆(𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ ) 

则(𝜆𝜆1 − 𝜆𝜆)𝑣𝑣1����⃗ + (𝜆𝜆2 − 𝜆𝜆)𝑣𝑣2����⃗ = 0 

∵ 𝜆𝜆1 ≠ 𝜆𝜆2  ∴ 𝜆𝜆1 − 𝜆𝜆, 𝜆𝜆2 − 𝜆𝜆不能同时为零 

于是𝑣𝑣1����⃗ ,𝑣𝑣2����⃗线性相关,设𝑣𝑣1����⃗ = 𝛼𝛼𝑣𝑣2����⃗ ,𝛼𝛼 ≠ 0 

则𝒜𝒜𝑣𝑣1����⃗ = 𝜆𝜆1𝑣𝑣1����⃗ ⇒ 𝒜𝒜(𝛼𝛼𝑣𝑣2����⃗ ) = 𝜆𝜆1(𝛼𝛼𝑣𝑣2����⃗ ) ⇒ 𝒜𝒜𝑣𝑣2����⃗ = 𝜆𝜆1𝑣𝑣2����⃗  

∴ 𝜆𝜆1 = 𝜆𝜆2,矛盾 

因此𝑣𝑣1����⃗ + 𝑣𝑣2����⃗不是𝒜𝒜的特征向量    ∎ 
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【13-1】幂等算子的性质 

证明:设𝒜𝒜为𝑉𝑉上的幂等线性算子(𝒜𝒜2 = 𝒜𝒜)则

(𝑖𝑖)ℬ = ℰ −𝒜𝒜也幂等,且𝒜𝒜ℬ = ℬ𝒜𝒜 

(𝑖𝑖𝑖𝑖) im𝒜𝒜是以 1 为特征值的特征子空间 

ker𝒜𝒜是以 0 位特征值的特征子空间 

(𝑖𝑖𝑖𝑖𝑖𝑖) ker𝒜𝒜 = imℬ 

(𝑖𝑖𝑖𝑖)𝑉𝑉 = im𝒜𝒜⊕ ker𝒜𝒜 = im𝒜𝒜⊕ im(ℰ −𝒜𝒜) 

(𝑣𝑣)若 char𝐹𝐹 = 0,则 rank𝒜𝒜 = tr𝒜𝒜 

证: (𝑖𝑖)∀𝑣⃗𝑣 ∈ 𝑉𝑉,ℬ2𝑣⃗𝑣 = (ℰ −𝒜𝒜)((ℰ −𝒜𝒜)𝑣⃗𝑣) = (ℰ −𝒜𝒜)(𝑣⃗𝑣 − 𝒜𝒜𝑣⃗𝑣)

= 𝑣⃗𝑣 − 𝒜𝒜𝑣⃗𝑣 −𝒜𝒜𝑣⃗𝑣 + 𝒜𝒜2𝑣⃗𝑣 = 𝑣⃗𝑣 − 𝒜𝒜𝑣⃗𝑣 = (ℰ −𝒜𝒜)𝑣⃗𝑣 = ℬ𝑣⃗𝑣

⇒ ℬ2 = ℬ

𝒜𝒜ℬ𝑣⃗𝑣 = 𝒜𝒜�(ℰ −𝒜𝒜)𝑣⃗𝑣� = 𝒜𝒜(𝑣⃗𝑣 − 𝒜𝒜𝑣⃗𝑣) = 𝒜𝒜𝑣⃗𝑣 −𝒜𝒜2𝑣⃗𝑣 = 0�⃗  

ℬ𝒜𝒜𝑣⃗𝑣 = (ℰ −𝒜𝒜)(𝒜𝒜𝑣⃗𝑣) = 𝒜𝒜𝑣⃗𝑣 −𝒜𝒜2𝑣⃗𝑣 = 0�⃗ = 𝒜𝒜ℬ𝑣⃗𝑣

∴ 𝒜𝒜ℬ = ℬ𝒜𝒜 = 𝒪𝒪 

(𝑖𝑖𝑖𝑖)若𝑣⃗𝑣 ∈ im𝒜𝒜则∃𝑢𝑢�⃗ ∈ 𝑉𝑉 使得𝑣⃗𝑣 = 𝒜𝒜𝑢𝑢�⃗  

而𝒜𝒜𝑣⃗𝑣 = 𝒜𝒜(𝒜𝒜𝑢𝑢�⃗ ) = 𝒜𝒜2𝑢𝑢�⃗ = 𝒜𝒜𝑢𝑢�⃗ = 𝑣⃗𝑣 ⇒ 𝑣⃗𝑣 ∈ 𝑉𝑉1

则 im𝒜𝒜 ⊆ 𝑉𝑉1

若𝑣⃗𝑣 ∈ 𝑉𝑉1,则𝒜𝒜𝑣⃗𝑣 = 𝑣⃗𝑣即𝑣⃗𝑣 ∈ im𝒜𝒜 ,因此𝑉𝑉1 ⊆ im𝒜𝒜

∴ 𝑉𝑉1 = im𝒜𝒜

ker𝒜𝒜 = ker(𝒜𝒜 − 0ℰ) = 𝑉𝑉0恰好为𝑉𝑉0定义
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(𝑖𝑖𝑖𝑖𝑖𝑖)若𝑣⃗𝑣 ∈ ker𝒜𝒜 ,则𝒜𝒜𝑣⃗𝑣 = 0�⃗ ,则𝑣⃗𝑣 = 𝑣⃗𝑣 − 𝒜𝒜𝑣⃗𝑣 = (ℰ −𝒜𝒜)𝑣⃗𝑣 = ℬ𝑣⃗𝑣 

⇒ 𝑣⃗𝑣 ∈ imℬ 

若𝑣⃗𝑣 ∈ imℬ ,即∃𝑢𝑢�⃗ ∈ 𝑉𝑉使得𝑣⃗𝑣 = ℬ𝑢𝑢�⃗   则𝒜𝒜𝑣⃗𝑣 = 𝒜𝒜ℬ𝑢𝑢�⃗ = 0�⃗  

⇒ 𝑣⃗𝑣 ∈ ker𝒜𝒜 

∴ ker𝒜𝒜 = imℬ 

 

(𝑖𝑖𝑖𝑖)∀𝑣⃗𝑣 ∈ 𝑉𝑉, 𝑣⃗𝑣 = (𝑣⃗𝑣 − 𝒜𝒜𝑣⃗𝑣) + 𝒜𝒜𝑣⃗𝑣 = (ℰ −𝒜𝒜)𝑣⃗𝑣 + 𝒜𝒜𝑣⃗𝑣 

因此𝑉𝑉 ⊆ im𝒜𝒜 + im(ℰ −𝒜𝒜)  

而显然有 im𝒜𝒜 + im(ℰ −𝒜𝒜) ⊆ 𝑉𝑉 

因此𝑉𝑉 = im𝒜𝒜 + im(ℰ −𝒜𝒜) ,下面只需证直和 

令𝑣⃗𝑣 ∈ im𝒜𝒜 ∩ im(ℰ −𝒜𝒜) = im𝒜𝒜 ∩ ker𝒜𝒜 

则𝑣⃗𝑣 ∈ ker𝒜𝒜 ⇒ 𝒜𝒜𝑣⃗𝑣 = 0�⃗  

𝑣⃗𝑣 ∈ im𝒜𝒜 ⇒ ∃𝑢𝑢�⃗ ∈ 𝑉𝑉 使得  𝒜𝒜𝑢𝑢�⃗ = 𝑣⃗𝑣  

则0�⃗ = 𝒜𝒜𝑣⃗𝑣 = 𝒜𝒜2𝑢𝑢�⃗ = 𝒜𝒜𝑢𝑢�⃗ = 𝑣⃗𝑣 ⇒ 𝑣⃗𝑣 = 0�⃗  

故 im𝒜𝒜 ∩ im(ℰ −𝒜𝒜) = im𝒜𝒜 ∩ ker𝒜𝒜 = �0�⃗ � 

则𝑉𝑉 = im𝒜𝒜⊕ im(ℰ −𝒜𝒜) = im𝒜𝒜⊕ ker𝒜𝒜 

 

(𝑣𝑣)结合(𝑖𝑖𝑖𝑖)(𝑖𝑖𝑖𝑖)可知𝑉𝑉 = 𝑉𝑉0 ⊕ 𝑉𝑉1 

从而𝒜𝒜可对角化,且特征值只有 0 或 1 

则知𝒜𝒜在任何基下的矩阵𝐴𝐴满足𝐴𝐴2 = 𝐴𝐴,且𝐴𝐴相似于 �𝐸𝐸𝑟𝑟 𝑂𝑂
𝑂𝑂 𝑂𝑂�  

𝑟𝑟 = dim𝑉𝑉1 = dim im𝒜𝒜 = rank𝒜𝒜 

于是 tr𝒜𝒜 = tr𝐴𝐴 = 𝑟𝑟 = rank𝐴𝐴 = rank𝒜𝒜     ∎ 
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【13-2】矩阵乘方的计算 

已知矩阵𝐴𝐴 = �
2 0 0
1 2 −1
1 0 1

� ,求𝐴𝐴𝑘𝑘 ,𝑘𝑘 ≥ 0 

方法:若存在𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹)使得𝐴𝐴 = 𝑃𝑃 diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛)𝑃𝑃−1 

则𝐴𝐴𝑘𝑘 = 𝑃𝑃 diag�𝜆𝜆1𝑘𝑘 , … , 𝜆𝜆𝑛𝑛𝑘𝑘�𝑃𝑃−1 

解:𝒳𝒳𝐴𝐴(𝑡𝑡) = |𝑡𝑡𝑡𝑡 − 𝐴𝐴| = �
𝑡𝑡 − 2 0 0
−1 𝑡𝑡 − 2 1
−1 0 𝑡𝑡 − 1

� = (𝑡𝑡 − 2)2(𝑡𝑡 − 1) 

知𝐴𝐴的特征值为 1 或 2 

对𝜆𝜆1 = 1,𝐴𝐴 − 𝜆𝜆1𝐸𝐸 = �
1 0 0
1 1 −1
1 0 0

� → �
1 0 0
0 1 −1
0 0 0

� 

可知(𝐴𝐴 − 𝜆𝜆1𝐸𝐸)𝑣⃗𝑣 = 0�⃗有解 𝑣𝑣1����⃗ = 𝑘𝑘(0,1,1)𝑡𝑡,𝑘𝑘 ≠ 0,即𝑉𝑉1 = ⟨(0,1,1)𝑡𝑡⟩ 

对𝜆𝜆2 = 2,𝐴𝐴 − 𝜆𝜆2𝐸𝐸 = �
0 0 0
1 0 −1
1 0 −1

� 

知(𝐴𝐴 − 𝜆𝜆2𝐸𝐸)𝑣⃗𝑣 = 0�⃗有解𝑣𝑣2����⃗ = 𝑘𝑘(0,1,0)𝑡𝑡,𝑣𝑣3����⃗ = 𝑙𝑙(1,0,1)𝑡𝑡,𝑘𝑘, 𝑙𝑙 ≠ 0 

从而𝑉𝑉2 = ⟨(0,1,0)𝑡𝑡, (1,0,1)𝑡𝑡⟩ 

进而由𝑉𝑉1 ⊕ 𝑉𝑉2,且dim𝑉𝑉1 + dim𝑉𝑉2 = 3,从而𝐴𝐴可对角化 

且令𝑃𝑃 = (𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ ,𝑣𝑣3����⃗ ),则𝐴𝐴𝐴𝐴 = (𝐴𝐴𝑣𝑣1����⃗ ,𝐴𝐴𝑣𝑣2����⃗ ,𝐴𝐴𝑣𝑣3����⃗ ) = (𝑣𝑣1����⃗ , 2𝑣𝑣2����⃗ , 2𝑣𝑣3����⃗ ) 

= 𝑃𝑃 �
1

2
2
�   即𝐴𝐴 = 𝑃𝑃−1 diag(1,2,2)𝑃𝑃 

从而𝐴𝐴𝑘𝑘 = 𝑃𝑃 diag(1,2𝑘𝑘, 2𝑘𝑘)𝑃𝑃−1.   最后𝑃𝑃−1 = �
−1 0 1
1 1 −1
1 0 0

�, 

则𝐴𝐴𝑘𝑘 = �
0 0 1
1 1 0
1 0 1

�diag(1,2𝑘𝑘, 2𝑘𝑘)�
−1 0 1
1 1 −1
1 0 0

� 

= �
2𝑘𝑘 0 0

2𝑘𝑘 − 1 2𝑘𝑘 1 − 2𝑘𝑘
2𝑘𝑘 − 1 0 1

� 
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【13-3】未定矩阵的性质判定 

已知如下矩阵𝐴𝐴 ∈ 𝑀𝑀4(ℝ),其中所有参数都是实数 

已知𝐴𝐴有一个特征值 2, 

且对应的几何重数�即对应的特征子空间维数�为 3 

求证𝐴𝐴可对角化 

𝐴𝐴 = �

2 3 3 3
𝑎𝑎 0 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 0 𝑓𝑓
𝑔𝑔 ℎ 𝑘𝑘 4

�  

证:由条件得dim𝑉𝑉2 = 3,𝑉𝑉2 = �𝑣⃗𝑣�(𝐴𝐴 − 2𝐸𝐸)𝑣⃗𝑣 = 0�⃗ � 

由第二章命题 4.4,特征值 2 的代数重数 ≥ 3 

可设𝒳𝒳𝐴𝐴(𝑡𝑡) = (𝑡𝑡 − 2)3(𝑡𝑡 − 𝜆𝜆) 

于是 tr𝐴𝐴 = 2 + 2 + 2 + 𝜆𝜆 = 6 + 𝜆𝜆 

但 tr𝐴𝐴 = 𝑎𝑎11 + 𝑎𝑎22 + 𝑎𝑎33 + 𝑎𝑎44 = 6 

∴ 𝜆𝜆 = 0,于是 0 也是𝐴𝐴的特征值 

同理dim𝑉𝑉0 ≤ 1,但特征子空间至少有 1 维,则dim𝑉𝑉0 = 1 

因此dim𝑉𝑉0 + dim𝑉𝑉2 = 4, dim(𝑉𝑉0 + 𝑉𝑉2) = 4 ⇒ dim(𝑉𝑉0 ∩ 𝑉𝑉2) = 0 

∴ ℝ4 = 𝑉𝑉0 ⊕ 𝑉𝑉2 ⇒ 𝐴𝐴可对角化   ∎ 

注:也可由 rank(𝐴𝐴 − 2𝐸𝐸) = 1 得𝐴𝐴 − 2𝐸𝐸 = �

0 3 3 3
0 −2 −2 −2
0 −2 −2 −2
0 2 2 2

� 

𝐴𝐴 = 𝐴𝐴 − 2𝐸𝐸 + 2𝐸𝐸 = �

2 3 3 3
0 0 −2 −2
0 −2 0 −2
0 2 2 4

� ,由此出发证明亦可 
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【13-4】可对角化相似循环矩阵 

设有下列复矩阵,其中𝑎𝑎0, … , 𝑎𝑎𝑛𝑛−1 ∈ ℂ 

𝐴𝐴 =

⎝

⎜
⎛

𝑎𝑎0 𝑎𝑎1 𝑎𝑎2 ⋯ 𝑎𝑎𝑛𝑛−1
𝑎𝑎𝑛𝑛−1 𝑎𝑎0 𝑎𝑎1 ⋯ 𝑎𝑎𝑛𝑛−2
𝑎𝑎𝑛𝑛−2 𝑎𝑎𝑛𝑛−1 𝑎𝑎0 ⋯ 𝑎𝑎𝑛𝑛−3
⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 ⋯ 𝑎𝑎0 ⎠

⎟
⎞

 

求证:假设𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(ℂ)在 ℂ上可对角化,则存在𝑎𝑎0, … ,𝑎𝑎𝑛𝑛−1 ∈ ℂ 

使得𝐵𝐵相似于如上的𝐴𝐴 

证:回顾习题 12− 3,𝐴𝐴有𝑛𝑛个线性无关的特征向量 

𝑣𝑣𝑘𝑘����⃗ = (1, 𝜀𝜀𝑘𝑘 , … , 𝜀𝜀𝑘𝑘𝑛𝑛−1),𝑘𝑘 = 0, … ,𝑛𝑛 − 1, 𝜀𝜀𝑘𝑘 = 𝑒𝑒
2𝜋𝜋𝜋𝜋𝜋𝜋
𝑛𝑛  

则{𝑣𝑣𝑘𝑘����⃗ }是一组基,且由于𝑣𝑣𝑘𝑘����⃗都是特征向量 

可知𝐴𝐴~𝑠𝑠 diag(𝑓𝑓(𝜀𝜀0), … ,𝑓𝑓(𝜀𝜀𝑛𝑛−1))  

由条件,∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℂ),使得𝑃𝑃𝑃𝑃𝑃𝑃−1 = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛)  

由插值多项式可知可取𝑛𝑛 − 1 次复多项式 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯+ 𝑎𝑎𝑛𝑛−1𝑥𝑥𝑛𝑛−1 

使得𝑓𝑓(𝜀𝜀𝑘𝑘) = 𝜆𝜆𝑘𝑘+1,𝑘𝑘 = 0, … ,𝑛𝑛 − 1 

于是𝐴𝐴~𝑠𝑠 diag�𝑓𝑓(𝜀𝜀0), … ,𝑓𝑓(𝜀𝜀𝑛𝑛−1)� = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) ~𝐵𝐵    ∎ 
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【13-5】对角矩阵诱导矩阵映射可对角化 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹)是𝐹𝐹上的一个可对角化矩阵,考虑线性变换 

𝜑𝜑𝐴𝐴:𝑀𝑀𝑛𝑛(𝐹𝐹) → 𝑀𝑀𝑛𝑛(𝐹𝐹),𝑋𝑋 ↦ 𝐴𝐴𝐴𝐴 

求证𝜑𝜑𝐴𝐴可对角化 

证:先假设𝐴𝐴就是对角矩阵,即𝐴𝐴 = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) 

令𝑒𝑒𝑖𝑖𝑖𝑖 = �0�⃗ , … , 0�⃗ , 𝑒𝑒𝚤𝚤��⃗⏟
第𝑗𝑗列

, 0�⃗ , … , 0�⃗ � ,即𝑒𝑒𝑖𝑖𝑖𝑖为第𝑖𝑖行𝑗𝑗列为 1,其余为 0 的矩阵 

则有𝜑𝜑𝐴𝐴�𝑒𝑒𝑖𝑖𝑖𝑖� = 𝐴𝐴�𝑒𝑒𝑖𝑖𝑖𝑖� = �0�⃗ , … , 0�⃗ ,𝐴𝐴𝑒𝑒𝚤𝚤��⃗ , 0�⃗ , … , 0�⃗ � 

= �0�⃗ , … , 0�⃗ , 𝜆𝜆𝑖𝑖𝑒𝑒𝚤𝚤��⃗ , 0�⃗ , … , 0�⃗ � = 𝜆𝜆𝑖𝑖�0�⃗ , … , 0�⃗ , 𝑒𝑒𝚤𝚤��⃗ , 0�⃗ , … , 0�⃗ � = 𝜆𝜆𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 

可知每个𝑒𝑒𝑖𝑖𝑖𝑖都是𝜑𝜑𝐴𝐴的特征向量,则𝜑𝜑𝐴𝐴有一组由特征向量组成的基 

从而此时𝜑𝜑𝐴𝐴可对角化 

一般情况下,由𝐴𝐴可对角化,∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹)使得 

𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃−1.𝐷𝐷 = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) 

则𝜑𝜑𝐴𝐴(𝑋𝑋) = 𝐴𝐴𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃−1𝑋𝑋 = 𝜑𝜑𝑃𝑃 ∘ 𝜑𝜑𝐷𝐷 ∘ 𝜑𝜑𝑃𝑃−1(𝑥𝑥) 

由于𝑃𝑃𝑃𝑃−1 = 𝑃𝑃−1𝑃𝑃 = 𝐸𝐸,可知𝜑𝜑𝑃𝑃 ∘ 𝜑𝜑𝑃𝑃−1(𝑋𝑋) = 𝑃𝑃𝑃𝑃−1𝑋𝑋 = 𝑋𝑋 = 𝐼𝐼𝐼𝐼(𝑋𝑋) 

𝜑𝜑𝑃𝑃−1 ∘ 𝜑𝜑𝑃𝑃(𝑋𝑋) = 𝑃𝑃−1𝑃𝑃𝑃𝑃 = 𝑋𝑋 = 𝐼𝐼𝐼𝐼(𝑋𝑋) 

于是𝜑𝜑𝑃𝑃是可逆线性算子,且𝜑𝜑𝑃𝑃−1 = (𝜑𝜑𝑃𝑃)−1 

取𝑣𝑣𝑖𝑖𝑖𝑖 = 𝜑𝜑𝑃𝑃�𝑒𝑒𝑖𝑖𝑖𝑖� = 𝑃𝑃𝑒𝑒𝑖𝑖𝑖𝑖 ,由𝜑𝜑𝑃𝑃可逆知�𝑣𝑣𝑖𝑖𝑖𝑖�为𝑀𝑀𝑛𝑛(𝐹𝐹)的一组基 

又𝜑𝜑𝐴𝐴�𝑣𝑣𝑖𝑖𝑖𝑖� = 𝑃𝑃𝑃𝑃𝑃𝑃−1�𝑃𝑃𝑒𝑒𝑖𝑖𝑖𝑖� = 𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑃𝑃�𝜆𝜆𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖� = 𝜆𝜆𝑖𝑖𝑃𝑃𝑒𝑒𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖 

可知�𝑣𝑣𝑖𝑖𝑖𝑖�为特征向量,则𝜑𝜑𝐴𝐴可对角化    ∎ 

 

  

323／363



李子明老师的线性代数讲义 

 

【14-1】约当块的基本量 

求𝐽𝐽𝑛𝑛(𝜆𝜆)的极小多项式,特征多项式,特征子空间维数和𝐽𝐽𝑛𝑛(𝜆𝜆)𝑘𝑘(𝑘𝑘 ∈ ℕ) 

解:记𝐽𝐽𝑛𝑛(𝜆𝜆) = 𝐽𝐽 

𝒳𝒳𝐽𝐽(𝑡𝑡) = det(𝑡𝑡𝑡𝑡 − 𝐽𝐽) = �
�

𝑡𝑡 − 𝜆𝜆 −1
𝑡𝑡 − 𝜆𝜆 ⋱

⋱ ⋱
𝑡𝑡 − 𝜆𝜆 −1

𝑡𝑡 − 𝜆𝜆

�
� = (𝑡𝑡 − 𝜆𝜆)𝑛𝑛 

由𝐶𝐶 − 𝐻𝐻定理,𝒳𝒳𝐽𝐽零化𝐽𝐽,则𝜇𝜇𝐽𝐽│𝒳𝒳𝐽𝐽 

于是可设𝜇𝜇𝐽𝐽(𝑡𝑡) = (𝑡𝑡 − 𝜆𝜆)𝑚𝑚, 2 ≤ 𝑚𝑚 ≤ 𝑛𝑛 

设𝐽𝐽0 = 𝐽𝐽 − 𝜆𝜆𝜆𝜆 =

⎝

⎜
⎛

0 1
0 ⋱

⋱ ⋱
0 1

0⎠

⎟
⎞

 

且对任何矩阵𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�,𝐴𝐴𝐽𝐽0 = �

0 𝑎𝑎11 ⋯ 𝑎𝑎𝑛𝑛−1,1
0 𝑎𝑎12 ⋯ 𝑎𝑎𝑛𝑛−1,2
⋮ ⋮ ⋱ ⋮
0 𝑎𝑎1𝑛𝑛 ⋯ 𝑎𝑎𝑛𝑛−1,𝑛𝑛

� 

从而可知𝐽𝐽0𝑛𝑛−1 = �𝑂𝑂𝑛𝑛×𝑛𝑛−1

1
0
⋮
0

� , 𝐽𝐽0𝑛𝑛 = 0 

⇒ (𝐽𝐽 − 𝜆𝜆𝜆𝜆)𝑚𝑚 = 0 时𝑛𝑛 ≥ 𝑚𝑚 ≥ 𝑛𝑛,即𝑚𝑚 = 𝑛𝑛 

且𝜇𝜇𝐽𝐽(𝑡𝑡) = (𝑡𝑡 − 𝜆𝜆)𝑛𝑛 

𝐽𝐽的唯一特征值为𝜆𝜆,又𝐽𝐽 − 𝜆𝜆𝜆𝜆 = 𝐽𝐽0, rank 𝐽𝐽0 = 𝑛𝑛 − 1 

从而dim𝑉𝑉0 = dim ker(𝐽𝐽 − 𝜆𝜆𝜆𝜆) = 𝑛𝑛 − rank 𝐽𝐽0 = 1 

∵ 𝐽𝐽0𝐸𝐸 = 𝐸𝐸𝐽𝐽0  ∴ 𝐽𝐽𝑚𝑚 = (𝐽𝐽0 + 𝜆𝜆𝜆𝜆)𝑚𝑚可用二项式定理 

𝐽𝐽𝑚𝑚 = �𝐶𝐶𝑚𝑚𝑘𝑘 𝐽𝐽0𝑘𝑘𝜆𝜆𝑚𝑚−𝑘𝑘𝐸𝐸𝑚𝑚−𝑘𝑘
𝑚𝑚

𝑘𝑘=0

= �𝐶𝐶𝑚𝑚𝑘𝑘 𝐽𝐽0𝑘𝑘𝜆𝜆𝑚𝑚−𝑘𝑘
𝑚𝑚

𝑘𝑘=0

 

= � 𝐶𝐶𝑚𝑚𝑘𝑘 𝐽𝐽0𝑘𝑘𝜆𝜆𝑚𝑚−𝑘𝑘

min{𝑚𝑚,𝑛𝑛−1}

𝑘𝑘=0
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因此𝐽𝐽𝑚𝑚 =

⎝

⎜
⎛
𝜆𝜆𝑚𝑚 𝑚𝑚𝜆𝜆𝑚𝑚−1 ⋯ 𝐶𝐶𝑚𝑚𝑛𝑛−2𝜆𝜆𝑚𝑚−𝑛𝑛+1 𝐶𝐶𝑚𝑚𝑛𝑛−1𝜆𝜆𝑚𝑚−𝑛𝑛

0 𝜆𝜆𝑚𝑚 ⋯ 𝐶𝐶𝑚𝑚𝑛𝑛−3𝜆𝜆𝑚𝑚−𝑛𝑛+2 𝐶𝐶𝑚𝑚𝑛𝑛−2𝜆𝜆𝑚𝑚−𝑛𝑛+1

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝜆𝜆𝑚𝑚 𝑚𝑚𝜆𝜆𝑚𝑚−1

0 0 ⋯ 0 𝜆𝜆𝑚𝑚 ⎠

⎟
⎞

 

当𝑛𝑛 − 1 > 𝑚𝑚时,规定𝐶𝐶𝑚𝑚𝑛𝑛−1 = 0 

 

【14-2】零不能为广义特征子空间 

设𝑉𝑉为𝑛𝑛维向量空间且𝑛𝑛 ≥ 1, 

求证:任意𝑉𝑉上的线性算子的广义特征子空间不可能是�0�⃗ � 

证:假设存在一个𝑖𝑖使得𝑉𝑉(𝑝𝑝𝑖𝑖) = ker �𝑝𝑝𝑖𝑖
𝑟𝑟𝑖𝑖(𝒜𝒜)� = �0�⃗ � 

则𝑝𝑝𝑖𝑖
𝑟𝑟𝑖𝑖(𝒜𝒜):𝑉𝑉 → 𝑉𝑉是单射,从而是满射,进而是可逆线性算子 

由极小多项式定义可知 

𝑂𝑂 = 𝜇𝜇𝐴𝐴(𝐴𝐴) = 𝑝𝑝1
𝑟𝑟1(𝐴𝐴)⋯𝑝𝑝𝑠𝑠

𝑟𝑟𝑆𝑆(𝐴𝐴) 

且由于上式右边各项都是𝐴𝐴的多项式,从而两两可交换 

则有𝑂𝑂 = 𝑔𝑔(𝒜𝒜)𝑝𝑝𝑖𝑖
𝑟𝑟𝑖𝑖(𝒜𝒜),𝑔𝑔(𝑡𝑡) = 𝜇𝜇𝐴𝐴(𝑡𝑡)/𝑝𝑝𝑖𝑖

𝑟𝑟𝑖𝑖(𝑡𝑡) 

由𝑝𝑝𝑖𝑖
𝑟𝑟𝑖𝑖(𝒜𝒜)可逆, 

则𝑂𝑂 = 𝑂𝑂 �𝑝𝑝𝑖𝑖
𝑟𝑟𝑖𝑖(𝒜𝒜)�

−1
= 𝑔𝑔(𝒜𝒜)𝑝𝑝𝑖𝑖

𝑟𝑟𝑖𝑖(𝒜𝒜) �𝑝𝑝𝑖𝑖
𝑟𝑟𝑖𝑖(𝒜𝒜)�

−1
= 𝑔𝑔(𝒜𝒜) 

⇒ 𝑔𝑔零化𝐴𝐴, deg𝑔𝑔 < deg𝜇𝜇𝐴𝐴 ,矛盾 

同理,对∀𝑖𝑖,𝑉𝑉(𝑝𝑝𝑖𝑖) ≠ �0�⃗ � 

 

【14-3】N 次方为单位矩阵的条件 

证明:对于矩阵𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ),关系式𝐴𝐴𝑁𝑁 = 𝐸𝐸成立 

当且仅当𝐴𝐴可对角化且它的特征值都是𝑁𝑁次单位根 

证:⇐:若𝐴𝐴可对角化,则存在𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℂ) 

使得𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃−1,𝐷𝐷 = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) 
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又𝒳𝒳𝐴𝐴 = 𝒳𝒳𝐷𝐷,可知𝜆𝜆1, … , 𝜆𝜆𝑛𝑛也是𝐴𝐴的特征值

因此𝜆𝜆𝑖𝑖𝑁𝑁 = 1, 𝑖𝑖 = 1, … ,𝑛𝑛 

则𝐴𝐴𝑁𝑁 = 𝑃𝑃𝐷𝐷𝑁𝑁𝑃𝑃−1 = 𝑃𝑃𝑃𝑃𝑃𝑃−1 = 𝑃𝑃𝑃𝑃−1 = 𝐸𝐸

⇒若𝐴𝐴𝑁𝑁 = 𝐸𝐸,可知𝑡𝑡𝑁𝑁 − 1 是𝐴𝐴的一个零化多项式

从而𝜇𝜇𝐴𝐴│𝑡𝑡𝑁𝑁 − 1

然而gcd(𝑡𝑡𝑁𝑁 − 1, (𝑡𝑡𝑁𝑁 − 1)′) = gcd(𝑡𝑡𝑁𝑁 − 1,𝑁𝑁𝑡𝑡𝑁𝑁−1) = 1

可知𝑡𝑡𝑁𝑁 − 1 无重根,从而𝜇𝜇𝐴𝐴无重根,则𝐴𝐴可对角化

设𝐴𝐴的一个特征值为𝜆𝜆,则∃𝑣⃗𝑣 ≠ 0�⃗ ,使得𝐴𝐴𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣

从而𝑣⃗𝑣 = 𝐸𝐸𝑣⃗𝑣 = 𝐴𝐴𝑁𝑁𝑣⃗𝑣 = 𝐴𝐴𝑛𝑛−1(𝜆𝜆𝑣⃗𝑣) = 𝜆𝜆𝐴𝐴𝑁𝑁−1𝑣⃗𝑣 = ⋯ = 𝜆𝜆𝑁𝑁𝑣⃗𝑣

由𝑣⃗𝑣 ≠ 0�⃗得𝜆𝜆𝑁𝑁 = 1,即𝜆𝜆是𝑁𝑁次单位根       ∎

【14-4】交换乘积不改变特征多项式 

证明:∀𝐴𝐴,𝐵𝐵 ∈ 𝑀𝑀𝑛𝑛(ℝ),𝐴𝐴𝐴𝐴和𝐵𝐵𝐵𝐵的特征多项式相同

证:扰动法: 

若𝐴𝐴可逆,则知𝐴𝐴𝐴𝐴 = 𝐴𝐴(𝐵𝐵𝐵𝐵)𝐴𝐴−1  使得𝐴𝐴𝐴𝐴~𝑠𝑠𝐵𝐵𝐵𝐵,显然𝒳𝒳𝐴𝐴𝐴𝐴 = 𝒳𝒳𝐵𝐵𝐵𝐵 

若𝐴𝐴不可逆,考虑𝐴𝐴𝑠𝑠 = 𝑠𝑠𝑠𝑠 + 𝐴𝐴,于是det𝐴𝐴𝑠𝑠 = 𝒳𝒳−𝐴𝐴(𝑠𝑠)

然而 𝒳𝒳−𝐴𝐴是一个𝑡𝑡的多项式,从而只有有限个零点,且 0 也是一个零点

记𝑚𝑚 = min�|𝜆𝜆|�𝜆𝜆 ∈ spec(−𝐴𝐴) ∖ {0}�

则若 0 < |𝑠𝑠| < 𝑚𝑚    [∗],则有𝐴𝐴𝑠𝑠可逆

于是有𝒳𝒳𝐴𝐴𝑠𝑠𝐵𝐵 = 𝒳𝒳𝐵𝐵𝐴𝐴𝑠𝑠

𝒳𝒳𝐴𝐴𝑠𝑠𝐵𝐵,𝒳𝒳𝐵𝐵𝐴𝐴𝑠𝑠的系数由𝑎𝑎𝑖𝑖𝑖𝑖 ,𝑏𝑏𝑖𝑖𝑖𝑖 , 𝑠𝑠的四则运算给出

则当𝑠𝑠 → 0 时,𝒳𝒳𝐴𝐴𝑠𝑠𝐵𝐵 → 𝒳𝒳𝐴𝐴𝐴𝐴,𝒳𝒳𝐵𝐵𝐴𝐴𝑠𝑠 → 𝒳𝒳𝐵𝐵𝐵𝐵 

𝒳𝒳𝐴𝐴𝑠𝑠𝐵𝐵 = 𝒳𝒳𝐵𝐵𝐴𝐴𝑠𝑠 ⇒ 𝒳𝒳𝐴𝐴𝐴𝐴 = 𝒳𝒳𝐵𝐵𝐵𝐵         ∎

注意,能取极限是因为 0 是[∗]式的聚点 
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分块矩阵法 

𝒳𝒳𝐴𝐴𝐴𝐴 (0) = (−1)𝑛𝑛 det𝐴𝐴𝐴𝐴 = (−1)𝑛𝑛 det𝐵𝐵𝐵𝐵 = 𝒳𝒳𝐵𝐵𝐵𝐵(0) 

考虑𝑃𝑃 = � 𝐸𝐸 𝑂𝑂
−𝐴𝐴 𝐸𝐸� ,𝑄𝑄 = �𝜆𝜆𝜆𝜆 𝐵𝐵

𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆� , 𝜆𝜆 ≠ 0 

𝑃𝑃𝑃𝑃 = �𝜆𝜆𝜆𝜆 𝐵𝐵
𝑂𝑂 𝜆𝜆𝜆𝜆 − 𝐴𝐴𝐴𝐴� ,𝑄𝑄𝑄𝑄 = �𝜆𝜆𝜆𝜆 − 𝐵𝐵𝐵𝐵 𝐵𝐵

𝑂𝑂 𝜆𝜆𝜆𝜆� 

∵ det𝑃𝑃𝑃𝑃 = det𝑃𝑃 det𝑄𝑄 = det𝑄𝑄𝑄𝑄 

∴ |𝜆𝜆𝜆𝜆||𝜆𝜆𝜆𝜆 − 𝐴𝐴𝐵𝐵| = |𝜆𝜆𝜆𝜆 − 𝐵𝐵𝐵𝐵||𝜆𝜆𝜆𝜆| 

∴ 𝒳𝒳𝐴𝐴𝐴𝐴 (𝜆𝜆) = |𝜆𝜆𝜆𝜆 − 𝐴𝐴𝐴𝐴| = |𝜆𝜆𝜆𝜆 − 𝐵𝐵𝐵𝐵| = 𝒳𝒳𝐵𝐵𝐵𝐵(𝜆𝜆) 

∴结合𝒳𝒳𝐴𝐴𝐴𝐴(0) = 𝒳𝒳𝐵𝐵𝐵𝐵(0)可得 

∀𝑡𝑡 ∈ ℝ 𝒳𝒳𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝒳𝒳𝐵𝐵𝐵𝐵(𝑡𝑡)  ∎ 

 

【15-1】矩阵空间线性算子的基本量 

设𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹),求矩阵空间𝑀𝑀𝑛𝑛(𝐹𝐹)上的线性算子 

𝜑𝜑𝐴𝐴(𝑋𝑋) = 𝐴𝐴𝐴𝐴的极小多项式和特征多项式�𝑋𝑋为任一𝑛𝑛阶矩阵� 

解:由于需要计算特征多项式,因此寻找一组基写下𝜑𝜑𝐴𝐴的矩阵 

令𝐴𝐴 = (𝛼𝛼1����⃗ , … ,𝛼𝛼𝑛𝑛����⃗ ) = �𝛼𝛼𝑖𝑖𝑖𝑖�,𝑒𝑒𝑖𝑖𝑖𝑖 = �0�⃗ , … , 0�⃗ , 𝑒𝑒𝚥𝚥��⃗⏟
第𝑖𝑖个

, 0�⃗ , … , 0�⃗ � 

则𝛼𝛼𝚤𝚤���⃗ = �𝛼𝛼𝑘𝑘𝑘𝑘𝑒𝑒𝑘𝑘����⃗
𝑛𝑛

𝑘𝑘=1

, 𝐴𝐴𝑒𝑒𝚥𝚥��⃗ = (𝛼𝛼1����⃗ , … ,𝛼𝛼𝑛𝑛����⃗ )𝑒𝑒𝚥𝚥��⃗ = 𝛼𝛼𝚥𝚥���⃗  

𝜑𝜑𝐴𝐴�𝑒𝑒𝑖𝑖𝑖𝑖� = �𝐴𝐴0�⃗ , … ,𝐴𝐴0�⃗ ,𝐴𝐴𝑒𝑒𝚥𝚥��⃗�
𝑖𝑖

,𝐴𝐴0�⃗ , … ,𝐴𝐴0�⃗ � = �0�⃗ , … , 0�⃗ ,𝛼𝛼𝚥𝚥���⃗⏟
𝑖𝑖

, 0�⃗ , … , 0�⃗ � 

= �0�⃗ , … , 0�⃗ ,�𝛼𝛼𝑘𝑘𝑘𝑘𝑒𝑒𝑘𝑘����⃗
𝑛𝑛

𝑘𝑘=1

, 0�⃗ , … , 0�⃗ � = �𝛼𝛼𝑘𝑘𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�0�⃗ , … , 0�⃗ , 𝑒𝑒𝑘𝑘����⃗ , 0�⃗ , … , 0�⃗ � 

= �𝛼𝛼𝑘𝑘𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖

𝑛𝑛

𝑘𝑘=1
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即知对固定的𝑖𝑖,𝑉𝑉𝑖𝑖 = ⟨𝑒𝑒𝑖𝑖1,𝑒𝑒𝑖𝑖2, … , 𝑒𝑒𝑖𝑖𝑖𝑖⟩ ⊆ 𝑀𝑀𝑛𝑛(𝐹𝐹)为𝜑𝜑𝐴𝐴的不变子空间 

于是𝜑𝜑𝐴𝐴在基𝐵𝐵 = �𝑒𝑒11, … , 𝑒𝑒1𝑛𝑛�������
𝑉𝑉1

, 𝑒𝑒21, … , 𝑒𝑒2𝑛𝑛�������
𝑉𝑉2

, 𝑒𝑒𝑛𝑛1, … , 𝑒𝑒𝑛𝑛𝑛𝑛�������
𝑉𝑉𝑛𝑛

� 

下的矩阵为分块对角的, 

考察𝑉𝑉1,𝜑𝜑𝐴𝐴(𝑒𝑒11, … , 𝑒𝑒1𝑛𝑛) = (𝑒𝑒11, … , 𝑒𝑒1𝑛𝑛)�

𝛼𝛼11 𝛼𝛼12 ⋯ 𝛼𝛼1𝑛𝑛
𝛼𝛼21 𝛼𝛼22 ⋯ 𝛼𝛼2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝛼𝛼𝑛𝑛1 𝛼𝛼𝑛𝑛2 ⋯ 𝛼𝛼𝑛𝑛𝑛𝑛

� 

= (𝑒𝑒11, … , 𝑒𝑒1𝑛𝑛)𝐴𝐴 

于是类似可得𝜑𝜑𝐴𝐴在基𝐵𝐵下的矩阵为diag(𝐴𝐴,𝐴𝐴, … ,𝐴𝐴)𝑛𝑛 

因此极小多项式𝜇𝜇𝜑𝜑𝐴𝐴(𝑡𝑡) = lcm�𝜇𝜇𝐴𝐴(𝑡𝑡), … , 𝜇𝜇𝐴𝐴(𝑡𝑡)� = 𝜇𝜇𝐴𝐴(𝑡𝑡) 

特征多项式 𝒳𝒳𝜑𝜑𝐴𝐴(𝑡𝑡) = det(𝑡𝑡𝑡𝑡 − diag(𝐴𝐴,𝐴𝐴, … ,𝐴𝐴)𝑛𝑛) 

= (det(𝑡𝑡𝑡𝑡 − 𝐴𝐴))𝑛𝑛 = �𝒳𝒳𝐴𝐴(𝑡𝑡)�𝑛𝑛        ∎ 

 

【15-2】Jn1 幂相似 

证明:对于复矩阵𝐽𝐽𝑛𝑛(1),对任意正整数𝑘𝑘, 𝐽𝐽𝑛𝑛(1)相似于𝐽𝐽𝑛𝑛(1)𝑘𝑘 

证:证法 1 

引理  当𝑛𝑛 ≥ 2 时,设𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�,当𝑖𝑖 ≥ 𝑗𝑗时𝑎𝑎𝑖𝑖𝑖𝑖 = 0,即𝐴𝐴严格上三角 

𝐴𝐴 =

⎝

⎜
⎛

0 𝑎𝑎12 ∗ ∗ ∗
0 𝑎𝑎23 ∗ ∗

0 ⋱ ∗
⋱ 𝑎𝑎𝑛𝑛−1,𝑛𝑛

0 ⎠

⎟
⎞

  

若𝑎𝑎12𝑎𝑎23⋯𝑎𝑎𝑛𝑛−1,𝑛𝑛 ≠ 0,则𝐴𝐴~𝑠𝑠𝐽𝐽𝑛𝑛(0) 

引理的证明    考虑𝐴𝐴𝑛𝑛−1𝑒𝑒𝑛𝑛����⃗ , … ,𝐴𝐴𝑒𝑒𝑛𝑛����⃗ ,𝑒𝑒𝑛𝑛����⃗       [𝑇𝑇𝑒𝑒𝑛𝑛����⃗即取矩阵𝑇𝑇的最后一列] 
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经计算, (𝐴𝐴𝑛𝑛−1𝑒𝑒𝑛𝑛����⃗ , … ,𝐴𝐴𝑒𝑒𝑛𝑛����⃗ ,𝑒𝑒𝑛𝑛����⃗ ) =

⎝

⎜
⎛

𝑑𝑑1 ∗ ⋯ ∗ 0
𝑑𝑑2 ⋯ ∗ 0

⋱ ∗ ⋮
𝑑𝑑𝑛𝑛−1 0

1⎠

⎟
⎞

 

其中𝑑𝑑𝑖𝑖 = 𝑎𝑎𝑖𝑖,𝑖𝑖+1𝑎𝑎𝑖𝑖+1,𝑖𝑖+2 ⋯𝑎𝑎𝑛𝑛−1,𝑛𝑛, 𝑖𝑖 = 1, … ,𝑛𝑛 − 1 

则由𝑑𝑑1 = 𝑎𝑎12 ⋯𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛 ≠ 0 知𝑑𝑑𝑖𝑖 ≠ 0, 𝑖𝑖 = 1, … ,𝑛𝑛 − 1 

则知�𝑣𝑣𝚤𝚤���⃗ = 𝐴𝐴𝑛𝑛−𝑖𝑖𝑒𝑒𝑛𝑛����⃗ �𝑖𝑖 = 1, … ,𝑛𝑛�为ℂ𝑛𝑛的一组基 

由此,𝐴𝐴𝑣𝑣𝚤𝚤���⃗ = 𝑣𝑣𝚤𝚤−1��������⃗ ,故在此基下线性算子𝑥⃗𝑥 ↦ 𝐴𝐴𝑥⃗𝑥的矩阵为𝐽𝐽𝑛𝑛(0) 

于是𝐴𝐴~𝑠𝑠𝐽𝐽𝑛𝑛(0)   ∎ 

于是∀𝑘𝑘 ∈ ℤ > 0, 𝐽𝐽𝑛𝑛(1)𝑘𝑘 = �𝐸𝐸 + 𝐽𝐽𝑛𝑛(0)�𝑘𝑘 = 𝐸𝐸 + 𝑘𝑘𝐽𝐽𝑛𝑛(0) + 其他 

则知𝐽𝐽𝑛𝑛(1)𝑘𝑘 − 𝐸𝐸满足引理的条件,则𝐽𝐽𝑛𝑛(1)𝑘𝑘 − 𝐸𝐸~𝑠𝑠𝐽𝐽𝑛𝑛(0) 

∴ 𝐽𝐽𝑛𝑛(1)𝑘𝑘~𝑠𝑠𝐽𝐽𝑛𝑛(0) + 𝐸𝐸 = 𝐽𝐽𝑛𝑛(1)   ∎ 

 

证法 2�丘维声�: 𝐽𝐽𝑛𝑛(1)𝑘𝑘是主对角元都为 1 的上三角矩阵 

因此𝐽𝐽𝑛𝑛(1)𝑘𝑘的特征多项式𝒳𝒳𝐽𝐽𝑛𝑛 (1)𝑘𝑘 = (𝜆𝜆 − 1)𝑛𝑛 

从而𝐽𝐽𝑛𝑛(1)𝑘𝑘有𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜标准型,设为𝐽𝐽 

𝐽𝐽的主对角元为 1 的𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜块的总数为𝑛𝑛 − rank(𝐽𝐽𝑛𝑛(1)𝑘𝑘 − 𝐸𝐸) 

[∑𝑁𝑁𝑖𝑖 = ∑(𝑟𝑟𝑖𝑖−1 + 𝑟𝑟𝑖𝑖+1 − 2𝑟𝑟𝑖𝑖) = 𝑟𝑟0 − 𝑟𝑟1]  

由于𝐽𝐽𝑛𝑛(1) = 𝐸𝐸 + 𝐽𝐽𝑛𝑛(0),因此 

𝐽𝐽𝑛𝑛(1)𝑘𝑘 = �𝐸𝐸 + 𝐽𝐽𝑛𝑛(0)�𝑘𝑘 = 𝐸𝐸 + 𝐶𝐶𝑘𝑘1𝐽𝐽𝑛𝑛(0) + ⋯+ 𝐶𝐶𝑘𝑘𝑘𝑘𝐽𝐽𝑛𝑛(0)𝑘𝑘 

𝐽𝐽𝑛𝑛(1)𝑘𝑘 − 𝐸𝐸 =

⎝

⎜
⎛

0 𝑘𝑘 𝐶𝐶𝑘𝑘2 𝐶𝐶𝑘𝑘3 ⋯ 𝐶𝐶𝑘𝑘𝑘𝑘 0 ⋯ 0
0 0 𝑘𝑘 𝐶𝐶𝑘𝑘2 ⋯ 𝐶𝐶𝑘𝑘𝑘𝑘−1 𝐶𝐶𝑘𝑘𝑘𝑘 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 0 ⋯ 𝑘𝑘
0 0 0 0 ⋯ 0 0 ⋯ 0⎠

⎟
⎞

   

从而 rank(𝐽𝐽𝑛𝑛(1)𝑘𝑘 − 𝐸𝐸) = 𝑛𝑛 − 1,因此𝑛𝑛 − rank(𝐽𝐽𝑛𝑛(1)𝑘𝑘 − 𝐸𝐸) = 1 

于是𝐽𝐽𝑛𝑛(1)𝑘𝑘的标准型𝐽𝐽 = 𝐽𝐽𝑛𝑛(1),即𝐽𝐽𝑛𝑛(1)𝑘𝑘~𝑠𝑠𝐽𝐽𝑛𝑛(1)   ∎ 
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【15-3】可交换则可同时对角化 

𝒜𝒜,ℬ:𝑉𝑉 → 𝑉𝑉, dim𝑉𝑉 = 𝑛𝑛 < +∞ 

若𝒜𝒜,ℬ都可对角化,且𝒜𝒜ℬ = ℬ𝒜𝒜 

则存在一组基{𝑣𝑣𝑘𝑘����⃗ },使得 𝒜𝒜,ℬ在这组基下同时对角化 

即𝑣𝑣1����⃗ , … 𝑣𝑣𝑛𝑛����⃗都是𝒜𝒜,ℬ的特征向量 

证:∵ 𝒜𝒜可对角化,∴ ∃特征子空间分解 

𝑉𝑉 = 𝑉𝑉𝜆𝜆1 ⊕⋯⊕𝑉𝑉𝜆𝜆𝑠𝑠 , 𝜆𝜆𝑖𝑖 ∈ spec𝒜𝒜 ,𝑉𝑉𝜆𝜆𝑖𝑖 = ker(𝒜𝒜− 𝜆𝜆𝑖𝑖ℰ) 

𝒜𝒜ℬ = ℬ𝒜𝒜 ⇒每个 𝑉𝑉𝜆𝜆𝑖𝑖都是 ℬ的不变子空间 

即有 ℬ│𝑉𝑉𝜆𝜆𝑖𝑖 :𝑉𝑉
𝜆𝜆𝑖𝑖 → 𝑉𝑉𝜆𝜆𝑖𝑖 

断言  若 ℬ可对角化,则对任何 ℬ不变子空间𝑊𝑊,ℬ│𝑊𝑊可对角化 

断言的证明见后 

因此存在𝑉𝑉𝜆𝜆𝑖𝑖的一组基�𝑣𝑣𝚤𝚤𝚤𝚤����⃗ �,使得𝑣𝑣𝚤𝚤𝚤𝚤����⃗是 ℬ的特征向量 

自然𝑣𝑣𝚤𝚤𝚤𝚤����⃗也是𝒜𝒜的特征向量 

令{𝑣𝑣𝑘𝑘����⃗ } = �{𝑣𝑣𝚤𝚤𝚤𝚤����⃗ }
𝑠𝑠

𝑖𝑖=1

  

则由直和𝑉𝑉 = 𝑉𝑉𝜆𝜆1 ⊕⋯⊕𝑉𝑉𝜆𝜆𝑠𝑠 ⇒ {𝑣𝑣𝑘𝑘}为𝑉𝑉的基    ∎ 
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断言       ℬ可对角化,则对任何 ℬ不变子空间𝑊𝑊,ℬ│𝑊𝑊可对角化 

证:取 ℬ的特征子空间分解 

𝑉𝑉 = 𝑉𝑉𝜇𝜇1 ⊕⋯⊕𝑉𝑉𝜇𝜇𝑡𝑡 ,𝜇𝜇𝑖𝑖 ∈ specℬ ,𝑉𝑉𝜇𝜇𝑖𝑖 = ker(ℬ − 𝜇𝜇𝑖𝑖ℰ) 

𝑊𝑊 ⊂ 𝑉𝑉是 ℬ不变子空间 

令𝑊𝑊𝑖𝑖 = 𝑊𝑊 ∩ 𝑉𝑉𝜇𝜇𝑖𝑖 = ker�ℬ│𝑊𝑊 − 𝜇𝜇𝑖𝑖ℰ� = 𝑊𝑊 ∩ ker(ℬ − 𝜇𝜇𝑖𝑖ℰ) 

由第二章定理 5.1   只需证𝑊𝑊 = �𝑊𝑊𝑖𝑖

𝑡𝑡

𝑖𝑖=1

 

𝑊𝑊1 +⋯+ 𝑊𝑊𝑡𝑡 ⊆ 𝑊𝑊,𝑊𝑊𝑖𝑖 ⊆ 𝑉𝑉𝜇𝜇𝑖𝑖  

则𝑤𝑤��⃗ = 𝑤𝑤1����⃗ +⋯+ 𝑤𝑤𝑡𝑡����⃗ ∈ 𝑊𝑊1 + ⋯+𝑊𝑊𝑡𝑡 ⊆ 𝑉𝑉𝜇𝜇1 ⊕⋯⊕𝑉𝑉𝜇𝜇𝑡𝑡 

则由𝑉𝑉𝜇𝜇1 ⊕⋯⊕𝑉𝑉𝜇𝜇𝑡𝑡可知𝑤𝑤��⃗ = 𝑤𝑤1����⃗ + ⋯+ 𝑤𝑤𝑡𝑡����⃗的分解唯一 

⇒𝑊𝑊1 ⊕⋯⊕𝑊𝑊𝑡𝑡 ⊆ 𝑊𝑊 

取 𝑤𝑤��⃗ ∈ 𝑊𝑊 ⊆ 𝑉𝑉 = 𝑉𝑉𝜇𝜇1 ⊕⋯⊕𝑉𝑉𝜇𝜇𝑡𝑡 

则 𝑤𝑤��⃗ = 𝑣𝑣1����⃗ + ⋯+ 𝑣𝑣𝑡𝑡���⃗ ,𝑣𝑣𝚤𝚤���⃗ ∈ 𝑉𝑉𝜇𝜇𝑖𝑖 

ℬ𝑤𝑤��⃗ = 𝜇𝜇1𝑣𝑣1����⃗ + ⋯+ 𝜇𝜇𝑡𝑡𝑣𝑣𝑡𝑡���⃗  

… 

ℬ𝑡𝑡−1𝑤𝑤��⃗ = 𝜇𝜇1𝑡𝑡−1𝑣𝑣1����⃗ + ⋯+ 𝜇𝜇𝑡𝑡𝑡𝑡−1𝑣𝑣𝑡𝑡���⃗  

⇒ (𝑤𝑤��⃗ ,ℬ𝑤𝑤��⃗ , … ,ℬ𝑡𝑡−1𝑤𝑤��⃗ ) = (𝑣𝑣1����⃗ , … , 𝑣𝑣𝑡𝑡���⃗ )

⎝

⎛
1 𝜇𝜇1 ⋯ 𝜇𝜇1𝑡𝑡−1

1 𝜇𝜇2 ⋯ 𝜇𝜇2𝑡𝑡−1
⋮ ⋮ ⋱ ⋮
1 𝜇𝜇𝑡𝑡 ⋯ 𝜇𝜇𝑡𝑡𝑡𝑡−1⎠

⎞ 

𝜇𝜇1, … ,𝜇𝜇𝑡𝑡两两不同 ⇒ 𝑣𝑣1����⃗ , … ,𝑣𝑣𝑡𝑡���⃗都是𝑤𝑤��⃗ ,ℬ𝑤𝑤��⃗ , … ,ℬ𝑡𝑡−1𝑤𝑤��⃗  的线性组合 

⇒ 𝑣𝑣𝚤𝚤���⃗ ∈ 𝑊𝑊 ⇒ 𝑣𝑣𝚤𝚤���⃗ ∈ 𝑊𝑊 ∩ 𝑉𝑉𝜇𝜇𝑖𝑖 = 𝑊𝑊𝑖𝑖 ⇒ 𝑤𝑤��⃗ ∈�𝑊𝑊𝑖𝑖

𝑡𝑡

𝑖𝑖=1

 

⇒𝑊𝑊 ⊆�𝑊𝑊𝑖𝑖

𝑡𝑡

𝑖𝑖=1

⊆ 𝑊𝑊 ⇒ 𝑊𝑊 = �𝑊𝑊𝑖𝑖

𝑡𝑡

𝑖𝑖=1
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【15-4】循环空间分解不变子空间也循环 

设𝑉𝑉是域𝐹𝐹上的𝑛𝑛维线性空间,𝒜𝒜为𝑉𝑉上的线性算子 

证明:若𝑉𝑉的某个循环子空间可以分解为两个𝒜𝒜−子空间的直和 

则这两个𝒜𝒜−子空间也是循环子空间 

证:不妨设𝑉𝑉本身就是循环的 

�对𝑊𝑊 ⊆ 𝑉𝑉循环,只需要考虑𝒜𝒜│𝑊𝑊:𝑊𝑊 →𝑊𝑊即可� 

取循环向量𝑣⃗𝑣,使得𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣 = ⟨𝑣⃗𝑣,𝒜𝒜𝑣⃗𝑣, … ,𝒜𝒜𝑛𝑛−1𝑣⃗𝑣⟩ 

若有𝑉𝑉1,𝑉𝑉2 ⊆ 𝑉𝑉为𝒜𝒜不变子空间,使得𝑉𝑉 = 𝑉𝑉1 ⊕ 𝑉𝑉2 

取𝑣⃗𝑣 ∈ 𝑉𝑉 = 𝑉𝑉1 ⊕ 𝑉𝑉2,则∃!𝑣𝑣1����⃗ ∈ 𝑉𝑉1,𝑣𝑣2����⃗ ∈ 𝑉𝑉2,使得𝑣⃗𝑣 = 𝑣𝑣1����⃗ + 𝑣𝑣2����⃗  

断言  𝑉𝑉1 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣1����⃗  

断言的证明:由于𝑉𝑉𝑖𝑖是𝒜𝒜不变子空间,则可知∀𝑓𝑓(𝑡𝑡) ∈ 𝐹𝐹[𝑡𝑡] 

𝑓𝑓(𝒜𝒜)𝑣𝑣1����⃗ ∈ 𝑉𝑉1   于是𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣1����⃗ ⊆ 𝑉𝑉1 

∀𝑤𝑤𝚤𝚤����⃗ ∈ 𝑉𝑉1 ⊆ 𝑉𝑉,由𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣可知∃𝑔𝑔(𝑡𝑡) ∈ 𝐹𝐹[𝑡𝑡] 

使得𝑤𝑤1����⃗ = 𝑔𝑔(𝒜𝒜)𝑣⃗𝑣 = 𝑔𝑔(𝒜𝒜)(𝑣𝑣1����⃗ + 𝑣𝑣2����⃗ ) = 𝑔𝑔(𝒜𝒜)𝑣𝑣1����⃗ + 𝑔𝑔(𝒜𝒜)𝑣𝑣2����⃗  

显然有𝑔𝑔(𝒜𝒜)𝑣𝑣1����⃗ ∈ 𝑉𝑉1 

但由𝑣⃗𝑣的分解唯一性可得出𝑤𝑤1����⃗的分解唯一性 

因此𝑤𝑤1����⃗ = 𝑔𝑔(𝒜𝒜)𝑣𝑣1����⃗ ,𝑔𝑔(𝒜𝒜)𝑣𝑣2����⃗ = 0�⃗  

于是𝑤𝑤1����⃗ ∈ 𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣1����⃗ ⇒ 𝑉𝑉1 ⊆ 𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣1����⃗  

因此𝑉𝑉1 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣1����⃗是循环子空间,𝑉𝑉2同理        ∎ 
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【15-5】Jordan-cherally 分解 

𝑉𝑉是有限维复线性空间,𝒜𝒜:𝑉𝑉 → 𝑉𝑉线性算子 

则存在唯一的线性算子𝒩𝒩,𝒮𝒮:𝑉𝑉 → 𝑉𝑉, 𝑠𝑠. 𝑡𝑡. 

(𝑖𝑖)𝒜𝒜 = 𝒩𝒩 + 𝒮𝒮 ,𝒩𝒩幂零,𝒮𝒮可对角化 

(𝑖𝑖𝑖𝑖)𝒩𝒩,𝒮𝒮都是𝒜𝒜的复多项式,特别地𝒩𝒩𝒩𝒩 = 𝒮𝒮𝒮𝒮 

证:想法: 

𝒜𝒜~𝑠𝑠 diag �𝐽𝐽𝑛𝑛1(𝜆𝜆1), … , 𝐽𝐽𝑛𝑛𝑘𝑘(𝜆𝜆𝑘𝑘)� ,可取𝒩𝒩,𝒮𝒮使其矩阵分别为 

diag �𝐽𝐽𝑛𝑛1(0), … . , 𝐽𝐽𝑛𝑛𝑘𝑘(0)� , diag�𝜆𝜆𝑛𝑛1𝐸𝐸𝑛𝑛1 , … , 𝜆𝜆𝑛𝑛𝑘𝑘𝐸𝐸𝑛𝑛𝑘𝑘� 

唯一性:设(𝒩𝒩,𝒮𝒮), �𝒩𝒩� , 𝒮̃𝒮�为两组线性算子,满足(1)(2) 

即𝒜𝒜 = 𝒩𝒩 + 𝒮𝒮 = 𝒩𝒩� + 𝒮̃𝒮,𝒩𝒩,𝒩𝒩�幂零,𝒮𝒮, 𝒮̃𝒮可对角化 

且𝒩𝒩𝒩𝒩 = 𝒮𝒮𝒮𝒮;𝒩𝒩�𝒮̃𝒮 = 𝒮̃𝒮𝒩𝒩� , 𝒩𝒩,𝒮𝒮,𝒩𝒩� , 𝒮̃𝒮都是𝒜𝒜的复多项式 

(𝑎𝑎)设𝒩𝒩𝑟𝑟1 = 𝒪𝒪,𝒩𝒩�𝑟𝑟2 = 𝒪𝒪 

�𝒩𝒩 −𝒩𝒩��𝑟𝑟1+𝑟𝑟2 = � 𝐶𝐶𝑟𝑟1+𝑟𝑟2
𝑘𝑘 𝒩𝒩𝑘𝑘𝒩𝒩� 𝑟𝑟1+𝑟𝑟2−𝑘𝑘(−1)𝑟𝑟1+𝑟𝑟2−𝑘𝑘

𝑟𝑟1+𝑟𝑟2

𝑘𝑘=1

 

= �𝒩𝒩�𝑟𝑟2�
𝒪𝒪

𝐶𝐶𝑟𝑟1+𝑟𝑟2
𝑘𝑘 𝒩𝒩𝑘𝑘𝒩𝒩�𝑟𝑟1−𝑘𝑘(−1)𝑟𝑟1+𝑟𝑟2−𝑘𝑘

𝑟𝑟1

𝑘𝑘=1

+ �𝒩𝒩𝑟𝑟1�
𝒪𝒪

𝐶𝐶𝑟𝑟1+𝑟𝑟2
𝑘𝑘+𝑟𝑟1𝒩𝒩𝑘𝑘𝒩𝒩� 𝑟𝑟2−𝑘𝑘(−1)𝑟𝑟2−𝑘𝑘

𝑟𝑟2

𝑘𝑘=1

 

= 𝒪𝒪 + 𝒪𝒪 = 𝒪𝒪 

⇒𝒩𝒩−𝒩𝒩�也幂零 

(𝑏𝑏) ∵ 𝒮𝒮, 𝒮̃𝒮都是𝒜𝒜的多项式   ∴ 𝒮𝒮𝒮̃𝒮 = 𝒮̃𝒮𝒮𝒮 

由习题 15− 3,存在一组基{𝑣𝑣𝚤𝚤���⃗ }使得每个𝑣𝑣𝚤𝚤���⃗都是𝒮𝒮和𝒮̃𝒮的公共特征向量 

设在该基下𝒮𝒮和𝒮̃𝒮的矩阵分别为diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) , diag�𝜆𝜆1�, … , 𝜆𝜆𝑛𝑛��  

由𝒩𝒩−𝒩𝒩� = 𝒮̃𝒮 − 𝒮𝒮得diag ��𝜆𝜆1 − 𝜆𝜆1��
𝑟𝑟1+𝑟𝑟2 , … , �𝜆𝜆𝑛𝑛 − 𝜆𝜆𝑛𝑛��

𝑟𝑟1+𝑟𝑟2� = 𝑂𝑂 

333／363



李子明老师的线性代数讲义 

 

∴ 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝚤𝚤� , 𝑖𝑖 = 1,2, … ,𝑛𝑛 

从而𝒮𝒮 = 𝒮̃𝒮,且𝒩𝒩−𝒩𝒩� = 𝒮̃𝒮 − 𝒮𝒮 = 𝒪𝒪 ⇒ 𝒩𝒩 = 𝒩𝒩� 

 

存在性:令𝜇𝜇𝒜𝒜(𝑡𝑡) = (𝑡𝑡 − 𝜆𝜆1)𝑚𝑚1 ⋯ (𝑡𝑡 − 𝜆𝜆𝑘𝑘)𝑚𝑚𝑘𝑘为不可约分解 

⇒广义特征子空间分解 𝑉𝑉 = 𝑉𝑉(𝑡𝑡 − 𝜆𝜆1)⊕⋯⊕𝑉𝑉(𝑡𝑡 − 𝜆𝜆𝑘𝑘) 

𝑉𝑉(𝑡𝑡 − 𝜆𝜆𝑖𝑖) = ker((𝒜𝒜− 𝑡𝑡ℰ)𝑚𝑚𝑖𝑖) 

令 𝑝𝑝𝑖𝑖(𝑡𝑡) = 𝜇𝜇𝒜𝒜(𝑡𝑡)/(𝑡𝑡 − 𝜆𝜆𝑖𝑖)𝑚𝑚𝑖𝑖 ⇒ gcd(𝑝𝑝1, … , 𝑝𝑝𝑘𝑘) = 1 

∃𝑢𝑢1, … ,𝑢𝑢𝑘𝑘 ∈ ℂ[𝑡𝑡], 𝑠𝑠. 𝑡𝑡.𝑢𝑢1𝑝𝑝1 + ⋯+ 𝑢𝑢𝑘𝑘𝑝𝑝𝑘𝑘 = 1   [∗] 

令𝑃𝑃𝑖𝑖(𝒜𝒜) = 𝑢𝑢𝑖𝑖(𝒜𝒜)𝑝𝑝𝑖𝑖(𝒜𝒜):𝑉𝑉 → 𝑉𝑉 

 

断言(𝑎𝑎)𝑃𝑃1 +⋯+ 𝑃𝑃𝑘𝑘 = ℰ 

(𝑏𝑏) im𝑃𝑃𝑖𝑖 = im𝑢𝑢𝑖𝑖(𝒜𝒜)𝑝𝑝𝑖𝑖(𝒜𝒜) = 𝑉𝑉(𝑡𝑡 − 𝜆𝜆𝑖𝑖) = ker(𝒜𝒜− 𝜆𝜆𝑖𝑖ℰ)𝑚𝑚𝑖𝑖 

(𝑐𝑐)𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗 = 𝑃𝑃𝑗𝑗𝑃𝑃𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖 

断言的证明: (𝑎𝑎)由[∗],有𝑃𝑃1 + ⋯+ 𝑃𝑃𝑘𝑘 = ℰ 

(𝑏𝑏)若𝑣⃗𝑣 ∈ ker(𝒜𝒜− 𝜆𝜆𝑖𝑖ℰ)𝑚𝑚𝑖𝑖 

由(𝑎𝑎), 𝑣⃗𝑣 = 𝑃𝑃1𝑣⃗𝑣 + ⋯+ 𝑃𝑃𝑘𝑘𝑣⃗𝑣 

对𝑗𝑗 ≠ 𝑖𝑖,𝑝𝑝𝑗𝑗中含因子(𝑡𝑡 − 𝜆𝜆𝑖𝑖)𝑚𝑚𝑖𝑖 

则𝑃𝑃𝑗𝑗𝑣⃗𝑣 = 𝑢𝑢𝑗𝑗(𝒜𝒜)𝑝𝑝𝑗𝑗(𝒜𝒜)𝑣⃗𝑣 = 0�⃗ ⇒ 𝑣⃗𝑣 = 𝑃𝑃𝑖𝑖𝑣⃗𝑣 ∈ im𝑃𝑃𝑖𝑖 

若𝑣⃗𝑣 ∈ im𝑃𝑃𝑖𝑖 = im𝑢𝑢𝑖𝑖(𝒜𝒜)𝑝𝑝𝑖𝑖(𝒜𝒜) 

∃𝑤𝑤��⃗ , 𝑠𝑠. 𝑡𝑡.  𝑣⃗𝑣 = 𝑢𝑢𝑖𝑖(𝒜𝒜)𝑝𝑝𝑖𝑖(𝒜𝒜)𝑤𝑤��⃗  

(𝒜𝒜− 𝜆𝜆𝑖𝑖ℰ)𝑚𝑚𝑖𝑖𝑣⃗𝑣 = 𝜇𝜇𝑖𝑖(𝒜𝒜)(𝒜𝒜− 𝜆𝜆𝑖𝑖ℰ)𝑚𝑚𝑖𝑖𝑝𝑝𝑖𝑖(𝒜𝒜)𝑤𝑤��⃗  

=  𝜇𝜇𝑖𝑖(𝒜𝒜)𝜇𝜇𝒜𝒜(𝒜𝒜)𝑣⃗𝑣 = 0�⃗  

则𝑣⃗𝑣 ∈ 𝑉𝑉(𝑡𝑡 − 𝜆𝜆𝑖𝑖) 

∴ im𝑃𝑃𝑖𝑖 = 𝑉𝑉(𝑡𝑡 − 𝜆𝜆𝑖𝑖) 
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(𝑐𝑐)因为𝑃𝑃𝑖𝑖均为𝒜𝒜的多项式,可交换性是显然的 

由(𝑎𝑎),∀𝑣⃗𝑣, 𝑣⃗𝑣 = 𝑃𝑃1𝑣⃗𝑣 +⋯+ 𝑃𝑃𝑘𝑘𝑣⃗𝑣 

= 0�⃗ + ⋯+ 0�⃗ + 𝑃𝑃𝑖𝑖  𝑣⃗𝑣 + 0�⃗ + ⋯+ 0�⃗ ∈ 𝑉𝑉(𝑡𝑡 − 𝜆𝜆1)⊕⋯⊕𝑉𝑉(𝑡𝑡 − 𝜆𝜆𝑘𝑘) 

𝑃𝑃𝑖𝑖𝑣⃗𝑣 = 𝑃𝑃𝑖𝑖𝑃𝑃1𝑣⃗𝑣 + ⋯+ 𝑃𝑃𝑖𝑖𝑃𝑃𝑘𝑘𝑣⃗𝑣         [∈ im𝑃𝑃𝑖𝑖] 

= 𝑃𝑃1𝑃𝑃𝑖𝑖𝑣⃗𝑣 + ⋯+ 𝑃𝑃𝑘𝑘𝑃𝑃𝑖𝑖𝑣⃗𝑣 ∈ 𝑉𝑉(𝑡𝑡 − 𝜆𝜆1)⊕⋯⊕𝑉𝑉(𝑡𝑡 − 𝜆𝜆𝑘𝑘) 

于是由直和有𝑃𝑃𝑗𝑗𝑃𝑃𝑖𝑖𝑣⃗𝑣 = 𝛿𝛿𝑗𝑗𝑗𝑗𝑃𝑃𝑖𝑖𝑣⃗𝑣 ⇒ 𝑃𝑃𝑗𝑗𝑃𝑃𝑖𝑖 = 𝛿𝛿𝑗𝑗𝑗𝑗𝑃𝑃𝑖𝑖 

综合上述三条可知,𝑃𝑃1, … ,𝑃𝑃𝑘𝑘实际上给出了 

广义特征子空间分解的直和投影算子  

 

令𝒮𝒮 = 𝜆𝜆1𝑃𝑃1 + ⋯+ 𝜆𝜆𝑠𝑠𝑃𝑃𝑠𝑠,𝒩𝒩 = 𝒜𝒜 −𝒮𝒮 

则𝒮𝒮 = (𝜆𝜆1𝑢𝑢1𝑝𝑝1 + ⋯+ 𝜆𝜆𝑠𝑠𝑢𝑢𝑠𝑠𝑝𝑝𝑠𝑠)(𝒜𝒜)是𝒜𝒜的多项式  

𝒩𝒩 = 𝒜𝒜 − 𝒮𝒮 ⇒ 𝒩𝒩是𝒜𝒜的多项式 

由(𝑏𝑏), (𝑐𝑐) ⇒ 𝑃𝑃𝑖𝑖│im𝑃𝑃𝑖𝑖 = ℰim𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗│im𝑃𝑃𝑖𝑖 = 𝒪𝒪, 𝑗𝑗 ≠ 𝑖𝑖 

则𝜆𝜆𝑖𝑖𝑃𝑃𝑖𝑖│im𝑃𝑃𝑖𝑖 = 𝜆𝜆𝑖𝑖ℰim𝑃𝑃𝑖𝑖 

则知𝒮𝒮│im𝑃𝑃𝑖𝑖 = 𝜆𝜆𝑖𝑖ℰim𝑃𝑃𝑖𝑖 

𝒮𝒮的矩阵 = diag�𝜆𝜆𝑛𝑛1𝐸𝐸𝑛𝑛1 , … , 𝜆𝜆𝑛𝑛𝑘𝑘𝐸𝐸𝑛𝑛𝑘𝑘� ,显然可对角化 

取𝑟𝑟 = max{𝑚𝑚𝑖𝑖} ,注意𝒩𝒩为𝒜𝒜的多项式,每个𝑉𝑉(𝑡𝑡 − 𝜆𝜆𝑖𝑖)都是𝒩𝒩−子空间 

则𝒩𝒩𝑟𝑟│𝑉𝑉(𝑡𝑡−𝜆𝜆𝑖𝑖) = �𝒩𝒩│𝑉𝑉(𝑡𝑡−𝜆𝜆𝑖𝑖)�
𝑟𝑟

= �𝒜𝒜 − 𝒮𝒮│𝑉𝑉(𝑡𝑡−𝜆𝜆𝑖𝑖)�
𝑟𝑟
 

= �𝒜𝒜│𝑉𝑉(𝑡𝑡−𝜆𝜆𝑖𝑖) − 𝜆𝜆𝑖𝑖ℰim𝑃𝑃𝑖𝑖�
𝑟𝑟
 

然而由广义特征子空间分解,𝒜𝒜│𝑉𝑉(𝑡𝑡−𝜆𝜆𝑖𝑖)的极小多项式为(𝑡𝑡 − 𝜆𝜆𝑖𝑖)𝑚𝑚𝑖𝑖 

∴ �𝒜𝒜│𝑉𝑉(𝑡𝑡−𝜆𝜆𝑖𝑖) − 𝜆𝜆𝑖𝑖ℰim𝑃𝑃𝑖𝑖�
𝑟𝑟

= 0,∀𝑖𝑖 = 1, … , 𝑘𝑘 

则𝒩𝒩𝑟𝑟 = 0,即𝒩𝒩幂零           ∎ 
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【15-6】中国剩余定理 

设给定的𝑝𝑝1, … ,𝑝𝑝𝑘𝑘 ∈ 𝐹𝐹[𝑡𝑡]两两互素, deg𝑝𝑝𝑖𝑖 ≥ 1 

则∀𝑓𝑓1, … ,𝑓𝑓𝑘𝑘 ∈ 𝐹𝐹[𝑡𝑡],∃𝑓𝑓, 𝑞𝑞1, … ,𝑞𝑞𝑘𝑘 ∈ 𝐹𝐹[𝑡𝑡] 

使得𝑓𝑓 = 𝑞𝑞𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑓𝑓𝑖𝑖  对𝑖𝑖 = 1, … , 𝑘𝑘成立 

即同余方程组𝑓𝑓 ≡ 𝑓𝑓𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑖𝑖  总有解𝑓𝑓 

证:令𝑀𝑀 = 𝑝𝑝1, … ,𝑝𝑝𝑘𝑘 ,𝑀𝑀𝑖𝑖 = 𝑀𝑀/𝑝𝑝𝑖𝑖 

则 gcd(𝑀𝑀1, … ,𝑀𝑀𝑘𝑘) = 1,从而存在𝑢𝑢1, … ,𝑢𝑢𝑘𝑘 ∈ 𝐹𝐹[𝑡𝑡] 

使得𝑢𝑢1𝑀𝑀1 +⋯+ 𝑢𝑢𝑘𝑘𝑀𝑀𝑘𝑘 = 1 

令𝑓𝑓 = 𝑓𝑓1𝑢𝑢1𝑀𝑀1 + ⋯+ 𝑓𝑓𝑘𝑘𝑢𝑢𝑘𝑘𝑀𝑀𝑘𝑘 + ℎ𝑀𝑀, ℎ ∈ 𝐹𝐹[𝑡𝑡] 

对 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘,不妨只考虑𝑖𝑖 = 1 

则𝑓𝑓 = 𝑓𝑓1(1 − 𝑢𝑢2𝑀𝑀2 −⋯− 𝑢𝑢𝑘𝑘𝑀𝑀𝑘𝑘) + 𝑓𝑓2𝑢𝑢2𝑀𝑀2 +⋯+ 𝑓𝑓𝑘𝑘𝑢𝑢𝑘𝑘𝑀𝑀𝑘𝑘 + ℎ𝑀𝑀 

= 𝑓𝑓1 + (𝑓𝑓2 − 𝑓𝑓1)𝑢𝑢2𝑀𝑀2 + ⋯+ (𝑓𝑓𝑘𝑘 − 𝑓𝑓1)𝑢𝑢𝑘𝑘𝑀𝑀𝑘𝑘 + ℎ𝑀𝑀 

由𝑀𝑀,𝑀𝑀𝑖𝑖的构造,𝑝𝑝1│𝑀𝑀2, … ,𝑝𝑝1│𝑀𝑀𝑘𝑘 ,𝑝𝑝1│𝑀𝑀 

则可取𝑞𝑞1 = (𝑓𝑓 − 𝑓𝑓1)/𝑝𝑝1 ∈ 𝐹𝐹[𝑡𝑡] 

于是𝑓𝑓 = 𝑝𝑝1𝑞𝑞1 + 𝑓𝑓1成立   ∎ 

注:具体应用中𝑝𝑝𝑖𝑖 = (𝑡𝑡 − 𝜆𝜆𝑖𝑖)𝑚𝑚𝑖𝑖 ,𝑀𝑀 = 𝜇𝜇𝒜𝒜 , 𝑓𝑓𝑖𝑖 = 𝜆𝜆𝑖𝑖 

注:本定理证明中实际上只用到了𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒等式和互素的概念 

所以它可以在相当一般的环境中陈述,如任意交换环 
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【16-1】各种空间分解总结 

设𝑉𝑉为有限维线性空间,𝒜𝒜:𝑉𝑉 → 𝑉𝑉为线性算子 

𝜇𝜇𝒜𝒜 = 𝑝𝑝1
𝑚𝑚1 ⋯𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠 , 𝒳𝒳𝒜𝒜 = 𝑝𝑝1
𝑛𝑛1 ⋯𝑝𝑝𝑠𝑠

𝑛𝑛𝑠𝑠 

𝑎𝑎1.先对𝑉𝑉作广义特征子空间分解,得到𝑉𝑉 = 𝑉𝑉(𝑝𝑝1)⊕⋯⊕𝑉𝑉(𝑝𝑝𝑠𝑠) 

𝑎𝑎2.对每个𝑉𝑉(𝑝𝑝𝑖𝑖)作不可分子空间分解或循环子空间分解 

𝑏𝑏1.先对𝑉𝑉作循环子空间分解,得到𝑉𝑉 = 𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣1����⃗ ⊕ ⋯⊕𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣𝑡𝑡���⃗  

𝑏𝑏2.对每个𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣𝚤𝚤���⃗作不可分子空间分解或广义特征子空间分解 

𝑐𝑐.对𝑉𝑉直接作不可分子空间分解 

唯一性定理�见后�保证以上三个路径的结果一致,即 

𝑉𝑉 = 𝑉𝑉0 ⊕⋯⊕𝑉𝑉𝑙𝑙 

= ��𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣𝚤𝚤1�����⃗ ⊕ ⋯⊕𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣𝚤𝚤𝑘𝑘𝚤𝚤������⃗ � = ��𝑉𝑉𝑗𝑗1 ⊕⋯⊕𝑉𝑉𝑗𝑗𝑘𝑘𝑗𝑗′�
𝑡𝑡

𝑗𝑗=1

𝑠𝑠

𝑖𝑖=1

 

且{𝑉𝑉0, … ,𝑉𝑉𝑙𝑙} = {𝐹𝐹[𝒜𝒜] ⋅ 𝑣𝑣𝚤𝚤𝚤𝚤�����⃗ } = �𝑉𝑉𝑗𝑗𝑗𝑗� 

取每个不变子空间的基,拼成𝑉𝑉的基,此时𝒜𝒜的矩阵记为𝐴𝐴,则 

𝐴𝐴可表为diag(𝐴𝐴1, … ,𝐴𝐴𝑠𝑠) , diag(𝐴𝐴1′ , … ,𝐴𝐴𝑡𝑡′ ) 

𝐴𝐴𝑖𝑖可进一步表为diag�𝐴𝐴𝑖𝑖1, … ,𝐴𝐴𝑖𝑖𝑘𝑘𝑖𝑖� , 𝑘𝑘1 + ⋯𝑘𝑘𝑠𝑠 = 𝑙𝑙 

𝐴𝐴𝑖𝑖′可进一步表为diag �𝐴𝐴𝑗𝑗1′ , … ,𝐴𝐴𝑗𝑗𝑘𝑘𝑗𝑗′� , 𝑘𝑘1′ +⋯+ 𝑘𝑘𝑡𝑡′ = 𝑙𝑙 

唯一性定理:可以取到合适的基 

使得以上各个情况都互相以分块对角的𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐹𝐹)相似  

𝒳𝒳𝒜𝒜和𝜇𝜇𝒜𝒜     

𝜇𝜇𝒜𝒜𝑖𝑖 = 𝜇𝜇𝒜𝒜│𝑉𝑉�𝑝𝑝𝑖𝑖�
= 𝑝𝑝𝑖𝑖

𝑚𝑚𝑖𝑖 ,𝜇𝜇𝒜𝒜𝑖𝑖𝑖𝑖 = 𝜇𝜇𝒜𝒜│𝐹𝐹[𝒜𝒜]⋅𝑣𝑣𝚤𝚤𝚤𝚤�������⃗
= 𝑝𝑝𝑖𝑖

𝑚𝑚𝑖𝑖𝑖𝑖 , 1 ≤ 𝑚𝑚𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚𝑖𝑖 

称所有这些�𝜇𝜇𝒜𝒜𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖
𝑚𝑚𝑖𝑖𝑖𝑖�作为重集,为𝐴𝐴的初等因子组 
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直接计算可得𝒳𝒳𝒜𝒜 = ��𝑝𝑝𝑖𝑖
𝑚𝑚𝑖𝑖𝑖𝑖

𝑘𝑘𝑖𝑖

𝑎𝑎=1

𝑠𝑠

𝑖𝑖=1

,即𝒳𝒳𝒜𝒜＝所有初等因子的乘积 

��𝑚𝑚𝑖𝑖𝑖𝑖

𝑘𝑘𝑖𝑖

𝑎𝑎=1

𝑠𝑠

𝑖𝑖=1

= �𝑛𝑛𝑖𝑖

𝑠𝑠

𝑖𝑖=1

= 𝑛𝑛 

唯一性的精确叙述:𝐴𝐴的初等因子只由𝐴𝐴决定,和分解本身无关 

且因子𝑝𝑝𝑖𝑖𝑡𝑡出现的个数由公式𝑁𝑁(𝑖𝑖, 𝑡𝑡) =
1
𝑑𝑑𝑖𝑖
�𝑟𝑟𝑖𝑖,𝑡𝑡−1 + 𝑟𝑟𝑖𝑖,𝑡𝑡+1 − 2𝑟𝑟𝑖𝑖,𝑡𝑡� 

特别是当𝐹𝐹 = ℂ时,𝑝𝑝𝑖𝑖(𝑡𝑡) = 𝑡𝑡 − 𝜆𝜆𝑖𝑖 

此时𝐴𝐴𝑖𝑖𝑖𝑖的最优可能性为𝐽𝐽𝑛𝑛𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖) 

于是分解定理的唯一存在性 ⇒ 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽标准型 

若𝐹𝐹 = ℂ,则∀𝒜𝒜:𝑉𝑉 → 𝑉𝑉,存在𝑉𝑉的一组基使得𝒜𝒜的矩阵为𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜型𝐽𝐽𝐴𝐴 

或矩阵形式:∀𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ),∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℂ)使得𝑃𝑃𝑃𝑃𝑃𝑃−1 = 𝐽𝐽𝐴𝐴 

且𝐽𝐽𝐴𝐴只取决于𝐴𝐴 

 

【16-2】复 Jordan 标准型的计算方法 

(𝑖𝑖)计算特征多项式或极小多项式的不可约因子分解 

𝜇𝜇𝒜𝒜 = 𝑝𝑝1
𝑚𝑚1 ⋯𝑝𝑝𝑠𝑠

𝑚𝑚𝑠𝑠 , 𝒳𝒳𝒜𝒜 = 𝑝𝑝1
𝑛𝑛1 ⋯𝑝𝑝𝑠𝑠

𝑛𝑛𝑠𝑠 , 𝑝𝑝𝑖𝑖 = (𝑡𝑡 − 𝜆𝜆𝑖𝑖) 

(𝑖𝑖𝑖𝑖)对每个𝜆𝜆𝑖𝑖 ∈ spec𝐴𝐴 ,计算𝑟𝑟𝑖𝑖,𝑡𝑡 = rank((𝐴𝐴 − 𝜆𝜆𝑖𝑖𝐸𝐸)𝑡𝑡) , 𝑡𝑡 = 1,2, … ,𝑛𝑛 + 1 

计算𝑁𝑁(𝜆𝜆𝑖𝑖, 𝑡𝑡) = 𝑟𝑟𝑖𝑖,𝑡𝑡−1 + 𝑟𝑟𝑖𝑖,𝑡𝑡+1 − 2𝑟𝑟𝑖𝑖,𝑡𝑡 

(𝑖𝑖𝑖𝑖𝑖𝑖)写下𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜标准型 

𝐽𝐽𝐴𝐴 = diag� 𝐽𝐽1(𝜆𝜆1)���
𝑁𝑁(𝜆𝜆1,1)个

, … , 𝐽𝐽𝑡𝑡1(𝜆𝜆1)���
𝑁𝑁(𝜆𝜆1,𝑡𝑡1)个

, 𝐽𝐽1(𝜆𝜆2)���
𝑁𝑁(𝜆𝜆2,1)个

, …� 
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【16-3】由秩还原 Jordan 标准型 

已知𝒳𝒳𝐴𝐴(𝑡𝑡) = (𝑡𝑡 − 3)4(𝑡𝑡 + 2) 

当 rank(𝐴𝐴 − 3𝐸𝐸)分别为 1,2,3,4 时,求出𝐽𝐽𝐴𝐴 

解:由𝑡𝑡 + 2 的代数重数为 1 可知,对应特征值− 2 

只有一个𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜块𝐽𝐽1(−2) = (−2) 

设𝐽𝐽𝐴𝐴 = diag�𝐽𝐽𝑛𝑛1(3), … , 𝐽𝐽𝑛𝑛𝑘𝑘(3),−2� ,𝑛𝑛1 ≥ ⋯ ≥ 𝑛𝑛𝑘𝑘 ≥ 1,𝑛𝑛1 + ⋯+ 𝑛𝑛𝑘𝑘 = 4 

则𝐽𝐽𝐴𝐴 − 3𝐸𝐸 = diag�𝐽𝐽𝑛𝑛1(0), … , 𝐽𝐽𝑛𝑛𝑘𝑘(0),−5� 

而 rank(𝐴𝐴 − 3𝐸𝐸) = rank(𝐽𝐽𝐴𝐴 − 3𝐸𝐸) = 𝑛𝑛1 − 1 + ⋯+ 𝑛𝑛𝑘𝑘 − 1 + 1 

= 𝑛𝑛1 + ⋯+ 𝑛𝑛𝑘𝑘 − 𝑘𝑘 + 1 = 5 − 𝑘𝑘 

因此 �
𝑛𝑛1 + ⋯+ 𝑛𝑛𝑘𝑘 = 4
𝑛𝑛1 ≥ ⋯ ≥ 𝑛𝑛𝑘𝑘 ≥ 1

5 − 𝑘𝑘 = rank(𝐴𝐴 − 3𝐸𝐸)
 

当 rank(𝐴𝐴 − 3𝐸𝐸) = 1 时,𝑘𝑘 = 4 

则𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛3 = 𝑛𝑛4 = 1, 𝐽𝐽𝐴𝐴 = diag(3,3,3,3,−2) 

当 rank(𝐴𝐴 − 3𝐸𝐸) = 2 时,𝑘𝑘 = 3 

则𝑛𝑛1 = 2,𝑛𝑛2 = 𝑛𝑛3 = 1, 𝐽𝐽𝐴𝐴 = diag(𝐽𝐽2(3), 3,3,−2) 

当 rank(𝐴𝐴 − 3𝐸𝐸) = 3 时,𝑘𝑘 = 2 

𝑛𝑛1 = 3,𝑛𝑛2 = 1 或𝑛𝑛1 = 𝑛𝑛2 = 2, 

𝐽𝐽𝐴𝐴 = diag(𝐽𝐽3(3), 3,−2)或diag(𝐽𝐽2(3), 𝐽𝐽2(3),−2) 

当 rank(𝐴𝐴 − 3𝐸𝐸) = 4 时,𝑘𝑘 = 1 

𝑛𝑛1 = 4, 𝐽𝐽𝐴𝐴 = diag(𝐽𝐽4(3),−2)   
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【16-4】幂零的判定条件 谱映射定理 

设𝐴𝐴是 ℂ上𝑛𝑛 × 𝑛𝑛矩阵 

证明: tr𝐴𝐴𝑘𝑘 = 0 对 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛成立⇔ 𝐴𝐴幂零 

证:引理  谱映射定理 

对𝑓𝑓 ∈ ℂ[𝑡𝑡],𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ) 

spec𝑓𝑓(𝐴𝐴) =
作为重集

𝑓𝑓(spec𝐴𝐴) ≔ {𝑓𝑓(𝜆𝜆)|𝜆𝜆 ∈ spec𝐴𝐴} 

引理的证明:∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℂ),使得𝐽𝐽𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃−1 

则 spec𝐴𝐴 = spec 𝐽𝐽𝐴𝐴 , spec𝑓𝑓(𝐴𝐴) = spec𝑓𝑓(𝐽𝐽𝐴𝐴) 

又𝐽𝐽𝐴𝐴的为上三角矩阵,主对角元为𝜆𝜆1, … , 𝜆𝜆𝑛𝑛 

则𝑓𝑓(𝐽𝐽𝐴𝐴)的主对角元为𝑓𝑓(𝜆𝜆1), … ,𝑓𝑓(𝜆𝜆𝑛𝑛) 

从而 spec𝑓𝑓(𝐴𝐴) = spec𝑓𝑓(𝐽𝐽𝐴𝐴) = 𝑓𝑓(spec 𝐽𝐽𝐴𝐴) = 𝑓𝑓(spec𝐴𝐴)    ∎ 

⇒:𝐴𝐴幂零 ⇒ 𝜇𝜇𝐴𝐴(𝑡𝑡) = 𝑡𝑡𝑚𝑚,于是 spec𝐴𝐴 = {0,0, … ,0} 

      ⇒ spec𝐴𝐴𝑘𝑘 = {0, … ,0},𝑘𝑘 = 1, … ,𝑛𝑛 

于是 tr𝐴𝐴𝑘𝑘 = 0 + 0 + ⋯+ 0 = 0,𝑘𝑘 = 1, … ,𝑛𝑛 

⇐:设 spec𝐴𝐴 = � 𝜆𝜆1⏟
𝑚𝑚1个

, 𝜆𝜆2⏟
𝑚𝑚2个

, … , 𝜆𝜆𝑠𝑠⏟
𝑚𝑚𝑠𝑠个

�作为一个重集 

且𝜆𝜆1, … , 𝜆𝜆𝑠𝑠两两不同 

于是由谱映射定理, spec𝐴𝐴𝑘𝑘 = � 𝜆𝜆1𝑘𝑘�
𝑚𝑚1个

, 𝜆𝜆2𝑘𝑘�
𝑚𝑚2个

, … , 𝜆𝜆𝑠𝑠𝑘𝑘�
𝑚𝑚𝑠𝑠个

� , 𝑘𝑘 = 1, … ,𝑛𝑛 

从而 tr𝐴𝐴𝑘𝑘 = 0,𝑘𝑘 = 1, … ,𝑛𝑛 ⇒ 

�
𝑚𝑚1𝜆𝜆1 + ⋯+ 𝑚𝑚𝑠𝑠𝜆𝜆𝑠𝑠 = 0

⋮
𝑚𝑚1𝜆𝜆1𝑛𝑛 +⋯+ 𝑚𝑚𝑠𝑠𝜆𝜆𝑠𝑠𝑛𝑛 = 0

⇔ �

1 ⋯ 1
𝜆𝜆1 ⋯ 𝜆𝜆𝑠𝑠
⋮ ⋱ ⋮

𝜆𝜆1𝑛𝑛−1 ⋯ 𝜆𝜆𝑠𝑠𝑛𝑛−1
�

�������������
𝑇𝑇

�

𝑚𝑚1𝜆𝜆1
𝑚𝑚2𝜆𝜆2
⋮

𝑚𝑚𝑠𝑠𝜆𝜆𝑠𝑠

� = 𝑂𝑂 

由于𝜆𝜆1, … , 𝜆𝜆𝑠𝑠两两不同,则𝑇𝑇可逆,则(𝑚𝑚1𝜆𝜆1, … ,𝑚𝑚𝑠𝑠𝜆𝜆𝑠𝑠)𝑡𝑡 = 𝑂𝑂 

于是𝜆𝜆1 = ⋯ = 𝜆𝜆𝑠𝑠 = 0,从而𝒳𝒳𝐴𝐴(𝑡𝑡) = 𝑡𝑡𝑛𝑛 ⇒ 𝐴𝐴幂零   ∎ 
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【16-5】AB-BA=B 的幂零判定 

设有限维复向量空间𝑉𝑉上的两个线性算子𝒜𝒜,ℬ满足𝒜𝒜ℬ − ℬ𝒜𝒜 = ℬ 

求证:ℬ幂零 

证:法一:对于𝑘𝑘 = 1, … ,𝑛𝑛 

trℬ𝑘𝑘 = tr �ℬ𝑘𝑘−1(𝒜𝒜ℬ −ℬ𝒜𝒜)� = tr(ℬ𝑘𝑘−1𝒜𝒜ℬ)− tr(ℬ𝑘𝑘𝒜𝒜) 

= tr(ℬ𝑘𝑘−1ℬ𝒜𝒜)− tr(ℬ𝑘𝑘𝒜𝒜) = tr(ℬ𝑘𝑘𝒜𝒜)− tr(ℬ𝑘𝑘𝒜𝒜) = 0 

由习题 16− 2 可知 ℬ幂零 

 

法二:𝒜𝒜ℬ − ℬ𝒜𝒜 = ℬ ⇒ ℬ𝒜𝒜 = (𝒜𝒜− ℰ)ℬ 

断言:𝒜𝒜ℬ𝑘𝑘 − ℬ𝑘𝑘𝒜𝒜 = 𝑘𝑘ℬ𝑘𝑘 ,∀𝑘𝑘 ∈ ℕ 

断言的证明:用归纳法,𝑘𝑘 = 1 时即为条件 

假设𝒜𝒜ℬ𝑘𝑘−1 − ℬ𝑘𝑘−1𝒜𝒜 = (𝑘𝑘 − 1)ℬ𝑘𝑘−1,𝑘𝑘 − 1 ≥ 0 

𝒜𝒜ℬ𝑘𝑘 − ℬ𝑘𝑘𝒜𝒜 = 𝒜𝒜ℬ𝑘𝑘−1ℬ − ℬ𝑘𝑘𝒜𝒜 

= (ℬ𝑘𝑘−1𝒜𝒜 + (𝑘𝑘 − 1)ℬ𝑘𝑘−1)ℬ −ℬ𝑘𝑘𝒜𝒜    �归纳假设� 

= ℬ𝑘𝑘−1𝒜𝒜ℬ + (𝑘𝑘 − 1)ℬ𝑘𝑘 − ℬ𝑘𝑘𝒜𝒜 

= ℬ𝑘𝑘−1(ℬ + ℬ𝒜𝒜) + (𝑘𝑘 − 1)ℬ𝑘𝑘 − ℬ𝑘𝑘𝒜𝒜   [条件] 

= ℬ𝑘𝑘 + ℬ𝑘𝑘𝒜𝒜 + (𝑘𝑘 − 1)ℬ𝑘𝑘 − ℬ𝑘𝑘𝒜𝒜 

= 𝑘𝑘ℬ𝑘𝑘     ∎ 

对:𝒜𝒜ℬ𝑘𝑘 − ℬ𝑘𝑘𝒜𝒜 = 𝑘𝑘ℬ𝑘𝑘两边取迹,则类似法一可证 

此处可得𝒜𝒜ℬ𝑘𝑘 = ℬ𝑘𝑘(𝒜𝒜 + 𝑘𝑘ℰ) 

则有∀𝑓𝑓 ∈ ℂ[𝑡𝑡],𝑓𝑓(𝒜𝒜)ℬ𝑘𝑘 = ℬ𝑘𝑘𝑓𝑓(𝒜𝒜 + 𝑘𝑘ℰ) 

特别地,取𝑓𝑓 = 𝒳𝒳𝒜𝒜 ,则由𝐶𝐶 − 𝐻𝐻定理得 

𝒪𝒪 = 𝒳𝒳𝒜𝒜(𝒜𝒜)ℬ𝑘𝑘 = ℬ𝑘𝑘𝒳𝒳𝒜𝒜(𝒜𝒜 + 𝑘𝑘ℰ) 

取一组基将𝒜𝒜化为𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜标准型,∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℂ) 

𝒳𝒳𝒜𝒜(𝒜𝒜 + 𝑘𝑘ℰ) = 𝑃𝑃𝒳𝒳𝒜𝒜(𝐽𝐽𝒜𝒜 + 𝑘𝑘ℰ)𝑃𝑃−1 
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= 𝑃𝑃�
𝒳𝒳𝒜𝒜(𝜆𝜆1 + 𝑘𝑘) ∗

⋱
𝑂𝑂 𝒳𝒳𝒜𝒜(𝜆𝜆𝑛𝑛 + 𝑘𝑘)

�𝑃𝑃−1 

于是只需取𝑘𝑘使得𝜆𝜆𝑖𝑖 + 𝑘𝑘全不是𝒜𝒜的特征值即可使得𝒳𝒳𝒜𝒜(𝒜𝒜 + 𝑘𝑘ℰ)可逆 

于是由𝒪𝒪 = ℬ𝑘𝑘𝒳𝒳𝒜𝒜(𝒜𝒜 + 𝑘𝑘ℰ)可得ℬ𝑘𝑘 = 𝒪𝒪   ∎ 

 

法三:取一组基使得 ℬ在此基下的矩阵为𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜标准型𝐽𝐽𝐵𝐵 

设此基下𝒜𝒜的矩阵为𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℂ), 

不妨设𝐽𝐽𝐵𝐵 = diag(𝐵𝐵1, … ,𝐵𝐵𝑘𝑘) ,𝐵𝐵𝑖𝑖 = 𝐽𝐽𝑛𝑛𝑖𝑖(𝜆𝜆𝑖𝑖)为𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜块 

从而𝒜𝒜ℬ − ℬ𝒜𝒜 = ℬ ⇔ 𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵 = 𝐵𝐵 

此时对𝐴𝐴作与𝐵𝐵一致的分块,即𝐴𝐴 = �
𝐴𝐴11 ⋯ 𝐴𝐴1𝑘𝑘
⋮ ⋮
𝐴𝐴𝑘𝑘1 ⋯ 𝐴𝐴𝑘𝑘𝑘𝑘

� 

在此分块下,计算条件𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵 = 𝐴𝐴 

𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵 = �
𝐴𝐴11𝐵𝐵1 − 𝐵𝐵1𝐴𝐴11 ∗

⋱
∗ 𝐴𝐴𝑘𝑘𝑘𝑘𝐵𝐵𝑘𝑘 − 𝐵𝐵𝑘𝑘𝐴𝐴𝑘𝑘𝑘𝑘

� = diag(𝐵𝐵1, … ,𝐵𝐵𝑘𝑘) 

⇒ 𝐴𝐴𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖 − 𝐵𝐵𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑖𝑖 = 𝐽𝐽𝑛𝑛𝑖𝑖(𝜆𝜆𝑖𝑖), 𝑖𝑖 = 1, … ,𝑘𝑘 

取迹 ⇒ 0 = tr(𝐴𝐴𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖 − 𝐵𝐵𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖) = tr 𝐽𝐽𝑛𝑛𝑖𝑖(𝜆𝜆𝑖𝑖) = 𝑛𝑛𝑖𝑖𝜆𝜆𝑖𝑖 ⇒ 𝜆𝜆𝑖𝑖 = 0, 𝑖𝑖 = 1, … ,𝑘𝑘 

则知 ℬ的𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜块均为𝐽𝐽𝑛𝑛𝑖𝑖(0),从而 ℬ幂零   ∎ 
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【17-1】Jn0 的标准型和无法开方性 

(𝑖𝑖)求𝐽𝐽𝑛𝑛(0)𝑘𝑘的𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽标准型 

(𝑖𝑖𝑖𝑖)对𝑛𝑛, 𝑘𝑘 ∈ ℤ且𝑛𝑛, 𝑘𝑘 ≥ 2,证明𝑋𝑋𝑘𝑘 = 𝐽𝐽𝑛𝑛(0)无解  

解: (𝑖𝑖)𝑘𝑘 = 0 时, 𝐽𝐽𝑛𝑛(0)𝑘𝑘 = 𝐸𝐸 

𝑘𝑘 = 1 时𝐽𝐽𝑛𝑛(0)𝑘𝑘 = 𝐽𝐽𝑛𝑛(0) 

𝑘𝑘 ≥ 𝑛𝑛时𝐽𝐽𝑛𝑛(0)𝑘𝑘 = 𝑂𝑂 

当 2 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1 时 

设𝐽𝐽 = 𝐽𝐽𝑛𝑛(0),则𝐽𝐽𝑛𝑛 = 𝑂𝑂,令𝐴𝐴 = 𝐽𝐽𝑘𝑘 ,对𝑛𝑛, 𝑘𝑘作带余除法 

得𝑛𝑛 = 𝑖𝑖𝑖𝑖 + 𝑞𝑞, 0 ≤ 𝑞𝑞 < 𝑘𝑘 

则𝐴𝐴𝑖𝑖+1 = 𝐽𝐽𝑘𝑘(𝑖𝑖+1) = 𝐽𝐽𝑘𝑘𝑘𝑘+𝑘𝑘 = 𝑂𝑂 

⇒ 𝜇𝜇𝐴𝐴(𝑡𝑡) = 𝑡𝑡𝑚𝑚, 1 ≤ 𝑚𝑚 ≤ 𝑖𝑖 + 1,令𝑝𝑝(𝑡𝑡) = 𝑡𝑡 

⇒ 𝐴𝐴最大的𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜块是𝑖𝑖 + 1 阶的 

程序法:计算𝑁𝑁(𝑡𝑡, 𝑠𝑠), 𝑠𝑠 = 0,1, … , 𝑖𝑖 + 1, 𝑟𝑟1,𝑠𝑠 = rank𝐴𝐴𝑠𝑠 

𝑟𝑟1,0 = 𝑛𝑛  

𝑟𝑟1,1 = rank𝐴𝐴 = 𝑛𝑛 − 𝑘𝑘, �∵ 𝐴𝐴 = �𝑂𝑂 𝐸𝐸𝑛𝑛−𝑘𝑘
𝑂𝑂 𝑂𝑂 �� 

𝑟𝑟1,2 = rank𝐴𝐴2 = 𝑛𝑛 − 2𝑘𝑘, �∵ 𝐴𝐴2 = �𝑂𝑂 𝐸𝐸𝑛𝑛−2𝑘𝑘
𝑂𝑂 𝑂𝑂 �� 

… 𝑟𝑟1,𝑖𝑖 = 𝑛𝑛 − 𝑖𝑖𝑘𝑘, 𝑟𝑟1,𝑠𝑠 = 0, 𝑠𝑠 ≥ 𝑖𝑖 + 1 

⇒ 𝑁𝑁(1,1) = 0, … ,𝑁𝑁(1, 𝑖𝑖 − 2) = 0 

𝑁𝑁(1, 𝑖𝑖 − 1) = 𝑟𝑟1,𝑖𝑖−2 + 𝑟𝑟1,𝑖𝑖 − 2𝑟𝑟1,𝑖𝑖−1 = 0 

𝑁𝑁(1, 𝑖𝑖) = 𝑟𝑟1,𝑖𝑖+1 + 𝑟𝑟1,𝑖𝑖−1 − 2𝑟𝑟1,𝑖𝑖 = 0 + 𝑛𝑛 − (𝑖𝑖 − 1)𝑘𝑘 − 2(𝑛𝑛 − 𝑖𝑖𝑖𝑖)

= −𝑛𝑛 + 𝑖𝑖𝑖𝑖 + 𝑘𝑘 

𝑁𝑁(1, 𝑖𝑖 + 1) = 𝑟𝑟1,𝑖𝑖+2 + 𝑟𝑟1,𝑖𝑖 − 2𝑟𝑟1,𝑖𝑖+1 = 𝑛𝑛 − 𝑖𝑖𝑖𝑖 

∴ 𝐽𝐽𝐴𝐴有𝑘𝑘𝑘𝑘 + 𝑘𝑘 − 𝑛𝑛个𝑖𝑖阶𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜块𝐽𝐽𝑖𝑖(0),𝑛𝑛 − 𝑖𝑖𝑖𝑖个𝑖𝑖 + 1 阶𝐽𝐽𝑖𝑖+1(0) 
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映射法: 𝐽𝐽 = �
0 1

0 ⋱
⋱ 1

0

� ,𝒥𝒥:𝐹𝐹𝑛𝑛 → 𝐹𝐹𝑛𝑛, 𝑣⃗𝑣 ↦ 𝐽𝐽𝑣⃗𝑣 

𝑒𝑒𝑛𝑛����⃗
𝒥𝒥
→𝑒𝑒𝑛𝑛−1��������⃗

𝒥𝒥
→⋯

𝒥𝒥
→𝑒𝑒2���⃗

𝒥𝒥
→𝑒𝑒1���⃗

𝒥𝒥
→0�⃗  

𝑒𝑒𝑛𝑛����⃗ → 𝑒𝑒𝑛𝑛−1��������⃗ → ⋯ → 𝑒𝑒𝚤𝚤𝚤𝚤+1����������⃗ → 𝑒𝑒𝚤𝚤𝚤𝚤�����⃗ → ⋯ → 𝑒𝑒𝑛𝑛−𝑘𝑘+1�������������⃗
⇊ ⇊ ⇊ ⇊ ⇊
𝑒𝑒𝑛𝑛−𝑘𝑘���������⃗ → 𝑒𝑒𝑛𝑛−𝑘𝑘−1�������������⃗ → ⋯ → 𝑒𝑒(𝚤𝚤−1)𝑘𝑘+1�����������������⃗ → 𝑒𝑒(𝚤𝚤−1)𝑘𝑘�������������⃗ → ⋯ → 𝑒𝑒𝑛𝑛−2𝑘𝑘+1���������������⃗
⇊ ⇊ ⇊ ⇊ ⇊
⋮ ⋮ ⋮ ⋮ ⋮
⇊ ⇊ ⇊ ⇊ ⇊

𝑒𝑒𝑛𝑛−𝚤𝚤𝚤𝚤+𝑘𝑘���������������⃗ 𝑒𝑒𝑛𝑛−𝚤𝚤𝚤𝚤+𝑘𝑘−1��������������������⃗ → ⋯ → 𝑒𝑒𝑘𝑘+1��������⃗ → 𝑒𝑒𝑘𝑘����⃗ → ⋯ → 𝑒𝑒𝑛𝑛−𝚤𝚤𝚤𝚤+1���������������⃗
⇊ ⇊ ⇊

𝑒𝑒𝑛𝑛−𝚤𝚤𝚤𝚤����������⃗ → 𝑒𝑒𝑛𝑛−𝚤𝚤𝚤𝚤−1���������������⃗ → ⋯ → 𝑒𝑒1���⃗

𝐽𝐽𝑖𝑖+1(0) 𝐽𝐽𝑖𝑖+1(0) ⋯ 𝐽𝐽𝑖𝑖+1(0) 𝐽𝐽𝑖𝑖(0) ⋯ 𝐽𝐽𝑖𝑖(0)

 

→表示𝒥𝒥, ⇊ 表示𝒥𝒥𝑘𝑘 , 𝐽𝐽𝑛𝑛(0)− 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖算子  

注意到𝐴𝐴 = 𝐽𝐽𝑘𝑘对应的线性算子𝒜𝒜,可从上表中找出 

满足𝒜𝒜(𝑒𝑒𝑛𝑛����⃗ ,𝑒𝑒𝑛𝑛−𝑘𝑘���������⃗ , … , 𝑒𝑒𝑛𝑛−𝚤𝚤𝚤𝚤����������⃗ ) = �𝑒𝑒𝑛𝑛−𝑘𝑘���������⃗ , 𝑒𝑒𝑛𝑛−2𝑘𝑘�����������⃗ , … , 0�⃗ �       �𝑖𝑖 + 1 个基� 

𝒜𝒜(𝑒𝑒𝑛𝑛−1��������⃗ , 𝑒𝑒𝑛𝑛−𝑘𝑘−1�������������⃗ , … , 𝑒𝑒𝑛𝑛−𝚤𝚤𝚤𝚤−1���������������⃗ ) = �𝑒𝑒𝑛𝑛−𝑘𝑘−1�������������⃗ , 𝑒𝑒𝑛𝑛−2𝑘𝑘−1���������������⃗ , … , 0�⃗ �   �𝑖𝑖 + 1 个基� 

𝒜𝒜�𝑒𝑒𝚤𝚤𝚤𝚤�����⃗ ,𝑒𝑒(𝚤𝚤−1)𝑘𝑘�������������⃗ , … , 𝑒𝑒𝑘𝑘����⃗ � = �𝑒𝑒(𝚤𝚤−1)𝑘𝑘�������������⃗ , 𝑒𝑒(𝚤𝚤−2)𝑘𝑘�������������⃗ , … , 0�⃗ �   �𝑖𝑖个基� 

则将𝑉𝑉的基𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗按上面的列顺序重排后可得在新的基下 

𝒜𝒜的矩阵为diag� 𝐽𝐽𝑖𝑖(0)�
𝑖𝑖𝑖𝑖+𝑘𝑘−𝑛𝑛个

, 𝐽𝐽𝑖𝑖+1(0)�����
𝑛𝑛−𝑖𝑖𝑖𝑖个

�  

(𝑖𝑖𝑖𝑖)设𝑋𝑋是𝑋𝑋𝑘𝑘 = 𝐽𝐽𝑛𝑛(0)的解 

⇒ 𝑋𝑋𝑘𝑘𝑘𝑘 = 0 ⇒ spec𝐹𝐹 𝑋𝑋 = {0, … ,0} 

设𝐽𝐽𝑋𝑋 = diag �𝐽𝐽𝑛𝑛1(0), … , 𝐽𝐽𝑛𝑛𝑠𝑠(0)� 

∵ 𝑋𝑋𝑘𝑘 = 𝐽𝐽𝑛𝑛(0),𝑋𝑋~𝑠𝑠𝐽𝐽𝑋𝑋    ∴ 𝐽𝐽𝑋𝑋𝑘𝑘~𝑠𝑠𝐽𝐽𝑛𝑛(0) 

而𝐽𝐽𝑛𝑛(0)只有一个𝑛𝑛阶𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜块 

但由(𝑎𝑎),𝑛𝑛,𝑘𝑘 ≥ 2 时𝐽𝐽𝑋𝑋𝑘𝑘的𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜块一定小于𝑛𝑛阶,矛盾       ∎ 
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【17-2】AX=XB 线性空间的性质 

设𝐴𝐴,𝐶𝐶 ∈ 𝑀𝑀𝑚𝑚(ℂ),𝐵𝐵,𝐷𝐷 ∈ 𝑀𝑀𝑛𝑛(ℂ) 

令𝑈𝑈(𝐴𝐴,𝐵𝐵) = {𝑋𝑋 ∈ ℂ𝑚𝑚×𝑛𝑛|𝐴𝐴𝐴𝐴 = 𝑋𝑋𝑋𝑋}为一个复线性空间,求证 

(𝑎𝑎)若𝐴𝐴~𝑠𝑠𝐶𝐶,𝐵𝐵~𝑠𝑠𝐷𝐷,构造一个𝑈𝑈(𝐴𝐴,𝐵𝐵)到𝑈𝑈(𝐶𝐶,𝐷𝐷)的线性同构 

(𝑏𝑏)∀𝑓𝑓 ∈ ℂ[𝑡𝑡],𝑈𝑈(𝐴𝐴,𝐵𝐵)是𝑈𝑈�𝑓𝑓(𝐴𝐴),𝑓𝑓(𝐵𝐵)�的子空间 

(𝑐𝑐) specℂ 𝐴𝐴 ∩ specℂ 𝐵𝐵 = ∅,则𝑈𝑈(𝐴𝐴,𝐵𝐵) = {𝑂𝑂} 

(𝑑𝑑)�平方根唯一的一个条件�当𝑚𝑚 = 𝑛𝑛时, 

specℂ 𝐴𝐴 ∩ specℂ(−𝐵𝐵) = ∅ ∧  𝐴𝐴2 = 𝐵𝐵2 ⇒ 𝐴𝐴 = 𝐵𝐵 

(𝑒𝑒) dim𝑈𝑈�𝐽𝐽𝑚𝑚(𝜆𝜆), 𝐽𝐽𝑛𝑛(𝜇𝜇)� = � 0 𝜆𝜆 ≠ 𝜇𝜇
min{𝑚𝑚,𝑛𝑛} 𝜆𝜆 = 𝜇𝜇  

(𝑓𝑓)设{𝑝𝑝1, … , 𝑝𝑝𝑠𝑠}为𝐴𝐴的初等因子组, {𝑞𝑞1, … ,𝑞𝑞𝑡𝑡}为𝐵𝐵的初等因子组 

则dim𝑈𝑈(𝐴𝐴,𝐵𝐵) = ��deg gcd�𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑗𝑗�
𝑡𝑡

𝑗𝑗=1

𝑗𝑗

𝑖𝑖=1

   

 

证: (𝑎𝑎)∃𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿𝑚𝑚(ℂ),𝑄𝑄 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℂ),使得𝐴𝐴 = 𝑃𝑃−1𝐶𝐶𝐶𝐶,𝐵𝐵 = 𝑄𝑄−1𝐷𝐷𝐷𝐷 

𝐴𝐴𝐴𝐴 = 𝑋𝑋𝑋𝑋 ⇔ 𝑃𝑃−1𝐶𝐶𝑃𝑃𝑋𝑋 = 𝑋𝑋𝑄𝑄−1𝐷𝐷𝐷𝐷 ⇔ 𝐶𝐶𝐶𝐶𝐶𝐶𝑄𝑄−1 = 𝑃𝑃𝑃𝑃𝑄𝑄−1𝐷𝐷  

则令𝜑𝜑:𝑈𝑈(𝐴𝐴,𝐵𝐵) → 𝑈𝑈(𝐶𝐶,𝐷𝐷),𝑋𝑋 ↦ 𝑃𝑃𝑃𝑃𝑄𝑄−1 

𝜓𝜓:𝑈𝑈(𝐶𝐶,𝐷𝐷) → 𝑈𝑈(𝐴𝐴,𝐵𝐵),𝑌𝑌 ↦ 𝑃𝑃−1𝑌𝑌𝑌𝑌 

则𝜑𝜑,𝜓𝜓都线性,且𝜑𝜑 ∘ 𝜓𝜓 = 𝐼𝐼𝐼𝐼,𝜓𝜓 ∘ 𝜑𝜑 = 𝐼𝐼𝐼𝐼 ⇒ 𝜑𝜑,𝜓𝜓互逆 

∴ 𝜑𝜑是线性同构 

 

(𝑏𝑏)𝐴𝐴𝐴𝐴 = 𝑋𝑋𝑋𝑋 ⇒ 𝐴𝐴𝑘𝑘𝑋𝑋 = 𝐴𝐴𝑘𝑘−1𝑋𝑋𝑋𝑋 = ⋯ = 𝑋𝑋𝐵𝐵𝑘𝑘 

⇒ ∀𝑎𝑎,𝑏𝑏 ∈ ℂ,𝑘𝑘, 𝑙𝑙 ∈ ℕ, (𝑎𝑎𝐴𝐴𝑘𝑘 + 𝑏𝑏𝐴𝐴𝑙𝑙)𝑋𝑋 = 𝑎𝑎𝐴𝐴𝑘𝑘𝑋𝑋 + 𝑏𝑏𝐴𝐴𝑙𝑙𝑋𝑋
= 𝑎𝑎𝑎𝑎𝐵𝐵𝑘𝑘 + 𝑏𝑏𝑏𝑏𝐵𝐵𝑙𝑙 
= 𝑋𝑋(𝑎𝑎𝐵𝐵𝑘𝑘 + 𝑏𝑏𝐵𝐵𝑙𝑙)

 

⇒ 𝑓𝑓(𝐴𝐴)𝑋𝑋 = 𝑋𝑋𝑋𝑋(𝐵𝐵) ⇒ 𝑋𝑋 ∈ 𝑈𝑈�𝑓𝑓(𝐴𝐴),𝑓𝑓(𝐵𝐵)� 
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验证子空间:设𝑋𝑋,𝑌𝑌 ∈ 𝑈𝑈(𝐴𝐴,𝐵𝐵),𝑎𝑎 ∈ ℂ则 

𝐴𝐴(𝑋𝑋 + 𝑌𝑌) = 𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴 = 𝑋𝑋𝑋𝑋 + 𝑌𝑌𝑌𝑌 = (𝑋𝑋 + 𝑌𝑌)𝐵𝐵 ⇒ (𝑋𝑋 + 𝑌𝑌) ∈ 𝑈𝑈(𝐴𝐴,𝐵𝐵) 

且𝐴𝐴(𝑎𝑎𝑎𝑎) = 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑎𝑎𝑎𝑎)𝐵𝐵 ⇒ 𝑎𝑎𝑋𝑋 ∈ 𝑈𝑈(𝐴𝐴,𝐵𝐵) 

于是𝑈𝑈(𝐴𝐴,𝐵𝐵)是𝑈𝑈�𝑓𝑓(𝐴𝐴),𝑓𝑓(𝐵𝐵)�的子空间  

 

(𝑐𝑐)只需证若𝐴𝐴,𝐵𝐵没有公共特征值,则𝐴𝐴𝐴𝐴 = 𝑋𝑋𝑋𝑋只有零解 

由(𝑏𝑏),𝑈𝑈(𝐴𝐴,𝐵𝐵) ⊆ 𝑈𝑈�𝑓𝑓(𝐴𝐴),𝑓𝑓(𝐵𝐵)�,∀𝑓𝑓 ∈ ℂ[𝑡𝑡] 

取𝑓𝑓 = 𝒳𝒳𝐴𝐴,则𝒳𝒳𝐴𝐴(𝐴𝐴) = 𝑂𝑂 

𝑈𝑈�𝒳𝒳𝐴𝐴(𝐴𝐴),𝒳𝒳𝐴𝐴(𝐵𝐵)� = 𝑈𝑈�𝑂𝑂,𝒳𝒳𝐴𝐴(𝐵𝐵)� 

对𝑋𝑋 ∈ 𝑈𝑈�𝑂𝑂,𝒳𝒳𝐴𝐴(𝐵𝐵)�,𝑂𝑂𝑂𝑂 = 𝑋𝑋𝒳𝒳𝐴𝐴(𝐵𝐵) 

∵ 𝑂𝑂𝑂𝑂 = 𝑂𝑂   ∴ 𝑋𝑋𝒳𝒳𝐴𝐴(𝐵𝐵) = 𝑂𝑂  

由谱映射定理, specℂ 𝒳𝒳𝐴𝐴(𝐵𝐵) = 𝒳𝒳𝐴𝐴(specℂ 𝐵𝐵) ∌ 0 

则𝒳𝒳𝐴𝐴(𝐵𝐵)可逆,则由𝑋𝑋𝒳𝒳𝐴𝐴(𝐵𝐵) = 𝑂𝑂 ⇒ 𝑋𝑋 = 𝑂𝑂 

于是𝑈𝑈(𝐴𝐴,𝐵𝐵) ⊆ 𝑈𝑈�𝒳𝒳𝐴𝐴(𝐴𝐴),𝒳𝒳𝐴𝐴(𝐵𝐵)� = {𝑂𝑂} ⇒ 𝑈𝑈(𝐴𝐴,𝐵𝐵) = {𝑂𝑂} 

 

(𝑑𝑑)条件⇒ 𝑈𝑈(𝐴𝐴,−𝐵𝐵) = {𝑂𝑂} 

𝐴𝐴2 = 𝐵𝐵2 ⇔ 𝐴𝐴2 − 𝐴𝐴𝐴𝐴 = 𝐵𝐵2 − 𝐴𝐴𝐴𝐴 ⇔ 𝐴𝐴(𝐴𝐴 − 𝐵𝐵) = (𝐴𝐴 − 𝐵𝐵)(−𝐵𝐵) 

⇔ 𝐴𝐴−𝐵𝐵 ∈ 𝑈𝑈(𝐴𝐴,−𝐵𝐵) = {𝑂𝑂} ⇔ 𝐴𝐴 = 𝐵𝐵  

 

(𝑒𝑒)若𝜆𝜆 ≠ 𝜇𝜇,则由(𝑐𝑐)易得dim𝑈𝑈�𝐽𝐽𝑚𝑚(𝜆𝜆), 𝐽𝐽𝑛𝑛(𝜇𝜇)� = 0 

若𝜆𝜆 = 𝜇𝜇,𝑋𝑋 ∈ dim𝑈𝑈�𝐽𝐽𝑚𝑚(𝜆𝜆), 𝐽𝐽𝑛𝑛(𝜇𝜇)� ⇔ 𝐽𝐽𝑚𝑚(𝜆𝜆)𝑋𝑋 = 𝑋𝑋𝐽𝐽𝑛𝑛(𝜆𝜆)  

⇔ 𝐽𝐽𝑚𝑚(0)𝑋𝑋 = 𝑋𝑋𝐽𝐽𝑛𝑛(0)     [∵ 𝐽𝐽𝑚𝑚(𝜆𝜆) = 𝐽𝐽𝑚𝑚(0) + 𝜆𝜆𝐸𝐸𝑚𝑚] 

不妨设𝑚𝑚 ≤ 𝑛𝑛,否则取转置有 𝐽𝐽𝑛𝑛(𝜆𝜆)𝑡𝑡𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡𝐽𝐽𝑚𝑚(𝜆𝜆),情况类似 

令𝑒𝑒𝑛𝑛����⃗ = (0, … ,0,1)𝑡𝑡 ∈ ℂ𝑛𝑛,𝑋𝑋 = (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) 

则𝑋𝑋𝑛𝑛−1 = 𝑋𝑋𝑒𝑒𝑛𝑛−1��������⃗ = 𝑋𝑋𝐽𝐽𝑛𝑛(0)𝑒𝑒𝑛𝑛����⃗ = 𝐽𝐽𝑚𝑚(0)𝑋𝑋𝑒𝑒𝑛𝑛����⃗ = 𝐽𝐽𝑚𝑚(0)𝑋𝑋𝑛𝑛 
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𝑋𝑋𝑛𝑛−2 = 𝑋𝑋𝑒𝑒𝑛𝑛−2��������⃗ = 𝑋𝑋𝐽𝐽𝑛𝑛(0)𝑒𝑒𝑛𝑛−1��������⃗ = 𝐽𝐽𝑚𝑚(0)𝑋𝑋𝑛𝑛−1 = 𝐽𝐽𝑚𝑚(0)2𝑋𝑋𝑛𝑛  

…𝑋𝑋1 = 𝐽𝐽𝑚𝑚(0)𝑛𝑛−1𝑋𝑋𝑛𝑛 

从而𝑋𝑋仅由𝑋𝑋𝑛𝑛决定,可直接验证 

ℂ𝑚𝑚 → 𝑈𝑈�𝐽𝐽𝑚𝑚(0), 𝐽𝐽𝑛𝑛(0)�,𝑋𝑋𝑛𝑛 ↦ (𝐽𝐽𝑚𝑚(0)𝑛𝑛𝑋𝑋𝑛𝑛, … , 𝐽𝐽𝑚𝑚(0)𝑋𝑋𝑛𝑛,𝑋𝑋𝑛𝑛)是线性同构 

则dim𝑈𝑈�𝐽𝐽𝑚𝑚(𝜆𝜆), 𝐽𝐽𝑛𝑛(𝜆𝜆)� = dim𝑈𝑈�𝐽𝐽𝑚𝑚(0), 𝐽𝐽𝑛𝑛(0)� = 𝑚𝑚 = min{𝑚𝑚,𝑛𝑛} 

 

(𝑓𝑓)不妨设𝐴𝐴 = 𝐽𝐽𝐴𝐴 = diag �𝐽𝐽𝑛𝑛1(𝜆𝜆1), … , 𝐽𝐽𝑛𝑛𝑠𝑠(𝜆𝜆𝑠𝑠)� 

𝐵𝐵 = 𝐽𝐽𝐵𝐵 = diag �𝐽𝐽𝑚𝑚1
(𝜇𝜇1), … , 𝐽𝐽𝑚𝑚𝑡𝑡(𝜇𝜇𝑡𝑡)� 

𝑋𝑋 = �𝑋𝑋𝑖𝑖𝑖𝑖�𝑖𝑖=1,…,𝑠𝑠
𝑗𝑗=1,…,𝑡𝑡

为分块矩阵,𝑋𝑋𝑖𝑖𝑖𝑖为𝑛𝑛𝑖𝑖行𝑚𝑚𝑗𝑗列 

则𝐴𝐴𝐴𝐴 = 𝑋𝑋𝑋𝑋 ⇔ 𝐽𝐽𝑛𝑛𝑖𝑖(𝜆𝜆1)𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖𝐽𝐽𝑚𝑚𝑗𝑗�𝜇𝜇𝑗𝑗� 

⇒令𝑉𝑉𝑖𝑖𝑖𝑖 = �𝑋𝑋 = �𝑋𝑋𝑖𝑖𝑖𝑖��除𝑋𝑋𝑖𝑖𝑖𝑖 ,其他块为𝑂𝑂,且𝐽𝐽𝑛𝑛𝑖𝑖(𝜆𝜆𝑖𝑖)𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖𝐽𝐽𝑚𝑚𝑗𝑗�𝜇𝜇𝑗𝑗�� 

不难验证 𝑈𝑈(𝐴𝐴,𝐵𝐵) = ��𝑉𝑉𝑖𝑖𝑖𝑖

𝑡𝑡

𝑗𝑗=1

𝑠𝑠

𝑖𝑖=1

, 𝑉𝑉𝑖𝑖𝑖𝑖 ≅ 𝑈𝑈 �𝐽𝐽𝑛𝑛𝑖𝑖(𝜆𝜆𝑖𝑖), 𝐽𝐽𝑚𝑚𝑗𝑗�𝜇𝜇𝑗𝑗��  

则有dim𝑈𝑈(𝐴𝐴,𝐵𝐵) = ��dim𝑉𝑉𝑖𝑖𝑖𝑖

𝑡𝑡

𝑗𝑗=1

𝑠𝑠

𝑖𝑖=1

= ��dim𝑈𝑈�𝐽𝐽𝑛𝑛𝑖𝑖(𝜆𝜆𝑖𝑖), 𝐽𝐽𝑚𝑚𝑗𝑗�𝜇𝜇𝑗𝑗��
𝑡𝑡

𝑗𝑗=1

𝑠𝑠

𝑖𝑖=1

 

��min{𝑛𝑛𝑖𝑖 ,𝜇𝜇𝑗𝑗}
𝑡𝑡

𝑗𝑗=1

𝑠𝑠

𝑖𝑖=1

= ��deg gcd(𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑗𝑗)
𝑡𝑡

𝑗𝑗=1

𝑠𝑠

𝑖𝑖=1

  

 

 

【17-3】体积计算 

欧氏空间中体积计算:𝑉𝑉𝑜𝑜𝑜𝑜�𝑃𝑃(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ )� = �det𝐺𝐺(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑠𝑠���⃗ ) 
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【17-4】互相成钝角向量数有限 

设𝑉𝑉是𝑛𝑛维欧氏空间,𝑣𝑣1����⃗ , … , 𝑣𝑣𝑚𝑚�����⃗ ∈ 𝑉𝑉 ∖ �0�⃗ �,两两成钝角,则𝑚𝑚 ≤ 𝑛𝑛 + 1

证:对𝑛𝑛归纳,若𝑛𝑛 = 1,𝑉𝑉 = ⟨𝛼⃗𝛼⟩, 𝛼⃗𝛼 ≠ 0�⃗  

若𝑚𝑚 = 3,对𝑖𝑖 = 1,2,3, 𝑣𝑣𝚤𝚤���⃗ = 𝑘𝑘𝑖𝑖𝛼⃗𝛼,𝑘𝑘𝑖𝑖 ≠ 0

𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ = 𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗|𝛼⃗𝛼|2 < 0, 𝑖𝑖 ≠ 𝑗𝑗

⇒ �
𝑘𝑘1𝑘𝑘2 < 0
𝑘𝑘2𝑘𝑘3 < 0
𝑘𝑘1𝑘𝑘3 < 0

⇒ 𝑘𝑘1𝑘𝑘22𝑘𝑘3 > 0,𝑘𝑘1𝑘𝑘3 < 0,矛盾

⇒ 𝑚𝑚 ≤ 2

假设对dim𝑉𝑉 = 𝑛𝑛 − 1,最多有𝑛𝑛个非零向量两两成钝角 

当dim𝑉𝑉 = 𝑛𝑛时,设𝑣𝑣1����⃗ , … ,𝑣𝑣𝑚𝑚�����⃗ ∈ 𝑉𝑉 ∖ �0�⃗ �,𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ < 0, 𝑖𝑖 ≠ 𝑗𝑗

考虑𝑊𝑊 = ⟨𝑣𝑣𝑚𝑚⟩
⊥

令𝑤𝑤𝚤𝚤����⃗ = 𝑣𝑣𝚤𝚤���⃗ −
(𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ )𝑣𝑣𝑚𝑚�����⃗
(𝑣𝑣𝑚𝑚�����⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ ) , 𝑖𝑖 = 1, … ,𝑚𝑚 − 1 

易验证 𝑤𝑤𝚤𝚤����⃗ ∈ 𝑊𝑊, 𝑖𝑖 = 1, … ,𝑚𝑚− 1

且𝑤𝑤𝚤𝚤����⃗ ⋅ 𝑤𝑤𝚥𝚥����⃗

= 𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ −
(𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ )�𝑣𝑣𝑚𝑚�����⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ �

(𝑣𝑣𝑚𝑚�����⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ ) −
�𝑣𝑣𝚥𝚥���⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ �(𝑣𝑣𝑚𝑚�����⃗ ⋅ 𝑣𝑣𝚤𝚤���⃗ )

(𝑣𝑣𝑚𝑚�����⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ )

+
(𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ )�𝑣𝑣𝚥𝚥���⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ �(𝑣𝑣𝑚𝑚�����⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ )

(𝑣𝑣𝑚𝑚�����⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ )2

= 𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ −
(𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ )�𝑣𝑣𝑚𝑚�����⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ �

(𝑣𝑣𝑚𝑚�����⃗ ⋅ 𝑣𝑣𝑚𝑚�����⃗ ) < 0 

因此𝑤𝑤𝚤𝚤����⃗ ,𝑤𝑤𝚥𝚥����⃗在𝑊𝑊中两两成钝角 

由归纳假设,𝑚𝑚− 1 ≤ 𝑛𝑛 

⇒ 𝑚𝑚 ≤ 𝑛𝑛 + 1
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注:𝑛𝑛 + 1 是可以取到的. 

设𝛼⃗𝛼 ∈ 𝑉𝑉, |𝛼⃗𝛼| = 1,按归纳在⟨𝛼𝛼⟩⊥中取𝑤𝑤1����⃗ , … ,𝑤𝑤𝑛𝑛�����⃗使得𝑤𝑤𝚤𝚤����⃗ ⋅ 𝑤𝑤𝚥𝚥����⃗ < 0 

考虑𝑣𝑣𝚤𝚤���⃗ = 𝑤𝑤𝚤𝚤����⃗ + 𝜆𝜆𝛼⃗𝛼, 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑣𝑣𝑛𝑛+1���������⃗ = 𝛼⃗𝛼 

则𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝑛𝑛+1���������⃗ = 𝜆𝜆, 𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ = 𝑤𝑤𝚤𝚤����⃗ ⋅ 𝑤𝑤𝚥𝚥����⃗ + 𝜆𝜆2 

则取𝜆𝜆充分小就可使得𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝑛𝑛+1���������⃗ < 0,𝑣𝑣𝚤𝚤���⃗ ⋅ 𝑣𝑣𝚥𝚥���⃗ < 0∎ 

 

【18-1】GS 正交化求标准正交基例 

ℝ4带标准内积,令𝑣⃗𝑣 = (1,5,−8,−1)𝑡𝑡 

用正交化方法求出⟨𝑣𝑣⟩⊥的一组单位正交基 

解:记𝑊𝑊 = ⟨𝑣⃗𝑣⟩,求𝑊𝑊⊥ 

𝑥𝑥 ∈ 𝑊𝑊⊥ ⇔ 𝑥⃗𝑥 ⋅ 𝑤𝑤��⃗ = 0,∀𝑤𝑤��⃗ ∈ 𝑊𝑊 

⇔ 𝑥⃗𝑥 ⋅ 𝑘𝑘𝑣⃗𝑣 = 0,∀𝑘𝑘 ∈ ℝ 

⇔ 𝑥⃗𝑥 ⋅ 𝑣⃗𝑣 = 𝑥⃗𝑥𝑡𝑡𝑣⃗𝑣 = (𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4)(1,5,−8,−1)𝑡𝑡 

= 𝑥𝑥1 + 5𝑥𝑥2 − 8𝑥𝑥3 − 𝑥𝑥4 = 0 

得基础解系𝜀𝜀1���⃗ = (1,0,0,1)𝑡𝑡, 𝜀𝜀2���⃗ = (0,1,0,5)𝑡𝑡, 𝜀𝜀3���⃗ = (0,0,1,−8)𝑡𝑡 

即𝑊𝑊⊥ = ⟨𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ ⟩ 

用正交化方法从{𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ }得到一组标准正交基 

𝑒𝑒1���⃗ =
𝜀𝜀1���⃗

|𝜀𝜀1���⃗ | =
1
√2

(1,0,0,1)𝑡𝑡 

𝑒𝑒2���⃗
′ = 𝜀𝜀2���⃗ − (𝜀𝜀2���⃗ ⋅ 𝑒𝑒1���⃗ )𝑒𝑒1���⃗ = (−5/2,1,0,5/2)𝑡𝑡 

𝑒𝑒2���⃗ =
𝑒𝑒2���⃗

′

�𝑒𝑒2���⃗
′�

=
1
√54

(−5,2,0,5)𝑡𝑡  

𝑒𝑒3���⃗
′ = 𝜀𝜀3���⃗ − (𝜀𝜀3���⃗ ⋅ 𝑒𝑒1���⃗ )𝑒𝑒1���⃗ − (𝜀𝜀3���⃗ ⋅ 𝑒𝑒2���⃗ )𝑒𝑒2���⃗ = 1/27(8,40,27,−8)𝑡𝑡 

𝑒𝑒3���⃗ =
𝑒𝑒3���⃗

′

�𝑒𝑒3���⃗
′�

=
1

√2457
(8,40,27,−8)𝑡𝑡 

于是{𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ }为⟨𝑣⃗𝑣⟩⊥的一组标准正交基   
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【18-2】正交向量组成矩阵的逆 

设实方阵各列都是非零向量,且相互正交,求其逆 

解:令𝐴𝐴 = �𝐴𝐴1����⃗ , … ,𝐴𝐴𝑛𝑛����⃗ �

由题条件知𝐴𝐴𝚤𝚤���⃗ ≠ 0�⃗ ⇒ 𝐴𝐴𝚤𝚤���⃗ ⋅ 𝐴𝐴𝚤𝚤���⃗ = 𝐴𝐴𝚤𝚤���⃗
𝑡𝑡
𝐴𝐴𝚤𝚤���⃗ =:𝛼𝛼𝑖𝑖 ≠ 0

且𝐴𝐴𝚤𝚤���⃗ ⋅ 𝐴𝐴𝚥𝚥���⃗ = 𝐴𝐴𝚤𝚤���⃗
𝑡𝑡
𝐴𝐴𝚥𝚥���⃗ = 0, 𝑖𝑖 ≠ 𝑗𝑗

可知𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐷𝐷 = diag(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) ,且𝐷𝐷可逆

从而𝐷𝐷−1𝐴𝐴𝑡𝑡𝐴𝐴 = 𝐸𝐸 

由于𝐸𝐸是方阵,则𝐴𝐴可逆且𝐴𝐴−1 = 𝐷𝐷−1𝐴𝐴𝑡𝑡      ∎

【18-3】Householder 变换 

ℝ𝑛𝑛带标准内积, 𝑣⃗𝑣 ∈ ℝ𝑛𝑛满足|𝑣⃗𝑣| = 1,令𝐻𝐻𝑣𝑣 = 𝐸𝐸 − 2𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡 ∈ 𝑀𝑀𝑛𝑛(ℝ)

此矩阵被称为镜面反射或𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙变换.求证: 

(𝑖𝑖)𝐻𝐻𝑣𝑣𝑡𝑡𝐻𝐻𝑣𝑣 = 𝐸𝐸,𝐻𝐻𝑣𝑣𝑡𝑡 = 𝐻𝐻𝑣𝑣,𝐻𝐻𝑣𝑣2 = 𝐸𝐸.  特别地,𝐻𝐻𝑣𝑣是正交矩阵

(𝑖𝑖𝑖𝑖)𝐻𝐻𝑣𝑣由特征子空间𝑉𝑉−1 = ⟨𝑣⃗𝑣⟩,𝑉𝑉1 = ⟨𝑣⃗𝑣⟩⊥,进而det𝐻𝐻𝑣𝑣 = −1

因此𝐻𝐻𝑣𝑣被称作镜面反射

(𝑖𝑖𝑖𝑖𝑖𝑖)∀𝐴𝐴 ∈ 𝑂𝑂𝑛𝑛(ℝ),存在有限个单位向量𝑣𝑣1����⃗ , … ,𝑣𝑣𝑠𝑠���⃗ ∈ ℝ𝑛𝑛�不必两两不同�

使得𝐴𝐴 = 𝐻𝐻𝑣𝑣1𝐻𝐻𝑣𝑣2 ⋯𝐻𝐻𝑣𝑣𝑠𝑠, 即正交群由镜面反射群生成  

证: (𝑖𝑖)𝐻𝐻𝑣𝑣𝑡𝑡 = (𝐸𝐸 − 2𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡)𝑡𝑡 = 𝐸𝐸 − 2(𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡)𝑡𝑡

= 𝐸𝐸 − 2(𝑣⃗𝑣𝑡𝑡)𝑡𝑡𝑣⃗𝑣𝑡𝑡 = 𝐸𝐸 − 2𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡 = 𝐻𝐻𝑣𝑣

𝐻𝐻𝑣𝑣2 = (𝐸𝐸 − 2𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡)(𝐸𝐸 − 2𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡) = 𝐸𝐸 ⋅ 𝐸𝐸 − 2𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡 − 2𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡 + 4𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡

= 𝐸𝐸 − 4𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡 + 4𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡 = 𝐸𝐸     [𝑣⃗𝑣𝑡𝑡𝑣⃗𝑣 = 𝑣⃗𝑣 ⋅ 𝑣⃗𝑣 = |𝑣⃗𝑣2| = 1]

∴ 𝐻𝐻𝑣𝑣𝑡𝑡是正交矩阵
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(𝑖𝑖𝑖𝑖)对𝜆𝜆 = 1,𝐻𝐻𝑣𝑣𝑥⃗𝑥 = 𝑥⃗𝑥 ⇔ (𝐸𝐸 − 2𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡)𝑥⃗𝑥 = 𝑥⃗𝑥 ⇔ 𝑥⃗𝑥 − 2𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡𝑥⃗𝑥 = 𝑥⃗𝑥

⇔ (𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡)𝑥⃗𝑥 = 0�⃗  

⇒ 𝑣⃗𝑣𝑡𝑡(𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡𝑥⃗𝑥) = 0 ⇒ (𝑣⃗𝑣𝑡𝑡𝑣⃗𝑣)𝑣⃗𝑣𝑡𝑡𝑥⃗𝑥 = 0  �矩阵乘法结合律�

⇒ 𝑣⃗𝑣 ⋅ 𝑥⃗𝑥 = 0 ⇒ 𝑥⃗𝑥 ∈ ⟨𝑣⃗𝑣⟩⊥

𝑥𝑥 ∈ ⟨𝑥⃗𝑥⟩⊥ ⇒ 𝑣⃗𝑣𝑡𝑡𝑥⃗𝑥 = 0 ⇒ 𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡𝑥⃗𝑥 = 0�⃗ ⇒ 𝑥⃗𝑥 ∈ 𝑉𝑉1

∴ 𝑉𝑉1 = ⟨𝑣⃗𝑣⟩⊥

另一方面, 𝑥⃗𝑥 ∈ 𝑉𝑉−1 ⇔ 𝐻𝐻𝑣𝑣𝑥⃗𝑥 = −𝑥⃗𝑥 ⇒ 𝑥⃗𝑥 − 2𝑣⃗𝑣𝑣⃗𝑣𝑡𝑡𝑥⃗𝑥 = −𝑥⃗𝑥

⇔ 𝑥⃗𝑥 = 𝑣⃗𝑣(𝑣⃗𝑣𝑡𝑡𝑥⃗𝑥) = (𝑣⃗𝑣𝑡𝑡𝑥⃗𝑥)𝑣⃗𝑣      �𝑣⃗𝑣𝑡𝑡𝑥⃗𝑥是一个数�

⇔ 𝑥⃗𝑥 ∈ ⟨𝑣⃗𝑣⟩     ∴ 𝑉𝑉−1 = ⟨𝑣⃗𝑣⟩

(𝑖𝑖𝑖𝑖𝑖𝑖)引理:∀𝑥⃗𝑥, 𝑦⃗𝑦 ∈ ℝ𝑛𝑛, 𝑥⃗𝑥 ≠ 𝑦⃗𝑦,

则∃单位向量𝑣⃗𝑣,使得𝐻𝐻𝑣𝑣𝑥⃗𝑥 = 𝑦⃗𝑦 ⇔ |𝑥⃗𝑥| = |𝑦⃗𝑦|

引理的证明:  ⇒: 𝑦⃗𝑦𝑡𝑡𝑦⃗𝑦 = 𝑥⃗𝑥𝑡𝑡𝐻𝐻𝑣𝑣𝑡𝑡𝐻𝐻𝑣𝑣𝑥⃗𝑥 = 𝑥⃗𝑥𝑡𝑡𝑥⃗𝑥,即|𝑥⃗𝑥|2 = |𝑦⃗𝑦|2

⇐:令𝑣⃗𝑣 =
𝑦⃗𝑦 − 𝑥⃗𝑥

|𝑦⃗𝑦 − 𝑥⃗𝑥|

𝑣⃗𝑣 ⋅ (𝑥⃗𝑥 + 𝑦⃗𝑦) =
1

|𝑦⃗𝑦 − 𝑥⃗𝑥| �
(𝑦⃗𝑦 − 𝑥⃗𝑥) ⋅ (𝑦⃗𝑦 + 𝑥⃗𝑥)� =

|𝑦⃗𝑦|2 − |𝑥⃗𝑥|2

|𝑦⃗𝑦 − 𝑥⃗𝑥| = 0 

则(𝑥⃗𝑥 + 𝑦⃗𝑦) ⊥ 𝑣⃗𝑣 ⇒ 𝐻𝐻𝑣𝑣(𝑥⃗𝑥 + 𝑦⃗𝑦) = 𝑥⃗𝑥 + 𝑦⃗𝑦

另一方面, 𝑦⃗𝑦 − 𝑥⃗𝑥 ∈ ⟨𝑣⃗𝑣⟩ ⇒ 𝐻𝐻𝑣𝑣(𝑦⃗𝑦 − 𝑥⃗𝑥) = 𝑥⃗𝑥 − 𝑦⃗𝑦

�𝐻𝐻𝑣𝑣𝑥⃗𝑥 +𝐻𝐻𝑣𝑣𝑦⃗𝑦 = 𝑥⃗𝑥 + 𝑦⃗𝑦
𝐻𝐻𝑣𝑣𝑦⃗𝑦 − 𝐻𝐻𝑣𝑣𝑥⃗𝑥 = 𝑥⃗𝑥 − 𝑦⃗𝑦 ⇒ �𝐻𝐻𝑣𝑣𝑥⃗𝑥 = 𝑦⃗𝑦

𝐻𝐻𝑣𝑣𝑦⃗𝑦 = 𝑥⃗𝑥  ∎ 

对𝑛𝑛归纳:𝑛𝑛 = 1 时,𝑂𝑂1(ℝ) = {(1), (−1)}

𝑒𝑒1���⃗ = (1),𝐻𝐻𝑒𝑒1 = 𝐸𝐸1 − 2𝑒𝑒1���⃗ 𝑒𝑒1���⃗
𝑡𝑡 = (−1)

(−1) = (−1), (1) = (−1) × (−1) = 𝐻𝐻𝑒𝑒1𝐻𝐻𝑒𝑒1

设对𝐵𝐵 ∈ 𝑂𝑂𝑛𝑛−1(ℝ),𝐵𝐵是有限个反射的乘积

对𝐴𝐴 ∈ 𝑂𝑂𝑛𝑛(ℝ),𝐴𝐴 = �𝐴𝐴(1)⋯𝐴𝐴(𝑛𝑛)�,则𝐴𝐴(1), … ,𝐴𝐴(𝑛𝑛)是ℝ𝑛𝑛的单位正交基
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∴ �𝐴𝐴(1)� = 1    ∵ |𝑒𝑒1���⃗ | = 1    ∴可取𝑒𝑒1���⃗ = (1,0, … ,0)𝑡𝑡 

∃𝑣⃗𝑣,使得𝐻𝐻𝑣𝑣𝐴𝐴(1) = 𝑒𝑒1���⃗  

𝐻𝐻𝑣𝑣𝐴𝐴 = �𝐻𝐻𝑣𝑣𝐴𝐴(1)⋯𝐻𝐻𝑣𝑣𝐴𝐴(𝑛𝑛)� = �𝑒𝑒1,𝐻𝐻𝑣𝑣𝐴𝐴(2), … ,𝐻𝐻𝑣𝑣𝐴𝐴(𝑛𝑛)� = �1 ∗
𝑂𝑂 𝐴𝐴𝑛𝑛−1

� 

∵ 𝐻𝐻𝑣𝑣是正交矩阵  ∴  𝑒𝑒1���⃗ ,𝐻𝐻𝑣𝑣𝐴𝐴(2), … ,𝐻𝐻𝑣𝑣𝐴𝐴(𝑛𝑛)也是单位正交基 

∴ 𝐻𝐻𝑣𝑣𝐴𝐴(2), … ,𝐻𝐻𝑣𝑣𝐴𝐴(𝑛𝑛) ∈ ⟨𝑒𝑒1���⃗ ⟩
⊥ = {(0,∗∗)𝑡𝑡 ∈ ℝ𝑛𝑛} 

∴  𝐻𝐻𝑣𝑣𝐴𝐴 = �1 𝑂𝑂
𝑂𝑂 𝐴𝐴𝑛𝑛−1

�      ∵ 𝐻𝐻𝑣𝑣,𝐴𝐴均为正交矩阵    ∴ 𝐻𝐻𝑣𝑣𝐴𝐴也是正交矩阵 

则(𝐻𝐻𝑣𝑣𝐴𝐴)𝑡𝑡(𝐻𝐻𝑣𝑣𝐴𝐴) = �1 𝑂𝑂
𝑂𝑂 𝐴𝐴𝑛𝑛−1𝑡𝑡 𝐴𝐴𝑛𝑛−1

� = 𝐸𝐸 ⇒ 𝐴𝐴𝑛𝑛−1𝑡𝑡 𝐴𝐴𝑛𝑛−1 = 𝐸𝐸𝑛𝑛−1 

⇒ 𝐴𝐴𝑛𝑛−1也正交 

由归纳假设,𝐴𝐴𝑛𝑛−1 = 𝐻𝐻𝑣𝑣2� ⋯𝐻𝐻𝑣𝑣𝑠𝑠�,𝑣𝑣𝚤𝚤����⃗ ∈ ℝ𝑛𝑛−1, �𝑣𝑣𝚤𝚤����⃗ � = 1 

令𝑣𝑣𝚤𝚤���⃗ = �
0
𝑣𝑣𝚤𝚤���⃗�
� ∈ ⟨𝑒𝑒1���⃗ ⟩

⊥ ⊂ ℝ𝑛𝑛,则|𝑣𝑣𝚤𝚤���⃗ | = 1, 𝑖𝑖 = 2, … , 𝑠𝑠 

𝐻𝐻𝑣𝑣𝑖𝑖 = 𝐸𝐸𝑛𝑛 − 2𝑣𝑣𝚤𝚤���⃗ 𝑣𝑣𝚤𝚤���⃗
𝑡𝑡 = 𝐸𝐸𝑛𝑛 − 2�

0 𝑂𝑂
𝑂𝑂 𝑣𝑣𝚤𝚤���⃗�𝑣𝑣𝚤𝚤���⃗�

𝑡𝑡� = � 1
𝐻𝐻𝑣𝑣𝚤𝚤���⃗�

� 

∴ 𝐻𝐻𝑣𝑣𝐴𝐴 = 𝐻𝐻𝑣𝑣2 ⋯𝐻𝐻𝑣𝑣𝑠𝑠 ⇒ 𝐴𝐴 = 𝐻𝐻𝑣𝑣−1𝐻𝐻𝑣𝑣2 ⋯𝐻𝐻𝑣𝑣𝑠𝑠 = 𝐻𝐻𝑣𝑣𝐻𝐻𝑣𝑣2 ⋯𝐻𝐻𝑣𝑣𝑠𝑠 

记𝑣⃗𝑣 = 𝑣𝑣1����⃗即可         

注:证明写法偏向矩阵技巧,但是其实有非常明显的几何特征∎ 

 

 

 

 

 

【18-4】QR 分解:Householder 算法 

∀𝐴𝐴 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(ℝ),∃𝑄𝑄 ∈ 𝑂𝑂𝑛𝑛(ℝ),𝑅𝑅是上三角矩阵,使得𝐴𝐴 = 𝑄𝑄𝑄𝑄 

且det𝐴𝐴 = ± det𝑅𝑅 .若𝑅𝑅主对角元素皆正,则𝑄𝑄,𝑅𝑅唯一 

证: (𝑖𝑖)存在性:法一:𝐺𝐺𝐺𝐺正交化方法（略） 
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法二:反射矩阵法 

记𝐴𝐴 = 𝐴𝐴𝑛𝑛 = �𝐴𝐴𝑛𝑛
(1), … ,𝐴𝐴𝑛𝑛

(𝑛𝑛)� 

由 18− 1(𝑖𝑖𝑖𝑖𝑖𝑖)中引理,∃单位向量𝑣𝑣1����⃗ ∈ ℝ𝑛𝑛, 

使得𝐻𝐻𝑣𝑣1𝐴𝐴𝑛𝑛
(1) = �𝐴𝐴𝑛𝑛

(1)� 𝑒𝑒1���⃗ , 𝑒𝑒1���⃗ = (1,0, … ,0)𝑡𝑡, �𝐴𝐴𝑛𝑛
(1)� ≠ 0 

则𝐻𝐻𝑣𝑣1𝐴𝐴𝑛𝑛 = ��𝐴𝐴𝑛𝑛
(1)� ∗
𝑂𝑂 𝐴𝐴𝑛𝑛−1

� ⇒ 𝐴𝐴𝑛𝑛−1可逆 

令𝐴𝐴𝑛𝑛−1 = �𝐴𝐴𝑛𝑛−1
(2) , … ,𝐴𝐴𝑛𝑛−1

(𝑛𝑛) � ,则可重复上述过程,得到 

𝐻𝐻𝑣𝑣2𝐻𝐻𝑣𝑣1𝐴𝐴𝑛𝑛 = �
1 𝑂𝑂
𝑂𝑂 𝐻𝐻𝑣𝑣2

���𝐴𝐴𝑛𝑛
(1)� ∗
𝑂𝑂 𝐴𝐴𝑛𝑛−1

� = �
�𝐴𝐴𝑛𝑛

(1)� ∗
𝑂𝑂 𝐻𝐻𝑣𝑣2𝐴𝐴𝑛𝑛−1

� 

=

⎝

⎛
�𝐴𝐴𝑛𝑛

(1)� ∗ ∗

0 �𝐴𝐴𝑛𝑛
(2)� ∗

𝑂𝑂 𝑂𝑂 𝐴𝐴𝑛𝑛−2⎠

⎞ 

∴至多可以用𝑛𝑛个反射得到𝐻𝐻𝑣𝑣𝑠𝑠 ⋯𝐻𝐻𝑣𝑣1𝐴𝐴是上三角矩阵 

令𝑅𝑅 = 𝐻𝐻𝑣𝑣𝑠𝑠 ⋯𝐻𝐻𝑣𝑣1𝐴𝐴,于是𝐴𝐴 = 𝐻𝐻𝑣𝑣1
−1 ⋯𝐻𝐻𝑣𝑣𝑠𝑠

−1𝑅𝑅 = 𝐻𝐻𝑣𝑣1 ⋯𝐻𝐻𝑣𝑣𝑠𝑠𝑅𝑅 

令𝑄𝑄 = 𝐻𝐻𝑣𝑣1 ⋯𝐻𝐻𝑣𝑣𝑠𝑠即可 

 

唯一性:若有两个分解𝐴𝐴 = 𝑄𝑄1𝑅𝑅1 = 𝑄𝑄2𝑅𝑅2      𝑅𝑅1,𝑅𝑅2主对角元皆正 

则𝑄𝑄2−1𝑄𝑄1 = 𝑅𝑅2𝑅𝑅1−1 ⇒ 𝑄𝑄2−1𝑄𝑄1正交,𝑅𝑅2𝑅𝑅1−1上三角且主对角元仍皆正 

�易验证𝑅𝑅上三角 ⇒ 𝑅𝑅−1上三角,𝑅𝑅主对角元皆正 ⇒ 𝑅𝑅−1主对角元皆正� 

而一个矩阵既正交又是上三角矩阵,主对角元皆正,那么它一定是𝐸𝐸 

[𝑀𝑀𝑡𝑡 = 𝑀𝑀−1,𝑀𝑀上三角 ⇒ 𝑀𝑀除对角线上其余位置均为零, 

对角上𝑚𝑚𝑖𝑖𝑖𝑖 =
1
𝑚𝑚𝑖𝑖𝑖𝑖

,𝑚𝑚𝑖𝑖𝑖𝑖 > 0 ⇒ 𝑚𝑚𝑖𝑖𝑖𝑖 = 1] 

则𝑄𝑄2−1𝑄𝑄1 = 𝑅𝑅2𝑅𝑅1−1 = 𝐸𝐸 ⇒ 𝑄𝑄1 = 𝑄𝑄2,𝑅𝑅1 = 𝑅𝑅2       ∎ 
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【19-1】求正交矩阵化对角形例 

对实对称方阵𝐴𝐴 = �
2 2 −2
2 5 −4
−2 −4 5

� ,𝒳𝒳𝐴𝐴 = (𝑡𝑡 − 1)2(𝑡𝑡 − 10)

求正交矩阵𝑃𝑃使得𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴为对角形

方法: 1.设𝛼𝛼,𝛽𝛽 ∈ spec𝐴𝐴 ,当𝛼𝛼 ≠ 𝛽𝛽时 𝑉𝑉𝛼𝛼 ⊥ 𝑉𝑉𝛽𝛽

2.𝐺𝐺 − 𝑆𝑆正交化

解:令𝜆𝜆1 = 10,𝜆𝜆2 = 1

则解(𝐴𝐴 − 𝜆𝜆1𝐸𝐸)𝑥⃗𝑥 = 𝑂𝑂 ⇒ 𝑉𝑉𝜆𝜆1 = ⟨𝛼𝛼1����⃗ ⟩

𝛼𝛼1����⃗ = (−1,−2,2)𝑡𝑡

解(𝐴𝐴 − 𝜆𝜆2𝐸𝐸)𝑥⃗𝑥 = 𝑂𝑂 ⇒ 𝑉𝑉𝜆𝜆2 = ⟨𝛼𝛼2����⃗ ,𝛼𝛼3����⃗ ⟩

𝛼𝛼2����⃗ = (2,−1,0)𝑡𝑡,𝛼𝛼3����⃗ = (2,0,1)𝑡𝑡

由实对称方阵可知不同特征值的特征向量垂直 

即𝛼𝛼1����⃗ ⊥ 𝛼𝛼2����⃗ ,𝛼𝛼1����⃗ ⊥ 𝛼𝛼3����⃗

对𝛼𝛼2����⃗ ,𝛼𝛼3����⃗作正交化, 𝜀𝜀2���⃗ =
𝛼𝛼2����⃗

|𝛼𝛼2����⃗ | =
1
√5

(2,−1,0)𝑡𝑡

𝜀𝜀3���⃗
′ = 𝛼𝛼3����⃗ − (𝛼𝛼3����⃗ ⋅ 𝜀𝜀2���⃗ )𝜀𝜀2���⃗ =

1
√5

(2,4,5)t

𝜀𝜀3���⃗ =
𝜀𝜀3���⃗
′

�𝜀𝜀3���⃗
′�

=
1
√45

(2,4,5)𝑡𝑡

则⟨𝛼𝛼2����⃗ ,𝛼𝛼3����⃗ ⟩ = ⟨𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ ⟩

⇒ 𝜀𝜀2���⃗ ⊥ 𝛼𝛼1����⃗ , 𝜀𝜀3���⃗ ⊥ 𝛼𝛼1����⃗

令𝜀𝜀1���⃗ =
𝛼𝛼1����⃗

|𝛼𝛼1����⃗ | =
1
3

(−1,−2,2)𝑡𝑡

则{𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ }是ℝ3的一组单位正交基

且𝐴𝐴𝜀𝜀1���⃗ = 10𝜀𝜀1���⃗ ,𝐴𝐴𝜀𝜀2���⃗ = 𝜀𝜀2���⃗ ,𝐴𝐴𝜀𝜀3���⃗ = 𝜀𝜀3���⃗

令𝑃𝑃 = (𝜀𝜀1���⃗ , 𝜀𝜀2���⃗ , 𝜀𝜀3���⃗ ),则𝑃𝑃正交,𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 = diag(10,1,1) 
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【19-2】正交矩阵行列式的性质 

设𝐴𝐴,𝐵𝐵是正交矩阵且det𝐴𝐴 + det𝐵𝐵 = 0 ,求证𝐴𝐴+ 𝐵𝐵不可逆 

解:只需证det(𝐴𝐴 + 𝐵𝐵) = 0 

(det𝐴𝐴)(det(𝐴𝐴 + 𝐵𝐵)) = (det𝐴𝐴𝑡𝑡)(det(𝐴𝐴 + 𝐵𝐵)) = det(𝐴𝐴𝑡𝑡𝐴𝐴 + 𝐴𝐴𝑡𝑡𝐵𝐵)

= det(𝐸𝐸 + 𝐴𝐴𝑡𝑡𝐵𝐵)

(det𝐵𝐵)(det(𝐴𝐴 + 𝐵𝐵)) = (det𝐵𝐵𝑡𝑡)(det(𝐴𝐴 + 𝐵𝐵)) = det(𝐵𝐵𝑡𝑡𝐴𝐴 + 𝐵𝐵𝑡𝑡𝐵𝐵)

= det(𝐸𝐸 + 𝐵𝐵𝑡𝑡𝐴𝐴)

∵ (𝐸𝐸 + 𝐴𝐴𝑡𝑡𝐵𝐵)𝑡𝑡 = (𝐸𝐸𝑡𝑡 + 𝐵𝐵𝑡𝑡(𝐴𝐴𝑡𝑡)𝑡𝑡) = (𝐸𝐸 + 𝐵𝐵𝑡𝑡𝐴𝐴)

∴ det(𝐸𝐸 + 𝐴𝐴𝑡𝑡𝐵𝐵) = det(𝐸𝐸 + 𝐵𝐵𝑡𝑡𝐴𝐴)

⇒ (det𝐴𝐴)(det(𝐴𝐴 + 𝐵𝐵)) = (det𝐵𝐵)(det(𝐴𝐴 + 𝐵𝐵))

∵ det𝐵𝐵 = −det𝐴𝐴 

∴ 2 det𝐴𝐴 (det(𝐴𝐴 + 𝐵𝐵)) = 0 

∵ 𝐴𝐴正交 ∴ det𝐴𝐴 = ±1 

∴ det(𝐴𝐴 + 𝐵𝐵) = 0     ∎ 
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【19-3】二次型值域与特征值的联系 

设𝐴𝐴为实对称矩阵,𝜆𝜆1 ≤ ⋯ < 𝜆𝜆𝑛𝑛为𝐴𝐴的特征值,求证 

(𝑖𝑖)
(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥
𝑥⃗𝑥 ⋅ 𝑥⃗𝑥

≤ 𝜆𝜆𝑛𝑛, 𝑥⃗𝑥 ≠ 0�⃗ ,等号当且仅当𝑥⃗𝑥 ∈ 𝑉𝑉𝜆𝜆𝑛𝑛 ∖ �0�⃗ �时取到 

(𝑖𝑖𝑖𝑖)𝜆𝜆𝑘𝑘 = min
dim𝑈𝑈=𝑘𝑘

� max
𝑥⃗𝑥∈𝑈𝑈∖�0��⃗ �

(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥
𝑥⃗𝑥 ⋅ 𝑥⃗𝑥

�  其中最小值对所有𝑘𝑘维子空间𝑈𝑈取 

证: (𝑖𝑖)𝐴𝐴对称 ⇒ 𝐴𝐴 = 𝐴𝐴𝑡𝑡 

∴ ∃𝑃𝑃 ∈ 𝑂𝑂𝑛𝑛(ℝ),使得𝐴𝐴 = 𝑃𝑃𝑡𝑡𝐷𝐷𝐷𝐷,𝐷𝐷 = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) 

(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥 = (𝐴𝐴𝑥⃗𝑥)𝑡𝑡𝑥⃗𝑥 = 𝑥⃗𝑥𝑡𝑡𝐴𝐴𝑡𝑡𝑥⃗𝑥 = 𝑥⃗𝑥𝑡𝑡𝐴𝐴𝑥⃗𝑥 

= 𝑥⃗𝑥𝑡𝑡𝑃𝑃𝑡𝑡𝐷𝐷𝐷𝐷𝑥⃗𝑥 = (𝑃𝑃𝑥⃗𝑥)𝑡𝑡𝐷𝐷(𝑃𝑃𝑥⃗𝑥) 

令𝑦⃗𝑦 = 𝑃𝑃𝑥⃗𝑥,则(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥 = 𝑦⃗𝑦𝑡𝑡𝐷𝐷𝑦⃗𝑦 = 𝜆𝜆1𝑦𝑦12 +⋯+ 𝜆𝜆𝑛𝑛𝑦𝑦𝑛𝑛2 

且𝑥⃗𝑥 ⋅ 𝑥⃗𝑥 = 𝑥⃗𝑥𝑡𝑡𝑥⃗𝑥 = 𝑥⃗𝑥𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑥⃗𝑥 = 𝑦⃗𝑦 ⋅ 𝑦⃗𝑦 = 𝑦𝑦12 + ⋯+ 𝑦𝑦𝑛𝑛2 

∴
(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥
𝑥⃗𝑥 ⋅ 𝑥⃗𝑥

=
𝜆𝜆1𝑦𝑦12 + ⋯+ 𝜆𝜆𝑛𝑛𝑦𝑦𝑛𝑛2

𝑦𝑦12 +⋯+ 𝑦𝑦𝑛𝑛2
≤
𝜆𝜆𝑛𝑛(𝑦𝑦12 + ⋯+ 𝑦𝑦𝑛𝑛2)
𝑦𝑦12 + ⋯+ 𝑦𝑦𝑛𝑛2

= 𝜆𝜆𝑛𝑛 

设𝜆𝜆𝑠𝑠−1 ≤ 𝜆𝜆𝑠𝑠 < 𝜆𝜆𝑠𝑠+1 = 𝜆𝜆𝑠𝑠+2 = ⋯ = 𝜆𝜆𝑛𝑛 

则𝑉𝑉𝜆𝜆𝑛𝑛 = ⟨𝑒𝑒𝑠𝑠+1��������⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ⟩ 

(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥
𝑥⃗𝑥 ⋅ 𝑥⃗𝑥

= 𝜆𝜆𝑛𝑛 ⇔ 𝑥⃗𝑥 ≠ 0�⃗  且 (𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥 − 𝜆𝜆𝑛𝑛(𝑥⃗𝑥 ⋅ 𝑥⃗𝑥) = 0 

⇔ 𝑥⃗𝑥 ≠ 0�⃗  且�(𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑛𝑛)
𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖2 = 0 

⇔ 𝑥⃗𝑥 ≠ 0�⃗且�(𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑛𝑛)𝑥𝑥𝑖𝑖2
𝑠𝑠

𝑖𝑖=1

= 0 

⇔ 𝑥⃗𝑥 ≠ 0�⃗  且 𝑥𝑥1 = ⋯ = 𝑥𝑥𝑠𝑠 = 0 ⇔ 𝑥⃗𝑥 ∈ 𝑉𝑉𝜆𝜆𝑛𝑛 ∖ �0�⃗ � 

∴ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑥⃗𝑥≠0��⃗

(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥
𝑥⃗𝑥 ⋅ 𝑥⃗𝑥

= max
|𝑥⃗𝑥|=1

�(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥� 

 

(𝑖𝑖𝑖𝑖)令𝑈𝑈 = ⟨𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ ⟩, dim𝑈𝑈 = 𝑘𝑘 

由(𝑖𝑖), max
𝑥⃗𝑥∈𝑈𝑈∖�0��⃗ �

(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥
𝑥⃗𝑥 ⋅ 𝑥⃗𝑥

= 𝜆𝜆𝑘𝑘 
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于是 min
dim𝑈𝑈=𝑘𝑘

� max
𝑥⃗𝑥∈𝑈𝑈∖�0��⃗ �

(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥
𝑥⃗𝑥 ⋅ 𝑥⃗𝑥

� ≤ 𝜆𝜆𝑘𝑘    [∗]

另一方面, dim⟨𝑒𝑒𝑘𝑘����⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ⟩ = 𝑛𝑛 − 𝑘𝑘 + 1

dim(𝑈𝑈 ∩ ⟨𝑒𝑒𝑘𝑘����⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ⟩) = dim𝑈𝑈 + dim⟨𝑒𝑒𝑘𝑘����⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ⟩ − dim(𝑈𝑈 + ⟨𝑒𝑒𝑘𝑘����⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ⟩)

≥ 𝑘𝑘 + 𝑛𝑛 − 𝑘𝑘 + 1 − 𝑛𝑛 = 1 

∴ ∃𝑥⃗𝑥 ≠ 0�⃗ , 𝑥⃗𝑥 ∈ 𝑈𝑈 ∩ ⟨𝑒𝑒𝑘𝑘����⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ⟩ 使得𝑥⃗𝑥 ≠ 0�⃗且𝑥𝑥1 = ⋯ = 𝑥𝑥𝑘𝑘−1 = 0

(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥
𝑥⃗𝑥 ⋅ 𝑥⃗𝑥

=
𝜆𝜆𝑘𝑘𝑥𝑥𝑘𝑘2 + ⋯+ 𝜆𝜆𝑛𝑛𝑥𝑥𝑛𝑛2

𝑥𝑥𝑘𝑘2 + ⋯+ 𝑥𝑥𝑛𝑛2
≥ 𝜆𝜆𝑘𝑘 

则 max
𝑥⃗𝑥∈𝑈𝑈∖�0��⃗ �

(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥
𝑥⃗𝑥 ⋅ 𝑥⃗𝑥

≥ 𝜆𝜆𝑘𝑘   

则 min
dim𝑈𝑈=𝑘𝑘

� max
𝑥⃗𝑥∈𝑈𝑈∖�0��⃗ �

(𝐴𝐴𝑥⃗𝑥) ⋅ 𝑥⃗𝑥
𝑥⃗𝑥 ⋅ 𝑥⃗𝑥

� ≥ 𝜆𝜆𝑘𝑘    [∗∗]

由[∗], [∗∗],结论成立     ∎ 
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【19-4】奇异值分解 

𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛.则∃𝑉𝑉1 ∈ 𝑂𝑂𝑚𝑚(ℝ),𝑉𝑉2 ∈ 𝑂𝑂𝑛𝑛(ℝ), 

𝐷𝐷 = diag(𝜎𝜎1, … ,𝜎𝜎𝑛𝑛, 0, … ,0) ,𝜎𝜎𝑖𝑖 > 0 

使得𝐴𝐴 = 𝑉𝑉1𝐷𝐷𝑉𝑉2,𝜎𝜎1, … ,𝜎𝜎𝑛𝑛称为矩阵𝐴𝐴的奇异值 

证:𝑎𝑎)若𝐴𝐴为可逆方阵,则由第三章定理 6.3 

∃矩阵𝑃𝑃,𝑂𝑂使得𝐴𝐴 = 𝑃𝑃𝑃𝑃,使得𝑃𝑃正定,𝑂𝑂正交 

对𝑃𝑃来说,∃𝑄𝑄正交,𝐷𝐷对角,使得𝑃𝑃 = 𝑄𝑄𝑄𝑄𝑄𝑄−1 

则𝐴𝐴 = 𝑄𝑄𝑄𝑄𝑄𝑄−1𝑂𝑂,令𝑄𝑄 = 𝑉𝑉1,𝑄𝑄−1𝑂𝑂 = 𝑉𝑉2即可 

 

𝑏𝑏)一般情况:𝐴𝐴𝑡𝑡𝐴𝐴是实对称,半正定矩阵 

则∃𝑃𝑃 ∈ 𝑂𝑂𝑛𝑛(ℝ)使得𝑃𝑃𝑡𝑡𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴 = �𝐷𝐷1 𝑂𝑂
𝑂𝑂 𝑂𝑂� 

且𝐷𝐷1 = diag(𝜆𝜆1, … , 𝜆𝜆𝑟𝑟) , 𝜆𝜆𝑖𝑖 > 0, 𝑟𝑟 = rank𝐴𝐴𝑡𝑡𝐴𝐴 = rank𝐴𝐴 

对𝑃𝑃作分块,𝑃𝑃 = (𝑃𝑃1,𝑃𝑃2),𝑃𝑃1 ∈ ℝ𝑛𝑛×𝑟𝑟 ,𝑃𝑃2 ∈ ℝ𝑛𝑛×(𝑛𝑛−𝑟𝑟) 

则𝑃𝑃𝑡𝑡𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴 = �𝑃𝑃1
𝑡𝑡𝐴𝐴𝑡𝑡𝐴𝐴𝑃𝑃1 𝑃𝑃1𝑡𝑡𝐴𝐴𝑡𝑡𝐴𝐴𝑃𝑃2

𝑃𝑃2𝑡𝑡𝐴𝐴𝑡𝑡𝐴𝐴𝑃𝑃1 𝑃𝑃2𝑡𝑡𝐴𝐴𝑡𝑡𝐴𝐴𝑃𝑃2
� = �𝐷𝐷1 𝑂𝑂

𝑂𝑂 𝑂𝑂� 

⇒ 𝑃𝑃2𝑡𝑡𝐴𝐴𝑡𝑡𝐴𝐴𝑃𝑃2 = (𝐴𝐴𝑃𝑃2)𝑡𝑡𝐴𝐴𝑃𝑃2 = 𝑂𝑂, 取迹即得𝐴𝐴𝑃𝑃2 = 𝑂𝑂 

则𝐴𝐴𝐴𝐴 = (𝐴𝐴𝑃𝑃1,𝐴𝐴𝑃𝑃2) = (𝐴𝐴𝑃𝑃1,𝑂𝑂) 

令𝐵𝐵 ≔ 𝐴𝐴𝐴𝐴,对𝐵𝐵𝑡𝑡重复上述操作 

同理∃𝑄𝑄𝑡𝑡 = (𝑄𝑄1𝑡𝑡,𝑄𝑄2𝑡𝑡) ∈ 𝑂𝑂𝑚𝑚(ℝ) 

使得𝐵𝐵𝑡𝑡𝑄𝑄2 = 𝑂𝑂 从而𝐵𝐵𝑡𝑡𝑄𝑄𝑡𝑡 = (𝐵𝐵𝑡𝑡𝑄𝑄1𝑡𝑡,𝑂𝑂) 

𝑄𝑄𝑄𝑄 = 𝑄𝑄𝑄𝑄𝑄𝑄 = �𝑄𝑄1𝐵𝐵𝑂𝑂 � = �𝐴𝐴1 𝑂𝑂
𝑂𝑂 𝑂𝑂� 

此时 rank𝐴𝐴1 = rank(𝑄𝑄𝑄𝑄𝑄𝑄) = rank𝐴𝐴 = 𝑟𝑟 

⇒ 𝐴𝐴1为可逆方阵 

∵ 𝑃𝑃,𝑄𝑄正交  ∴由𝑎𝑎),结论成立 

𝐴𝐴𝑡𝑡𝐴𝐴 = 𝑉𝑉2𝑡𝑡𝐷𝐷2𝑉𝑉2    𝜎𝜎𝑖𝑖2刚好是𝐴𝐴𝑡𝑡𝐴𝐴的特征值   ∎  
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部分特殊符号说明 

【集合】 

ℝ ⇛实数域 

ℂ ⇛复数域 

ℚ ⇛有理数域 

ℤ ⇛正整数域 

ℕ ⇛自然数域 

{𝑥𝑥|𝑃𝑃(𝑥𝑥)}满足条件𝑃𝑃(𝑥𝑥)的𝑥𝑥组成的集合  

Func(𝑆𝑆,𝐹𝐹)  ⇛  从𝑆𝑆到𝐹𝐹的映射集合

Map(𝑆𝑆,𝑊𝑊)  ⇛  从𝑆𝑆到𝑊𝑊的映射集合

Hom(𝑉𝑉,𝑊𝑊)  ⇛  从𝑉𝑉到𝑊𝑊的线性映射集合 

ℒ(𝑉𝑉)  ⇛  𝑉𝑉到𝑉𝑉的线性算子的集合 

𝐹𝐹𝑛𝑛[𝑥𝑥]  ⇛  关于𝑥𝑥的次数小于𝑛𝑛的多项式集合 

ℒ2(𝑉𝑉,𝐹𝐹)  ⇛  𝑉𝑉 上双线性型集合 

ℒ2+(𝑉𝑉,𝐹𝐹)  ⇛   𝑉𝑉 上对称双线性型集合  

ℒ2−(𝑉𝑉,𝐹𝐹)  ⇛   𝑉𝑉 上斜对称双线性型集合 

𝑀𝑀𝑛𝑛(𝐹𝐹)  ⇛  域𝐹𝐹上的𝑛𝑛阶方阵

𝐺𝐺𝐺𝐺𝑛𝑛(𝐹𝐹)  ⇛  域𝐹𝐹上的𝑛𝑛阶可逆方阵

𝐹𝐹𝑚𝑚×𝑛𝑛   ⇛   𝑛𝑛行𝑚𝑚列矩阵集合

𝑂𝑂𝑛𝑛(ℝ)   ⇛  𝑛𝑛阶正交矩阵集合

card𝑆𝑆  ⇛  集合𝑆𝑆的基数,对有限集而言为元素个数 

char𝐹𝐹 ⇛ 域𝐹𝐹的特征  
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【空间】 

⟨𝑣𝑣1����⃗ , … ,𝑣𝑣𝑛𝑛����⃗ ⟩  ⇛  由向量𝑣𝑣1����⃗ , … , 𝑣𝑣𝑛𝑛����⃗生成的空间 

ℝ𝑛𝑛   ⇛  𝑛𝑛维实空间 

𝐹𝐹𝑛𝑛  ⇛  𝑛𝑛维坐标空间 

𝑉𝑉∗  ⇛  𝑉𝑉的对偶空间 

𝑈𝑈∘  ⇛  𝑈𝑈的零化子空间 

𝒜𝒜(𝑈𝑈)  ⇛  定义域为𝑈𝑈的线性算子𝒜𝒜的像空间 

𝑉𝑉𝜆𝜆  ⇛  特征值为𝜆𝜆的特征子空间 

𝐹𝐹[𝒜𝒜] ⋅ 𝑣⃗𝑣  ⇛  由𝒜𝒜和𝑣⃗𝑣生成的循环子空间 

𝑉𝑉(𝑝𝑝𝑖𝑖)  ⇛  关于因子𝑝𝑝𝑖𝑖的广义特征子空间 

dim𝑉𝑉  ⇛  空间𝑉𝑉的维数 

𝑈𝑈⊕ 𝑉𝑉 ⇛  空间𝑈𝑈,𝑉𝑉的直和 

𝑈𝑈 + 𝑉𝑉 ⇛  空间𝑈𝑈,𝑉𝑉的和 

𝑈𝑈 ∩ 𝑉𝑉 ⇛  空间𝑈𝑈,𝑉𝑉的交 

𝑉𝑉/𝑈𝑈  ⇛  𝑉𝑉关于子空间𝑈𝑈的商空间 

𝑈𝑈⊥ ⇛ 𝑈𝑈的正交补空间 

 

【向量】 

𝑣⃗𝑣𝑡𝑡  ⇛  向量𝑣⃗𝑣的转置 

0𝑉𝑉����⃗  ⇛  线性空间𝑉𝑉中的零向量 

𝐴𝐴(𝚥𝚥)�������⃗  ⇛  矩阵𝐴𝐴的第𝑗𝑗列列向量 

|𝑥⃗𝑥|, �|𝑥⃗𝑥|�  ⇛  向量𝑥⃗𝑥的长度或范数 

𝑥⃗𝑥 ⋅ 𝑦⃗𝑦  ⇛  向量𝑥⃗𝑥与𝑦⃗𝑦的内积 
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【矩阵】 

𝑂𝑂𝑚𝑚×𝑛𝑛  ⇛  𝑚𝑚行𝑛𝑛列的零矩阵

diag(𝐴𝐴1, … ,𝐴𝐴𝑛𝑛, 𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) 

       ⇛  由方阵𝐴𝐴1, … ,𝐴𝐴𝑛𝑛,数𝜆𝜆1, … , 𝜆𝜆𝑛𝑛组成的对角矩阵

𝐴𝐴𝑡𝑡  ⇛  矩阵𝐴𝐴的转置

|𝐴𝐴|, det𝐴𝐴  ⇛  方阵𝐴𝐴的行列式

rank𝐴𝐴  ⇛  矩阵𝐴𝐴的秩 

tr𝐴𝐴  ⇛  矩阵的迹 

△𝑘𝑘 (𝐴𝐴)  ⇛  𝐴𝐴的第𝑘𝑘个顺序主子式

spec𝐹𝐹 𝐴𝐴  ⇛  矩阵𝐴𝐴在𝐹𝐹上的谱

𝑓𝑓(𝐴𝐴)  ⇛  多项式作用在矩阵𝐴𝐴上 

𝐽𝐽𝐴𝐴  ⇛  矩阵𝐴𝐴的𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜标准型

𝐽𝐽𝑛𝑛(𝜆𝜆)  ⇛ 主对角元是𝜆𝜆的𝑛𝑛阶约当块

𝐺𝐺(𝑣𝑣1����⃗ , … ,𝑣𝑣𝑛𝑛����⃗ )  ⇛  向量𝑣𝑣1����⃗ , … ,𝑣𝑣𝑛𝑛����⃗的𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟矩阵

𝐴̅𝐴  ⇛  矩阵𝐴𝐴的共轭 

【映射】 

𝐼𝐼𝑑𝑑, 𝑖𝑖𝑖𝑖 ⇛  恒等映射 

𝒪𝒪 ⇛  零算子 

ℰ ⇛  恒同算子 

𝒜̅𝒜  ⇛  商算子 

ker𝜑𝜑  ⇛  线性映射的核 

im𝜑𝜑  ⇛  线性映射的像 

𝜑𝜑│𝑈𝑈  ⇛  映射𝜑𝜑的定义域限制在𝑈𝑈上

𝜑𝜑 ∘ 𝜓𝜓 ⇛  复合映射 
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部分特殊符号说明 

 

rank 𝑓𝑓  ⇛  线性映射𝑓𝑓的秩 

𝑓𝑓(𝒜𝒜)  ⇛  多项式作用在线性算子𝒜𝒜上 

 

【多项式】 

deg𝑓𝑓  ⇛  多项式𝑓𝑓的次数 

𝜇𝜇𝐴𝐴  ⇛  矩阵𝐴𝐴的极小多项式 

𝜇𝜇𝒜𝒜  ⇛  算子𝒜𝒜的极小多项式 

𝜇𝜇𝒜𝒜,𝑣𝑣�⃗  ⇛  关于𝒜𝒜和𝑣⃗𝑣的极小多项式 

𝒳𝒳𝐴𝐴  ⇛  矩阵𝐴𝐴的特征多项式 

𝒳𝒳𝒜𝒜  ⇛  算子𝒜𝒜的特征多项式 

𝑓𝑓│𝑔𝑔 ⇛  𝑓𝑓整除𝑔𝑔 

lcm(𝑞𝑞1,𝑞𝑞2)  ⇛  多项式𝑞𝑞1,𝑞𝑞2的最小公倍式 

gcd(𝑞𝑞1,𝑞𝑞2)  ⇛  多项式𝑞𝑞1,𝑞𝑞2的最大公因式 

 

【关系】 

~  ⇛  等价关系 

~𝑒𝑒  ⇛  初等相似 

~𝑐𝑐  ⇛  合同 

~𝑠𝑠  ⇛  相似 

~𝑜𝑜  ⇛  正交相似 

~𝑢𝑢  ⇛  酉相似 

𝑉𝑉 ≃ 𝑊𝑊 ⇛  𝑉𝑉和𝑊𝑊线性同构 

𝑃𝑃 ⇒ 𝑄𝑄 ⇛  命题𝑃𝑃能推出命题𝑄𝑄 

𝑃𝑃 ⇔ 𝑄𝑄 ⇛  命题𝑃𝑃与𝑄𝑄等价 
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𝐹𝐹 ≔ 𝐺𝐺 ⇛  定义𝐹𝐹,𝐹𝐹表示𝐺𝐺 

< ∞ ⇛  有穷 

∃!  ⇛  存在唯一的 

⊥ ⇛向量或空间垂直  

【其他】 

𝑎𝑎�  ⇛  复数𝑎𝑎的共轭 

𝛿𝛿𝑖𝑖𝑖𝑖  ⇛  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘函数,当𝑖𝑖 = 𝑗𝑗时取值为 1,否则为 0

∗ ⇛  用于标记公式或表示不知道也无需关心的量  
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