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1 写在前面

本复习讲义由庄逸为了复习数理方法期末考试而整理，转载请注明来源

https://hfdxmy.cn/math/mathphysic/review-2 或 hfdxmy.cn
其中内容有不少参考了张波老师上课的讲义。时间紧迫，疏漏之处在所难免，敬请

谅解。

第一版于 2019 年 1 月完成。

2 常微分方程

2.1 名词和概念解释

• 常微分方程：关于函数及其各阶导数和自变量的方程，如 y′ = x+ y，其解为函数。

常微分方程简称 ODE(Ordinary Differential Equation)。

• 线性：如果常微分方程关于未知函数和其各阶导数都是一次的，那么这个方程被称
为线性的。注意，和自变量没有关系。如 y′′+2y+1 = x2 是线性方程，yy′+x = 0

不是线性方程。

• 阶数：常微分方程中出现的最高阶导数的阶数称为常微分方程的阶数。如 y′′′+y = 0

是三阶的。

• 齐次性：对于一般线性微分方程 pn(x)y
(n) + · · · + p0(x)y = q(x) 而言，若方程右

端 q(x) ≡ 0，则这个方程称为是齐次的，否则被称为是非齐次的。

• 常系数与变系数：对于具有上面形式的一般线性常微分方程而言，若 pn(x), . . . , p0(x)

均为常数，则方程称为常系数线性方程，否则称为变系数线性方程。

• 通解与特解：如果 n 阶 ODE 的某个解包含 n 个相互独立的任意常数，则这个解

称为通解。若某个解不包含任意常数，则称为特解。如对 ODE y′′ + y = 0 而言，

y1 = C1 sinx+ C2 cosx 是其通解，y2 = sinx 是其特解。

• 定解条件：如果只是解一个常微分方程，只能得到其通解。为了将任意常数确定下
来，补充的条件就是定解条件。联立常微分方程和合适的定解条件，就能得到同时

满足 ODE 和定解条件的特解。如 y′′ + y = 0 的通解为 C1 sinx+C2 cosx, 补充定
解条件 y(0) = 0, y′(0) = 2 后得到特解 y = 2 sinx。

ODE 的四个修饰语可以叠加使用，但齐次、常系数一般只针对线性而言。如 y′′′ −
xy = 2x 称作“三阶·线性·变系数·非齐次·常微分方程”（其实没有点间隔号，加上

只是为了区分几个修饰词）。
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2.2 线性 ODE 的一般理论

一般的 n 阶线性常微分方程可表示为

y(n) + pn−1y
(n−1) + · · ·+ p0(x)y = q(x) (2.2.1)

其中 pn−1(x), . . . , p0(x) 是问题所在区间 I 上的连续函数。

其对应的齐次方程为

y(n) + pn−1y
(n−1) + · · ·+ p0(x)y = 0 (2.2.2)

2.2.1 解的存在唯一性

方程式 2.2.1满足初值条件

y(x0) = a0, y
′(x0) = a1, . . . , y

(n−1)(x0) = an−1 (2.2.3)

的解在区间上存在且唯一。证明太难，略。

这一性质常用来由初值条件的性质（奇偶性等）推断解的性质，即证明 f(x)和 f(−x)
均是方程满足条件的解，那么由唯一性得到 f(x) = f(−x)，推出偶函数。

注意，如果系数函数在区间上不连续，则没有存在唯一性。如方程 xy′′+2y′−y = 0，

其系数函数为 2
x
,− 1

x
，在 0 处间断，于是相应的问题在 R 上没有存在唯一性。

2.2.2 解的叠加原理与齐次方程解的结构

对于齐次线性方程式 2.2.2，若 y1 和 y2 是其两个解，那么其线性组合 C1y1 +C2y2

也是方程的解。证明简单，略。

另一方面，如果这个齐次线性方程在区间 I 上有 n 个线性无关的解 y1, . . . , yn，则

其通解可表示为

y =
n∑

i=1

Ciyi (2.2.4)

其中 Ci 是任意常数。在这里，线性无关指的是不存在 n 个全不为零的数 t1, . . . , tn，使

得 t1y1 + · · ·+ tnyn ≡ 0。若存在，则称为线性相关。

证明思路则是利用解的存在唯一性，建立齐次线性方程解空间和向量空间的

一一对应。将 n 维向量空间 n 个线性无关的向量的坐标分别构建出 n 个初

值问题，得出 n 个解的线性无关性，并由向量空间的完备性推知方程解空间

的完备性。

这些线性无关的 y1, . . . , yn 称为齐次方程式 2.2.2（或有时非齐次方程）的一个基本
解组。显然基本解组不唯一，因为其内部有不同的常数和线性组合，就像基向量不唯一

一样。
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2.2.3 Wronski 行列式

线性齐次方程式 2.2.2的 n 个线性无关解 y1, . . . , yn 的 Wronski 行列式是一个函数，
定义为

W =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 . . . yn

y′1 y′2 . . . y′n
...

...
...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
(2.2.5)

不同基本解组之间的差异只有线性组合，在Wronski行列式中体现为列的线性组合，
对行列式的值只有正负和常数倍的影响。因此，一个方程只可能有“一种”Wronski 行
列式的值。这点可以由下面的定理得到。

定理 在区间 I 上，齐次线性常微分方程式 2.2.2的 Wronski 行列式式 2.2.5满足方程

W ′ + pn−1(x)W = 0 (2.2.6)

于是

W = Ce−
∫
pn−1(x)dx =W0e−

∫ x
x0

pn−1(x)dx (2.2.7)

其中 W0 =W (x0)，pn−1(x) 为线性方程中 n− 1 阶导数项的系数，也就是从左往右写第

二项的系数。这个一阶线性方程的解法可见后面的式 2.3.1部分。
由此，就得到了 Wronski 行列式的“显式”表达式，从中可以看出其决定性因素只

有第二项的系数 pn−1(x)。另外，由于指数函数非零恒正连续的性质，Wronski行列式在
整个 I 上的正负性由 W0 决定。即若在某一点为零，则恒为零；在某一点为正，则恒为

正。

用 Wronski 行列式可以验证基本解组的线性无关性。如果 Wronski 行列式恒等于
零，则参与运算的各函数线性相关；如果恒不等于零（或等价地不恒等于零，为什么？），

则参与运算的各函数线性无关。而恒等于零又等价于在某点等于零。

利用Wronski行列式的显式表达，有时能通过 n− 1个解去求另一个线性无关的解，

从而解出方程。这在二阶方程中是一个重要方法，之后再解释。

例：方程 y′′ + 2y′ + y = 0 的一个基本解组为 e−x, xe−x，其 Wronski 行列式为

W =

∣∣∣∣∣ e−x xe−x

−e−x e−x − xe−x

∣∣∣∣∣ = e−2x (2.2.8)

由方程系数推知 Wronski 满足

W ′ + 2W = 0 ⇒ W = Ce−2x (2.2.9)

此二者相吻合。
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2.2.4 非齐次线性方程解的结构

通过常数变易法 (见后小节 2.4.2) 可由对应的齐次线性方程的通解得到非齐次线性
方程式 2.2.1的解为

y =
n∑

i=1

Ciyi + y∗ (2.2.10)

其中 y1, . . . , yn 是齐次线性方程的一个基本解组，y
∗ 是满足非齐次线性方程的一个任意

特解，即不含任意常数的“确定的”一个函数。可见，非齐次线性方程的解由对应的齐

次方程 n个线性无关的通解的线性组合和一个特解叠加而成。可以用以下公式确定这个

特解。

y∗ =
n∑

i=1

yi

∫ t

t0

Wi(τ)

W (τ)
q(τ)dτ (2.2.11)

其中 q(x) 是非齐次方程右端非零项。Wi 是 Wronski 行列式第 n 行第 i 列的代数余子

式。这可以用常数变易法得到，实际解非齐次方程时也往往不用套公式而是直接应用常

数变易法。具体应用之后再详细说明。

2.3 一阶线性 ODE

先考虑齐次方程

y′ + p(x)y = 0 (2.3.1)

可将方程改写为
dy
y

= −p(x)dx (2.3.2)

两边积分并化简后得到

y = Ce−
∫
p(x)dx (2.3.3)

其中经过讨论合并后可得 C ∈ R。这便是一阶线性齐次方程式 2.3.1的通解。
然后来看非齐次方程

y′ + p(x)y = q(x) (2.3.4)

有数种办法可解。

2.3.1 积分因子法

推荐该方法。将方程改写为

dy + p(x)ydx = q(x)dx (2.3.5)

然后两边乘以积分因子 e
∫
p(x)dx，可知等号左端可依据微分的乘法原则合并。

d(ye
∫
p(x)dx) = e

∫
p(x)dxq(x)dx (2.3.6)
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对两边积分即可得到

ye
∫
p(x)dx =

∫
e
∫
p(x)dxq(x)dx+ C (2.3.7)

于是解可表为

y =
(

e−
∫
p(x)dx

)∫
e
∫
p(x)dxq(x)dx+ Ce−

∫
p(x)dx (2.3.8)

若将不定积分写为定积分形式，则结合条件 y(x0) = y0 可得到特解

y = y0e−
∫ x
x0

p(t)dt
+

∫ x

x0

q(t)e−
∫ x
t

p(t)dt (2.3.9)

例：解方程 y′ − 2y tanx = 4x

先求积分因子，对 −2 tanx 积分得到 2 ln |cosx|，取指数后得到 cos2 x。于是两边
乘积分因子得到

cos2 xdy − 2y sinx cosxdx = 4x cos2 xdx (2.3.10)

显然左端是 d(y cos2 x)，两边积分得到 y cos2 x = x2 + x sin 2x+ cos 2x/2 + C

于是通解为

y =
x2

cos2 x + 2x tanx+
1

2
− 1

2
tan2 x+

C

cos2 x (2.3.11)

例：解方程 y′ − 2y tanx = 4x, y(0) = 2

只需要将上面得到的解代入定解条件即可。

2 =
1

2
+ C ⇒ C =

3

2
(2.3.12)

于是

y =
x2

cos2 x + 2x tanx+
1

2
− 1

2
tan2 x+

3

2 cos2 x (2.3.13)

为方程的特解。

注意，若首项系数不为 1，需要先将其除掉，再对新的方程应用积分因子法。

例：方程 xy′ − 2y = 1/x，大家一定能看出其积分因子为

e
∫
− 2

x dx =
1

x2
(2.3.14)

但是如果直接把积分因子乘到方程上，得到

xy′ − 2y

x2
=

1

x3
(2.3.15)

则不对，而是要乘到首项系数为 1 的方程 y′ − 2y/x = 1/x2 的方程上，得到

xy′ − 2y

x3
=

1

x4
(2.3.16)

才能顺利将左边化为 d(y/x2)。
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2.3.2 常数变易法

在求解齐次方程的时候，我们已经知道方程 y′ + p(x)y = 0 的通解为

y = Ce−
∫
p(x)dx (2.3.17)

对于非齐次方程 y′ + p(x)y = q(x)，我们假设解具有类似的形式，不过解的常数变

为一个函数，即设解为

y = C(x)e−
∫
p(x)dx (2.3.18)

将其代回到方程，化简后得到

C ′(x)e−
∫
p(x)dx = q(x) (2.3.19)

移项积分得

C(x) =

∫
q(x)e

∫
p(x)dxdx+ C1 (2.3.20)

之后的推导与积分因子法相同。

例：解方程 y′ − 2y = x

对应的齐次方程 y′−2y = 0的通解为 y = Ce2x，设非齐次方程的解为 y = C(x)e2x，
代入原方程得到

C ′(x)e2x + 2C(x)e2x − 2C(x)e2x = x (2.3.21)

即 C ′(x) = xe−2x ⇒ C(x) = −xe−2x/2 + e−2x/4 + C1，于是解为

y = −x
2
− 1

4
+ C1e2x (2.3.22)

2.3.3 待定系数法

根据线性微分方程解的叠加原理小节 2.2.4，先解出齐次方程的通解，然后结合方程
特征，猜特解的形式，通过待定系数法定出特解。

例：解方程 xy′ + 2y = 1

其对应齐次方程为 xy′+2y = 0，解得通解为 C/x2。然后发现其有一个特解 y = 1/2，

那么方程的解为

y =
C

x2
+

1

2
(2.3.23)

例：解方程 y′ + y = 2ex

其对应齐次方程通解为 Ce−x。由方程右端的指数函数，猜想其特解也有 ex 的形式，
设 Aex 为其特解，则

Aex +Aex = 2ex ⇒ A = 1 (2.3.24)

于是特解为 ex，方程的解为
y = Ce−x + ex (2.3.25)

待定系数法其实是之后解常系数线性方程用的方法，自然对一阶方程也适用。
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2.3.4 齐次化方法

对于方程式 2.3.4，若系数 p(x) ≡ p为常数，并且具有齐次的初始条件 y(0) = 0，则

先解齐次方程

z′(x; τ) + pz(x; τ) = 0, z(0; τ) = q(τ) (2.3.26)

其中 z(x; τ) 是 x 的函数，τ 为一个参数。那么原方程的解

y =

∫ x

0

z(x− τ ; τ)dτ (2.3.27)

例：解方程 y′ + y = x, y(0) = 0

先解方程 z′ + z = 0, z(0) = τ，得到

z = Ce−x, C = τ (2.3.28)

然后积分 ∫ x

0

e−(x−τ)τdτ = x− 1 + e−x (2.3.29)

可验证 y = x− 1 + e−x 就是方程的解。

若方程的初始条件为 y(x0) = 0，则可考虑作相应的平移变换 Y (x) = y(x+ x0)。若

初始条件为一个常数，即 y(0) = m，则考虑变换 Y (x) = y(x)−m。

齐次化方法主要是在偏微分方程中使用，一般不在解 ODE 中用，因为限制比较多，
步骤也比较麻烦难记，不如别的方法来得经济省事儿。

在讲解完四种方法后，要提醒大家的是切忌硬背公式，死套公式。从例题中也

可看出，只需要了解方法的思路，作相应的变换，就可以顺利自然地推下去。

单纯地背公式，不仅耗力气，容易搞错，还无法领会各种方法的奥妙所在。

2.4 高阶线性方程的解法

解高阶线性方程分为两部分，先是求出 n 个线性无关的解，然后再求出一个满足非

齐次方程的特解。

2.4.1 Wronski 行列式辅助求解

对于第一部分，求齐次线性方程式 2.2.2的基本解组，没有一般的通法。但是在已知
n− 1 个线性无关的解的情况下，可以考虑利用 Wronski 行列式求出最后一个解。其理
论推导较为繁琐。以二阶方程为例，已知 y1 是方程

y′′ + p1(x)y
′ + p0(x)y = 0 (2.4.1)

的一个解，则由 Wronski 行列式的定义式 2.2.5得到

W =

∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣ = y1y
′
2 − y′1y2 (2.4.2)
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另一方面，由 Wronski 行列式的性质式 2.2.6得到

W ′ + p1(x)W = 0 (2.4.3)

借此可解出 W。于是则得到关于 y2 的一阶方程

y1y
′
2 − y′1y2 =W (2.4.4)

例：已知 y1 = e−x 是方程 xy′′ + (x− 2)y′ − 2y = 0 的一个解，求另一个解。

先将方程首项化为 1，得 y′′ + (x− 2)y′/x− 2y/x = 0，然后计算 Wronski 行列式。

W ′ +
x− 2

x
W = 0, ⇒ W = Cx2e−x (2.4.5)

这里得到的常数不重要，令其为 1。另一方面，W = y1y
′
2 − y′1y2，代入得

e−xy′2 + e−xy2 = x2e−x (2.4.6)

整理，并利用小节 2.3中的方法解得

y′2 + y2 = x2, ⇒ y2 = C1e−x + (x2 − 2x+ 2) (2.4.7)

可见，其中通解部分就是 y1 的成分，独属于 y2 的，与 y1 线性无关的成分是特解 y2 =

x2 − 2x+ 2 于是，原方程的解为

y = C1e−x + C2(x
2 − 2x+ 2) (2.4.8)

对于三阶的情况，需要已知两个解，然后解一个二阶方程。显然，二阶方程中通解

部分就是两个已知解的线性组合，剩下的特解就是第三个解。更高阶的情况也是类似。

2.4.2 非齐次方程的常数变易法

对于高阶非齐次方程式 2.2.1，假设已经完成了第一部分，即已知齐次方程 n 个线

性无关的通解 y1, . . . , yn，现在求其特解 y∗。

在之前，已经给出了特解的表达式式 2.2.11，但是在实际应用仍然采用“推导式”的
做法。设通解具有形式 C1(x)y1 + C2(x)y2 + · · ·+ Cn(x)yn，则各变易常数满足方程组

y1C
′
1 + y2C

′
2 + · · ·+ ynC

′
n = 0

y′1C
′
1 + y′2C

′
2 + · · ·+ y′nC

′
n = 0

................

y
(n−1)
1 C ′

1 + y
(n−1)
2 C ′

2 + · · ·+ y(n−1)
n C ′

n = q(x)

(2.4.9)

写成矩阵形式更为直观好记。
y1 y2 . . . yn

y′1 y′2 . . . y′n
...

...
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n




C ′

1

C ′
2

...
C ′

n

 =


0

0
...

q(x)

 (2.4.10)
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可见左端方阵形式如同 Wronski 行列式。解出各变易常数即可得到非齐次解。
例：解方程 y′′ − y = 2ex/(ex − 1) (x > 0)

先解齐次方程，两线性无关解可取为 y1 = ex, y2 = e−x，然后摆出矩阵代入。(
y1 y2

y′1 y′2

)(
C ′

1

C ′
2

)
=

(
0

q(x)

)
(2.4.11)

(
ex e−x

ex −e−x

)(
C ′

1

C ′
2

)
=

(
0
2ex

ex−1

)
(2.4.12)

写成方程组形式。 
exC ′

1 + e−xC ′
2 = 0

exC ′
1 − e−xC ′

2 =
2ex

ex − 1

(2.4.13)

解方程组，得到 
C ′

1 =
1

ex − 1

C ′
2 = − e2x

ex − 1

⇒

C1 = ln (ex − 1)− x+A

C2 = − ln (ex − 1)− ex +B
(2.4.14)

结合 y1 = ex, y2 = e−x，忽略常数，可得特解为

y∗ = (ex − e−x) ln (ex − 1)− xex − 1 (2.4.15)

于是原方程的解为

y = D1y1 +D2y2 + y∗ (2.4.16)

D1, D2 为任意常数。

2.4.3 幂级数和广义幂级数解法

幂级数解法是用幂级数形式来表示待求函数，将求导化为系数的变换，最终通过数

列递推公式得出幂级数解的办法。

幂级数解的存在性较难判断。对二阶方程 y′′ + p1y
′ + p0y = 0 而言，如果 p1, p0 在

某个区间 |x− x0| < r 上可以展开成收敛幂级数，则该二阶方程在这个区间上存在收敛

的幂级数解。另外，如果 p1, p2 在区间内不是解析的，如存在间断点，则可能不存在幂

级数形式的解或幂级数解不收敛。

例：解方程 y′′ − xy′ − y = 0

记 y =
∑∞

k=0 akx
k，则

y′ =
∞∑
k=0

(k + 1)ak+1x
k (2.4.17)

y′′ =
∞∑
k=0

(k + 2)(k + 1)ak+2x
k (2.4.18)
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代入原方程，得到

∞∑
k=0

(k + 2)(k + 1)ak+2x
k −

∞∑
k=0

(k + 1)ak+1x
k+1 −

∞∑
k=0

akx
k = 0 (2.4.19)

即

(2a2 − a0)x
0 +

∞∑
k=1

((k + 2)(k + 1)ak+2 − (k + 1)ak)x
k = 0 (2.4.20)

由各项系数为零得到

a0 = 2a2, ak = (k + 2)ak+2, k ≥ 1 (2.4.21)

显然，奇项和偶项分别是两个解。令 a0 = 1, a1 = 0，得到偶项解

a2n−1 = 0, a2n =
n∏

k=1

1

2k
, n = 1, 2, . . . (2.4.22)

y1 = 1 +
∞∑
k=1

k∏
t=1

1

2t
x2k =

∞∑
k=0

x2k

(2k)!!
(2.4.23)

令 a0 = 0, a1 = 1，得到奇项解

a2n = 0, a2n+1 =
n∏

k=0

1

2k + 1
, n = 0, 1, . . . (2.4.24)

y2 =
∞∑
k=0

x2k+1

(2k + 1)!!
(2.4.25)

于是方程的解为 C1y1 + C2y2。

广义幂级数解法是对幂级数解法的扩展，不同之处在于对幂指数引入了一个自由指

标 α。

例：解方程 2xy′′ + y′ + xy = 0

设 y =
∑∞

k=0 akx
k+α，并设 a0 ̸= 0，代入方程，得到

α(2α−1)a0x
α−1+(α+1)(2α+1)a1x

α+
∞∑
k=2

((k + α)(2k + 2α− 1)ak + ak−2)x
k+α−1 = 0

(2.4.26)
由各项系数为零和 a0 ̸= 0 假设，得到指标方程 α(2α − 1) = 0，即 α = 0 或 α = 1/2。

当 α = 0 时，继续解各项系数，得到

a1 = 0, k(2k − 1)ak + ak−2 = 0 (2.4.27)

设 a0 = 1，则得到一个解为

y1 =
∞∑
k=1

k∏
t=1

1

2t(4t− 1)
(−1)kx2k + 1 (2.4.28)
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当 α = 1/2 时，得到

a1 = 0, k(2k + 1)ak + ak−2 = 0 (2.4.29)

设 a0 = 1，另一个解为

y2 =
∞∑
k=1

k∏
t=1

1

2t(4t+ 1)
(−1)kx2k+1/2 + x1/2 (2.4.30)

于是原方程解为 C1y1 + C2y2。

需要注意的是广义幂级数解法有时会出现指标方程产生重根，计算过程中自相矛盾

等情况，则此时可能只能解出一个具有广义幂级数形式的解，需要用别的方法才能得到

全部的解。

2.5 常系数线性方程

对于非齐次线性方程式 2.2.1而言，如果各项系数均为常数，即 pn−1(x) ≡ pn−1, . . . , p0(x) ≡
p0，则称其为常系数线性非齐次方程。对应的也有常系数线性齐次方程。这两个方程存

在一般的解法。同样，非齐次方程的结构为齐次方程的通解线性组合加一个特解，因此

仍然先解决齐次方程。

解方程的思想为假设解具有 etx 的形式，代回原方程后即得到

tn + pn−1t
n−1 + · · ·+ p1t+ p0 = 0 (2.5.1)

称为特征方程。在复数域内有 n 个复根 t1, . . . , tn，则 et1x, . . . , etnx 就是齐次方程的解
组。

下面主要考虑二阶方程，对应二次的特征方程。高阶的实数方程在实数域内可分解

为一次、二次因子乘积，故同理。

2.5.1 特征根为单根

这个情况没有什么特殊的，直接代入即可。

例：解方程 y′′ − 4y′ − 5y = 0

特征方程为 t2 − 4t− 5 = 0，两解 t1 = −1, t2 = 5，于是方程的解为

y = C1e−x + C2e5x (2.5.2)

2.5.2 特征根为重根

设重根为 t1，那么一个解为 et1x，另一个解呢？经过常数变易法可得到另一个解为
xet1x。对于高阶的情况也是同理，只需要递增 x 的次数即可。

例：解方程 y′′′ − 3y′′ + 3y′ − y = 0

特征方程为 t3 − 3t2 + 3t− 1 = (t− 1)3 = 0，有三重根 t = 1。于是方程的解为

y = C1ex + C2xex + C3x
2ex (2.5.3)
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2.5.3 特征根为复根

只需要用到复数的一点知识，处理方式和单根差不多。

例：解方程 y′′−4y′+5y = 0特征方程为 t2−4t+5 = 0，两根为 t1 = 2+ i, t2 = 2− i。

e(2+i)x = e2x(cosx+ i sinx) e(2−i)x = e2x(cosx− i sinx) (2.5.4)

不过注意到只需要找两个线性无关的解，最后方程的解可记为

y = C1e2x cosx+ C2e2x sinx (2.5.5)

需要注意的是当方程系数中含有复数时，单根也可能出现复数，并且复根不再成对

出现。复根的处理参照单根并结合复数运算即可。出现重根也只需要叠加 x 的幂次。求

出每个特征根后需要将其对应的解各个相加，做不到像上面这样把 cos 和 sin 割裂开来。

2.5.4 非齐次无冲突

非齐次的情况，只需要确定特解 y∗。可以通过观察非齐次项 q(x)，利用待定系数法

确定。例如，q(x) 含有多项式的形式时，考虑设 y∗ 中有具相同次数的多项式，然后代

回方程确定系数。但是，有时右端形式会与通解产生“冲突”，即通解中有 ex，而 q(x)

也含有 ex。此时直接设 Aex 代回方程只能得到零，需要叠加 x 的幂次。另外，无论有

无冲突，利用常数变易法 (小节 2.4.2) 均可解决。这里只讨论简单的待定系数法。
无冲突的情况，举几个例子即可说明。

例：解方程 y′′ − 2y = x2 − x

观察右端为多项式，设 y∗ = Ax2 +Bx+ C，代入方程得到

2A− 2Ax2 − 2Bx− 2C = x2 − x (2.5.6)

由对应系数相等，得到 A = −1/2, B = 1/2, C = −1/2，于是

y∗ = −1

2
x2 +

1

2
x− 1

2
(2.5.7)

例：解方程 y′′ + 2y′ + y = e2x

设 y∗ = Ae2x，代回后得到

4Ae2x + 4Ae2x +Ae2x = e2x (2.5.8)

解得 A = 1/9，于是

y =
1

9
e2x (2.5.9)

例：解方程 y′′ − 3y′ + 2y = 3 sin 2x

右端为三角函数，设 y∗ = A sin 2x+B cos 2x，代回，得到

−4A sin 2x−4B cos 2x−6A cos 2x+6B sin 2x+2A sin 2x+2B cos 2x = 3 sin 2x (2.5.10)
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比较对应系数，得到 −2A+ 6B = 3

−2B − 6A = 0
⇒

A = −3/20

B = 9/20
(2.5.11)

得到解为

y∗ = − 3

20
sin 2x+

9

20
cos 2x (2.5.12)

2.5.5 非齐次有冲突

非齐次项与通解冲突的情况只需要叠加 x 幂次即可。举几个例子即可说明。

例：解方程 y′′ − 2y′ − 3y = 2e3x 齐次方程两解为 e3x 和 e−x，和右端冲突。此时，

若设 y∗ = Ae3x，代回后左端显然为 0。应设为 y∗ = Axe3x，代回得到

(6e3x + 9xe3x − 2e3x − 6xe3x − 3xe3x)A = 2e3x (2.5.13)

其中 xe3x 项自然抵消（为什么？），比较系数得到 A = −2，于是

y∗ = −2xe3x (2.5.14)

例：解方程 y′′′ − 3y′′ + 3y′ − y = (x2 − 3x)ex

之前已经解过这个方程的三个线性无关解为 ex, xex, x2ex。依据右端有 ex，冲突，应
当设为 xex，但是仍然冲突。因此需要继续向上，直到 x3ex 为止。另外，考虑到还有二次
多项式，最终设特解为 y∗ = x3(Ax2+Bx+C)ex。代回后一通计算，解得 A = 1/60, B =

−1/8, C = 0。于是特解为

y∗ = (
1

60
x2 − 1

8
x)x3ex (2.5.15)

三角函数也可能会产生冲突，同样添加幂次项。

例：解方程 y′′ + 4y′ + 13y = xe−2x cos 3x
齐次方程的两解为 e−2x sin 3x 和 e−2x cos 3x，有冲突。注意到右边还有一个 x，作

为一个一次多项式。因此设特解 y∗ = x(Ax+B)e−2x sin 3x+ x(Cx+D)e−2x cos 3x。
又经过一通计算后解得（尼玛，算死我了）A = 1/12, B = C = 0, D = 1/36。于是

特解为

y∗ =
1

12
x2e−2x sin 3x+

1

36
xe−2x cos 3x (2.5.16)

2.6 其他的一些东西

2.6.1 欧拉方程

在极坐标方程中会遇到。

r2R′′(r) + rR′(r)− n2R(r) = 0 (2.6.1)

作变换 r = et，则方程变为
d2R

dt2 − n2R = 0 (2.6.2)
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作为一个简单的二阶常系数线性方程，解法就不说了。其实，通过齐次性可以猜测 R 是

r 的幂次函数，然后通过待定系数法做。在 n ̸= 0 时也可以解决。在 n = 0 的时候主要有一个 ln r 弄不

出来，hiahiahia。

2.6.2 恰当方程

适用于所有一阶常微分方程（是不是心动了呢？），主要看容不容易凑微分。

例：解方程 y′/x+ y − 3e2x2

/y = 0

将方程整理并将求导写成微分形式，得

ydy + xy2dx = 3xe2x2dx (2.6.3)

给两边凑上 2ex2

，得到

2ex2

ydy + 2xy2e2x2dx = 6xe3x2dx (2.6.4)

利用微分法则合并为

d(y2ex2

) = d(e3x2

) (2.6.5)

于是解为

y2 = e2x2

+ Ce−x2 (2.6.6)

什么？你问我怎么看出凑的积分因子？当然是因为我是倒着出题的呀，哈哈哈哈哈哈哈哈哈咳咳咳，积分因子主要凭借经验和观察，当

然也有一般的求解法。在线性的时候，就是之前介绍的积分因子法。如果不是线性，可

以参照百度百科的积分因子词条，需要满足一定条件，解一个（大概困难程度差不多的）

偏微分方程。
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3 偏微分方程

3.1 简介

3.1.1 名词和概念解释

类似常微分方程。

• 偏微分方程：联系多元函数及其各阶偏导数和各变量的方程称为偏微分方程 (Par-
tial Differential Equation, PDE)。如 uxx + uy = x+ y。其解为一个多元函数。

• 元数：（大概是非官方的说法）未知函数的变量个数称为 PDE 的元数，如 u(x, y)

满足的 PDE 就称为二元偏微分方程。

• 线性：偏微分方程中未知函数及其各阶偏导数如果都是一次的，那么称为线性偏微
分方程，否则称为非线性偏微分方程。如 ux+ yuy = u是线性 PDE，uxuy +x = u

是非线性 PDE。线性方程总能写成 Lu = 0 的形式，例如

uxx + uyy + uzz = 0 ⇔ Lu = 0, L = (∂xx + ∂yy + ∂zz) (3.1.1)

更确切地说，线性是指满足以下条件

L(u1 + u2) = L(u1 + u2) L(cu) = cL(u) (3.1.2)

如果 PDE 是线性的，则有两个好处（叠加原理, Superposition）：

– 对于齐次方程（见后）而言，如果 u1, . . . , un 都是齐次线性方程的解，则其线

性组合也是解。证明略。

– 对于非齐次方程 Lu = g, g ̸= 0 而言，若 Lu1 = g, Lu2 = 0，则 u1 + u2 是原

来非齐次方程的解。

• 阶数：偏微分方程中出现的最高阶导数的阶数称为 PDE 的阶，如 uxx +uxxy = xy

是三阶 PDE。

• 通解与特解，定解条件：仅通过一个偏微分方程得到的解含有任意函数（这一点与
ODE不同，请注意），如 4ux−3uy = 0的解 u = f(3x+4y)，f 为一个任意函数。如

果再附加一些方程，如 u(0, y) = y3，则可定出不含任意条件的解 u = (3x+4y)3/64，

称为特解。用于确定方程的条件称为定解条件。定解条件可分为初值条件和边值条

件。

• 齐次性 (homogeneous)：对于线性 PDE 而言，具有

∑
ai1,··· ,in(x1, · · · , xn)

∂
∑

iku

∂xi11 . . . ∂x
in
n

= q(x1, · · · , xn) (3.1.3)
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的形式。如果关于各变量的函数 q ≡ 0，那么这个 PDE 就称为是齐次的。否则就
称为是非齐次的。

有时定解条件也有齐次与非齐次之分，如 u(x, 0) = ϕ(x)，若 ϕ(x) ≡ 0，则这个条

件称为是齐次的，否则称为非齐次的。

• 常系数与变系数：对于线性 PDE而言，如果系数 ai1,...,in(x1, · · · , xn) ≡ ai1,...,in 为

常数，则称为线性常系数 PDE。否则称为线性变系数 PDE。

同样，元数、阶数、线性、齐次性、常系数修饰词可以叠加使用，如二元·二阶·线

性·变系数·非齐次偏微分方程 uxx + 2ux + yuyy = x2 + y2（实际使用中当然也没有点

间隔号，这里加上只是为了明显区分）。

这些形容词其实是将 PDE 作了分类，对于每个类别的 PDE，需要利用其特
性，采取相适应的手段来解决。ODE 也是如此。在讨论二阶物理方程时，还
会有更多的形容词，也就是需要分得更细才能解方程。

3.1.2 偏微分方程举例

1. ut − uxx = 0 二阶热方程

2. ut − c2(uxx + uyy + uzz) = 0 二阶波动方程

3. uxx + uyy + uzz = 0 Laplace 方程

4. iut + uxx + uyy = 0 Schrödiner 方程

5. ut + uux − uxx = 0 Burgers 方程

6. ut + uxxx + 6uux = 0 三阶方程，KdV 方程

7. utt + uxxxx = 0 四阶杆振动方程

8. u2x + u2y = 1 几何光学方程 Eikonal 方程

3.2 一阶线性方程

后面一般只考虑二元 PDE。

3.2.1 直接积分法

对于简单的偏微分方程，如 ux = 1，直接在方程两边对 x 积分即可。但需要注意的

是，原本加上的积分常数变为关于另一个变量的积分常函数。

例：解方程 u(x, y), uxx = 2

积分一次得到 ux = 2x + f(y)，再积分一次得到 u = x2 + f(y)x + g(y)，其中 f, g

都是任意函数。
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例：解方程 u(x, y), uxy = 2x

先对 y 积分得到 ux = 2xy + f(x)，再对 x 积分，由于 f 是任意函数，积分后还可

以一个任意函数表示。u = x2y + F (x) + g(y)

3.2.2 齐次常系数特征线法

此时方程具有一般形式

aux + buy + cu = 0 (3.2.1)

先考虑 c = 0 的情况，即 aux + buy = 0。将其写为 (a, b) · ∇u = 0，则可看出二元

函数 u 沿着 (a, b) 方向的方向导数为零，也就是 u 在直线

L :

x = x0 + at

y = y0 + bt
(3.2.2)

上为常数。将直线写为 bx− ay = m, m = bx0 − ay0，既然 u 在直线 L 上为常数，那么

u 的值就由 m 唯一决定，即 u = f(m) = f(bx− ay)，f 为任意函数。验证可知其确实

满足方程。

事实上，可作坐标变换 X = bx− ay, Y = ax+ by，则

ux = uXXx + uY Yx = buX + auY , uy = −auX + buY (3.2.3)

于是

aux + buy = 0 ⇒ abuX + a2uY − abuX + b2uY = (a2 + b2)uY = 0 (3.2.4)

显然 a2 + b2 ̸= 0，于是 uY = 0，简单积分可得 u = f(X) = f(bx− ay)

对于 c ̸= 0 的情况，沿用坐标变换法，得到

(a2 + b2)uY + cu = 0 (3.2.5)

此时可看作一个简单的常系数一阶齐次“ODE”，只需将解中常数变为常函数即可。

u = f(X)e−
c

a2+b2
Y
= f(bx− ay)e−

c
a2+b2

(ax+by) (3.2.6)

3.2.3 非齐次坐标变换法

对于非齐次方程，也可利用坐标变换法。

例：解方程 ux + uy + u = ex+3y, u(x, 0) = 0

令 X = x− y, Y = x+ y，则 ux = uX + uY , uy = −uX + uY，方程变为

2uY + u = e−X+2Y = e−Xe2Y (3.2.7)

将 e−X 视为常数，则方程成为一个关于 Y 的一阶常系数线性非齐次方程。其解为

u = f(X)e− 1
2Y +

1

5
e−Xe2Y (3.2.8)
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结合条件 u(x, 0) = 0 可知 X = x, Y = x 时 u = 0，于是

f(x)e− 1
2x +

1

5
ex = 0, ⇒ f(x) = −1

5
e 3

2x (3.2.9)

于是所求的解为

u = −1

5
e 3X−Y

2 +
1

5
e2Y−X = −1

5
ex−2y +

1

5
ex+3y (3.2.10)

其实，此题参照非齐次线性常系数方程的“齐次方程通解 + 待定系数凑特解”法也
能得到相同结果，但是线性 PDE 解的结构老师没有特别讲，我也不敢下定论这样做就
一定正确。

例：解方程 ux + 2uy + (2x− y)u = 2x2 + 3xy − 2y2

作变换 X = x+ 2y, Y = 2x− y，容易验证方程变为

5uX + Y u = XY (3.2.11)

将其看作一个关于 X 的常微分方程，两边除去碍眼的 Y，得到
5

Y
uX + u = X (3.2.12)

稍微凑一下，把零阶导数 u 吃掉，令

u = ve−Y
5 X uX = vXe−Y

5 X − Y

5
ve−Y

5 X (3.2.13)

方程变为
5

Y
vxe−Y

5 X = X (3.2.14)

移项，直接积分得到

v =

(
X − 5

Y

)
eXY /5 + C(Y ) (3.2.15)

代回 u，得到

u = X − 5

Y
+ C(Y )e−XY /5 (3.2.16)

代回原变量略。

3.2.4 齐次变系数特征线法

对于变系数的情况，例如

xux + 2yuy = 0 (3.2.17)

用类似的方法可知 u沿着方向 (x, 2y)的方向导数为零。此时特征直线变为特征曲线。这

个曲线满足
dy
dx =

2y

x
(3.2.18)

解得 L : y = Cx2。既然 u 在曲线 L 上保持不变，那么 u 的值由曲线族中每个曲线的属

性，即 C 的值决定。于是解为

u = f
( y
x2

)
(3.2.19)
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如果想要更好记，对于方程

a(x, y)ux + b(x, y)uy = 0 (3.2.20)

而言，可以对应地摆出式子
dx

a(x, y)
=

dy
b(x, y)

(3.2.21)

然后求出特征线。并且，这样的写法可以很方便自然地扩展到解一阶多元变系数线性

PDE。

3.2.5 化为常微分方程法

思想和特征线法类似，但比较直接。例如方程

ut + sin tux = 0 u(x, 0) = ex (3.2.22)

考虑 u(x, t) = (x(t), t)，
du
dt =

∂u

∂x

dx
dt +

∂u

∂t
(3.2.23)

相比较，则得到两个常微分方程

du
dt = 0

dx
dt = sin t (3.2.24)

设一个初值 x0，得到 x = − cos t+x0+1，u = ex0 以满足原初值条件，于是 u = ex+cos t−1。

3.2.6 二元 PDE 变量转换法

对于 ODE 而言，自变量和因变量转换是十分容易的，dy 和 dx 可以自由移项，高
阶导数也可作变换。在偏微分方程中，一般而言没有这么方便，但有时会遇到一些特殊

情况。例如考虑齐次方程组

A1ux +B1uy + C1vx +D1vy = 0 (3.2.25a)

A2ux +B2uy + C2vx +D2vy = 0 (3.2.25b)

其中 Ai, Bi, Ci, Di (i = 1, 2) 均是关于 u, v 的函数。由于 u, v 都是关于 x, y 的函数，因

此在求解时较为困难。但是我们作一些变换，使得 x, y 成为 u, v 的函数。条件是雅可比

行列式不为零。

J =
∂(u, v)

∂(x, y)
=

∣∣∣∣∣ux uy

vx vy

∣∣∣∣∣ ̸= 0 (3.2.26)
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作变换关键是要求出 xu, xv 等与 ux 等量的转换关系。可以直接计算：

xu =

(
∂x

∂u

)
v

=

(
∂u

∂x

)−1

v

=

((
∂u

∂x

)
y

+

(
∂u

∂y

)
x

(
∂y

∂x

)
v

)−1

(3.2.27)

=

((
∂u

∂x

)
y

−
(
∂u

∂y

)
x

(
∂y

∂v

)
x

(
∂v

∂x

)
y

)−1

(3.2.28)

=
1

ux − uyv−1
y vx

=
vy

uxvy − uyvX
(3.2.29)

=
vy
J

(3.2.30)

其他类似。或者直接利用方程组，分别对 x, y 求导

x(u(x, y), v(x, y)) = x (3.2.31a)

y(u(x, y), v(x, y)) = y (3.2.31b)

得

xuux + xvvx = 1 (3.2.32a)

xuuy + xvvy = 0 (3.2.32b)

yuux + yvvx = 0 (3.2.32c)

yuuy + yvvy = 1 (3.2.32d)

解得

xu =
vy
J

xv = −uy
J

yu = −vx
J

yv =
ux
J

(3.2.33)

代回方程，消去 J，得

A1yv +B1xv + C1yu +D1xu = 0 (3.2.34a)

A2yv +B2xv + C2yu +D2xu = 0 (3.2.34b)

此时可以将 u, v 视为自变量，则各系数中不含未知函数 x, y。

3.2.7 拟线性和非线性波的性质

考虑方程

ut + uuX = 0 u(x, 0) = φ(x) (3.2.35)

对应两个常微分方程及初始条件

dx
dt = u

du
dt = 0 x0 = 0 u(0) = φ(x0) (3.2.36)

解第二个方程，得 u = φ(x0)，然后解

dx
dt = φ(x0) ⇒ x = φ(x0)t+ x0 (3.2.37)
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由这方程反解出 x0 = f(x, t)，那么解为 u = φ(f(x, t)).
这个方程有些奇异的性质，来求

∂u

∂x
=

du
dx0

∂x0
∂x

=
φ′(x0)

1 + tφ′(x0)
(3.2.38)

其中

1 = φ′(x0)
∂x0
∂x

t+
∂x0
∂x

⇒ ∂x0
∂x

=
1

1 + φ′t
(3.2.39)

由 式 3.2.38可知，如果 φ′(x0) < 0，那么在某个时间 t 分母将为零。

例如 ϕ(x0) = sinx0，在 x− t 图中，看特征线的分布将会相交。

0.5 1.0 1.5 2.0 2.5 3.0
t

1

2

3

4

x

图 1: 特征线相交

另一方面，由于

u = φ(x0) = φ(x− φ(x0)t) = φ(x− ut) (3.2.40)

这个结果表示这个波以 u 的速度传播。那么，如果此波在初始时是正常的波形状，那么

振幅越大的地方传播速度越快，最终波峰右侧斜率将达到无穷大。

3.3 二阶线性偏微分方程的一般理论

之后要讨论的方程都属于二阶线性 PDE，首先提一些一般性的理论。

3.3.1 分类定理

二阶线性 PDE 的一般形式如下

a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u = 0 (3.3.1)

通过变量替换，所有二元二阶线性 PDE 可以化为椭圆型、双曲型、抛物型中的一
种。可通过判别式 D = a11a22 − a212 判断。

1. D > 0，则方程可化为椭圆型方程，二阶项具有 uxx + uyy 的形式。

2. D < 0，则方程可化为双曲型方程，二阶项具有 uxx − uyy 的形式。
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3. D = 0，则方程可化为抛物型方程，二阶项具有 uxx 的形式。

对于多元的情况，可以通过矩阵的特征值的正负性来判断，也有类似的判别法。此

处略。

对于变系数的情况，在平面上不同的区域，方程可能具有不同的类型。

3.3.2 形容词解释

常见的偏微分方程方程的分类可由其名称看出。最长的名称为：非齐次·波动方程·

第一类·非齐次·单边·齐次·初值问题。对其按照顺序进行逐一解释。

1. 非齐次：用于修饰波动方程。非齐次的波动方程即 utt − c2uxx = f(x, t)，f(x, t) 不

恒为零。同位的还有：齐次、（省略）（省略一般默认表示齐次）。

2. 波动方程：中心属性词，表示这个 PDE 主要具有波动方程的形式。

3. 第一类：修饰边界条件。同位的还有：第二类、第三类、混合等。第一类指的是如
u(0, t) = g(t) 的条件，第二类指的是如 ux(0, t) = g(t) 的条件。混合则一般针对双

边而言，指的是在不同边上有不同类的条件。边界条件具体介绍见 小节 3.3.3。

4. 非齐次：修饰边界条件，表示边界条件中 g(t) 不恒为零。同位的还有：齐次、（省

略）（省略默认表示齐次）。

5. 单边：修饰边界条件。同位的还有双边等。单边指的是考虑半直线时添加的 u(0, t)

等条件，双边指的是考虑一个线段时添加的 u(0, t) 和 u(l, t) 等条件。

6. 齐次：修饰初始条件。对波动方程而言，有两个初始条件。齐次则表示 u(x, 0) 和

ut(x, 0) 均恒为零。否则称为非齐次。同位的还有：非齐次、（省略）（这里省略默

认表示非齐次，因为初始条件一般都是非零的）

7. 初值问题：表示给定了相应的初始条件。

3.3.3 初值条件和边值条件

初值条件和边值条件都是定解条件，但是它们有一定的物理意义。

初值条件 对于某一个时刻 t0，给定解的状态。

例如，对热传导方程 ut − uxx = 0，因为其关于 t 是一阶的，因此需要给一个初值

条件 u(x, t0) = ϕ(x) 才能确定解。相对应地，波动方程 utt − c2uxx = 0 需要给两个初值

条件才能确定解。
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边值条件 偏微分方程一般求解的区域并不是全空间，而在某些边界上受到控制。例如

吉他的弦，两端是固定的，只在两点之间满足弦振动方程。一般而言，大部分边值条件

可分为三类线性的情况：

1. 第一类边界条件 (Dirichlet)
u(∂Ω) = g(∂Ω, t) (3.3.2)

2. 第二类边界条件 (Neumann)，表示表面内外物质交换。

∂u

∂n

∣∣∣∣
∂Ω

= g (3.3.3)

3. 第三类边界条件 (Robin) (
α
∂u

∂n
+ βu

) ∣∣∣∣
∂Ω

= g (3.3.4)

注意，一般谈论偏微分方程时，默认偏微分方程主体控制方程在边界内部成立，而在边

界上是否成立则有待商榷，需要进一步验证。因此一般说“在区域内部满足微分方程，在

边界上满足边界条件”。例如，若边界上函数 g 性质不好，不能求导，则其不能满足微

分方程。

例：对于固定两端的弦振动，有

• 控制方程：utt − uxx = 0 t > t0, x1 < x < x2

• 初值条件：u(x, t0) = ϕ(x) ut(x, t0) = φ(x) x1 < x < x2

• 边值条件：u(x1, t) = g1(t) u(x2, t) = g2(t) t > t0

3.3.4 定解问题的适定性

一个描述物理现象的 PDE，加上适当的定解条件，就称为一个定解问题，可用于描
述一个具体的物理过程。定解问题的适定性有三个方面。

1. 存在性：至少存在一个解满足 PDE 和所有定解条件。

2. 唯一性：至多只有一个解满足 PDE 和所有定解条件。

3. 稳定性：解连续依赖于定解条件，即定解条件有小变化时，解也只能有小的变化。
否则将产生混沌现象。

满足以上三个条件的定解问题才称为是适定的。

例：Hadamard 问题 考虑 Laplace 方程，具有“初值条件”的形式

uxx + uyy = 0 −∞ < x < +∞ y > 0

u(x, 0) = 0

∂u

∂y
(x, 0) = e−

√
n sin(nx)

(3.3.5)
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其解为

u =
1

n
e−

√
n sin(nx) sinh(ny) (3.3.6)

因为当 n→ +∞时，方程式 3.3.5中各方程右端均为零，解为 u = 0。边界条件中 e−
√
n

项较小，且随 n趋向无穷时趋向于 0，因此是小扰动。但是，它的解中含有 sinh(ny)，是
一个趋向于无穷的量。因此，这个方程解不是适定的。更进一步的道理是，Laplace 方程
要想有适定性的解，就不能给初值条件，只能给绕一圈的边界条件。

3.3.5 波方程与热方程的性质对比

具体性质的导出见后相关章节。

性质 波方程 热方程

传播速度 有限 无限

奇点 随特征线传播 立刻消失

适定性 (t > 0) 满足 满足

适定性 (t < 0) 满足 不满足

极值原理 无 有

t→ +∞ 能量守恒，没有衰减 衰减至零

信息 传输 逐渐消散

表 1: 波方程与热方程的性质

3.4 弦振动方程与波动方程

与老师讲义上的顺序不同，后面的顺序将按照方程类型一个一个来。其核心

思想为将 PDE 分为不同的类别，对不同的类别进行单独讨论。较为通用的
Fourier 变换和特殊的格林函数最后单列。

下面研究一维形式的波动方程。方程形式为

utt = c2uxx, x ∈ R, t > 0 (3.4.1)

其中 u 表示弦在时间 t，位置 x 处的振幅。

3.4.1 一维波方程的导出

考虑一根水平固定两端的均质弦在垂直方向上振动，并且没有水平运动。垂直振动

幅度用 u(x) 描述，弦上张力为 T。对于 x1, x2 区间内的一段弦，水平方向上的合力应

为零，垂直方向上的合力则等于质量乘加速度。

T√
1 + u2x

∣∣∣∣x2

x1

= 0
Tux√
1 + u2x

∣∣∣∣x2

x1

=

x2∫
x1

ρuttdx (3.4.2)
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假设波动很小，|ux| ≪ 1，那么
√

1 + u2x ≈ 1，于是水平方向上得到 T = const，垂直方
向上得到

x2∫
x1

(Tux)xdx = ρ

x2∫
x1

uttdx (3.4.3)

于是得到

Tuxx = ρutt utt = c2uxx c =

√
T

ρ
(3.4.4)

3.4.2 波动方程的通解

波动方程式 3.4.1可以像二次因式一样分解，成为

(∂t − c∂x)(∂t + c∂x)u = 0 (3.4.5)

记 (∂t + c∂x)u = v，则 vt − cvx = 0。这是一阶常系数齐次 PDE，参照 小节 3.2.2中的
方法可解得 v = h(x+ ct)。然后解

ut + cux = h(x+ ct) (3.4.6)

这是一阶常系数非齐次 PDE。
由于 u 求导后是 x+ ct 的某个函数，那么 u 本身应该也是某个 x+ ct 的函数。设

u = w(x + ct)，代入得到 w′ = h/2c。经过一次积分后，h 由于是个任意函数，其积分

H 也是个任意函数。同时要加上 x− ct 的任意函数。

或是利用坐标变换，令 ξ = x − ct, η = x + ct，变换得方程为 uξη = 0，于是

u = f(ξ) + g(η)

最后得到

u = f(x+ ct) + g(x− ct) (3.4.7)

其中 f, g 都是任意函数。

3.4.3 齐次波动方程的初值问题

引入 u 及 ut 在 t = 0 时的表现，即初始条件，就得到齐次波动方程的初值问题。此

处考虑的波动还是在整个实轴上，对应的弦也设为无限长。

utt = c2uxx, t > 0 (3.4.8a)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) (3.4.8b)

只需要将通解代入两初始条件，定出函数即可。f(x) + g(x) = ϕ(x)

cf ′(x)− cg′(x) = ψ(x)
(3.4.9)
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对第二个式子积分得到

f(x)− g(x) =
1

c

∫ x

0

ψ(τ)dτ + C (3.4.10)

然后解得 
f(x) =

1

2
ϕ(x) +

1

2c

∫ x

0

ψ(τ)dτ + 1

2
C

g(x) =
1

2
ϕ(x)− 1

2c

∫ x

0

ψ(τ)dτ − 1

2
C

(3.4.11)

代回 u 的表达式，即得到齐次波动方程初值问题式 3.4.8的解

u =
1

2
(ϕ(x+ ct) + ϕ(x− ct)) +

1

2c

∫ x+ct

x−ct

ψ(τ)dτ (3.4.12)

这被称为达朗贝尔公式。然而解题时不需要硬背公式，直接用推导的方式解即可。

例：解方程 utt = c2uxx, u(x, 0) = 2ex, ut(x, 0) = 2c cosx由 u = f(x+ct)+g(x−ct)
得到

f(x) + g(x) = 2ex, cf ′(x)− cg′(x) = 2c cosx (3.4.13)

积分得

f(x)− g(x) = 2 sinx+ 2C (3.4.14)

于是

f(x) = ex + sinx+ C, g(x) = ex − sinx− C (3.4.15)

解为

u = ex+ct + ex−ct + sin (x+ ct)− sin (x− ct) = 2ex cosh ct+ 2 cosx sin ct (3.4.16)

3.4.4 非齐次波动方程的齐次初值问题

如果振动时还有外加力，则波动方程就成为非齐次的。若其最初处于静止状态，就

得到了非齐次波动方程的齐次初值问题。

utt − c2uxx = f(x, t), t > 0 (3.4.17a)

u(x, 0) = ut(x, 0) = 0 (3.4.17b)

非齐次波动方程的齐次初值问题可以通过Duhamel齐次化方法解决。为了解方程式 3.4.17，
首先要解函数 w(x, t; τ)，其满足

wtt − c2wxx = 0, t > τ (3.4.18a)

w(x, t = τ ; τ) = 0, wt(x, t = τ ; τ) = f(x, τ) (3.4.18b)

在此基础上，原方程的解为

u(x, t) =

∫ t

0

w(x, t; τ)dτ (3.4.19)
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如果令 v(x, t; τ) = w(x, t+ τ ; τ)，则

vtt − c2vxx = 0, t > 0 (3.4.20a)

v(x, 0; τ) = 0, vt(x, 0; τ) = f(x, τ) (3.4.20b)

这是齐次波动方程的初值问题，可通过式 3.4.8解决。最后，

u(x, t) =

∫ t

0

v(x, t− τ ; τ)dτ (3.4.21)

3.4.5 非齐次波动方程的非齐次初值问题

如果不仅有外加力，初始条件还不齐次，如

utt − c2uxx = f(x, t), t > 0 (3.4.22a)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) (3.4.22b)

则可以考虑由线性叠加原理，解以下两个方程

vtt − c2vxx = f(x, t), t > 0 (3.4.23a)

v(x, 0) = 0, vt(x, 0) = 0 (3.4.23b)

这是非齐次波动方程齐次初值条件，可用齐次化原理，依照式 3.4.17解。

wtt − c2wxx = 0, t > 0 (3.4.24a)

w(x, 0) = ϕ(x), wt(x, 0) = ψ(x) (3.4.24b)

这是齐次波动方程的初值问题，可参照式 3.4.8解
最后 u = v + w，可验证其满足方程式 3.4.22

3.4.6 波动方程的性质

由达朗贝尔公式式 3.4.12，可知 u(x0, t0) 由 ϕ(x) 在 x0 − ct0, x0 + ct0 两点的值，和

ψ(x) 在区间 (x0 − ct0, x0 + ct0) 上的值决定。换言之，对于 (x0, t0) 处的状态，只受初

始时区间 (x0 − ct0, x0 + ct0) 上弦状态的影响。区间 (x0 − ct0, x0 + ct0) 便称为 (x0, t0)

的依赖区域。而区间和点 (x0, t0) 所围成的三角形区域称为区间的决定区域。

函数的支集是一个区间 [a, b]，在这个区间外函数恒为零。如果初始函数 ϕ(x)和 ψ(x)

有共同的支集区间 [x0, x1]，那么在特征线 x+ ct = x0 和 x− ct = x1 之外的区域，函数

u 将总为零。特征线之内的区域 G，就称为区间 [x0, x1] 的影响区域。如图 2 所示。这
正如同波向两端传播。

接下来讨论能量守恒定律。为保证积分收敛，我们假设在无穷远处 u = ut = 0，这

只要初始条件有支集即可做到。设弦线密度为 ρ，张力为 T，则动能和势能分别定义为

KE(t) =
1

2

∫
R
ρu2tdx PE(t) =

1

2

∫
R
Tu2xdx (3.4.25)
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图 2: 依赖区域与影响区域

此外，波动方程 utt = c2uxx 还满足 c2 = T/ρ，于是 ρutt = Tuxx

可以通过能量积分来证明。在波动方程两端乘 ut 并在 x 轴上积分，左边得到

ρ

∫
R
uttutdx =

1

2
ρ

(∫
R
u2tdx

)
t

(3.4.26)

右边利用分部积分得到

T

∫
R
uxxutdx = T

(
uxut|∞−∞ −

∫
R
uxuxtdx

)
(3.4.27)

由假设得两个无穷代进去都是零，于是

T

∫
R
uxxutdx = −1

2
T

(∫
R
u2xdx

)
t

(3.4.28)

由左右相等可得

(KE + PE)t = 0 (3.4.29)

即动能加势能即总能量不随时间变化，于是它恒等于初始能量。

KE(t) + PE(t) ≡ KE(0) + PE(0) (3.4.30)

3.4.7 波动方程第一类单边初值问题

对于半直线上的波动方程，添加边界条件即可求解。齐次波动方程第一类单边初值

问题，具有形式

utt − c2uxx = 0, x > 0, t > 0 (3.4.31a)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x > 0 (3.4.31b)

u(0, t) = 0, t > 0 (3.4.31c)

其中 u(0, t) = 0 称为第一类边界条件，或 Dirichlet 边界条件。
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Compatibility condition 相容性条件: ϕ(0) = ψ(0) = 0

要解这个方程，只需要将初始条件两函数通过奇延拓到整个实轴上，求解即可。即

设

ϕodd =


ϕ(x), x > 0

− ϕ(−x), x < 0

0, x = 0

(3.4.32)

ψodd 同理，那么方程将化为齐次波动方程初值问题

utt − c2uxx = 0, t > 0 (3.4.33a)

u(x, 0) = ϕodd(x), ut(x, 0) = ψodd(x) (3.4.33b)

参照式 3.4.8求解，将得到的解限制在 x > 0 上即可。

这一解法的理论关键在于如果两初始条件均为奇函数，那么解也为奇函数。这

可以通过解的存在唯一性证得。同理，如果初始条件为偶函数，那么解也为

偶函数。

理论上分析，奇延拓后的解，用达朗贝尔公式可得

ũ(x, t) =
1

2
[ϕodd(x− ct) + ϕodd(x+ ct)] +

1

2c

x+ct∫
x−ct

ψodd(s)ds (3.4.34)

换为原解，得

u(x, t) =



1

2
[ϕ(x+ ct) + ϕ(x− ct)] +

1

2c

x+ct∫
x−ct

ψ(s)ds x ≥ ct

1

2
[ϕ(ct+ x)− ϕ(ct− x)] +

1

2c

ct+x∫
ct−x

ψ(s)ds x < ct

(3.4.35)

其中积分限的确定方法如下。原本 x = t 线上方某一点，由 x− ct(< 0) 到 x+ ct 一段

线上的积分决定，但是 x− ct 到 ct− x 一段由于奇函数的性质，积分为零。因此积分只

剩下 ct− x 到 ct+ x 一段。

但是在实际题目时，应不需要硬套式 3.4.35，而是写出奇延拓后的初始条件表达式，
解方程时自动会适应？

3.4.8 波动方程第一类非齐次单边初值问题

如果边界条件是非齐次的，即方程具有形式

utt − c2uxx = 0, x > 0, t > 0 (3.4.36a)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x > 0 (3.4.36b)

u(0, t) = g(t), t > 0 (3.4.36c)
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我们可以将其平移，使得边界条件成为齐次的。即设 v(x, t) = u(x, t)− g(t)，则 v 满足

方程

vtt − c2vxx = −g′′(t), x > 0, t > 0 (3.4.37a)

v(x, 0) = ϕ(x)− g(0), ut(x, 0) = ψ(x)− g(0), x > 0 (3.4.37b)

v(0, t) = 0, t > 0 (3.4.37c)

这是非齐次波动方程的第一类单边非齐次初值问题，作奇延拓后可参照式 3.4.22求解。

3.4.9 波动方程第二类单边初值问题

对于波动方程第二类单边初值问题，可用偶延拓法求解。方程具有形式

utt − c2uxx = 0, x > 0, t > 0 (3.4.38a)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x > 0 (3.4.38b)

ux(0, t) = 0, t > 0 (3.4.38c)

此时作偶延拓。

ϕeven(x) =

ϕ(x), x ≥ 0

ϕ(−x), x < 0
(3.4.39)

ψeven(x) 同理。于是方程化为

utt − c2uxx = 0, t > 0 (3.4.40a)

u(x, 0) = ϕeven(x), ut(x, 0) = ψeven(x) (3.4.40b)

这是波动方程初值问题。可参照式 3.4.8求解。最后将解限制在 x > 0 上即可。解法的关

键在于偶函数的导数为奇函数，因此保证 ux 为奇函数，在零点处取值一直为零。另外，

如果边界条件是非齐次的，也可进行类似式 3.4.36的平移操作。

3.4.10 波动方程第一类双边初值问题

在研究线段 [0, l]上的波动方程时，需要添加两个边界条件。齐次的边界条件形式为

utt − c2uxx = 0, 0 < x < l, t > 0 (3.4.41a)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x > 0 (3.4.41b)

u(0, t) = u(l, t) = 0, t > 0 (3.4.41c)

用类似的延拓想法，最终得到具有以 2l 为周期形式的解。

需要通过分离变量法求解。即假设方程具有形如 u = X(x)T (t) 形式的乘积解，则

XT ′′ = c2X ′′T, ⇒ T ′′

c2T
=
X ′′

X
(3.4.42)
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一个关于 t的函数等于一个关于 x的函数，那他们只能都等于一个常数。设常数为 −λ2，

则

T ′′ + c2λ2T = 0, X ′′ + λ2X = 0 (3.4.43)

再由边界条件，u(0, t) = X(0)T (t) = 0，u(l, t) = X(l)T (t) = 0，为了得到非平凡解，只

能有 X(0) = X(l) = 0。结合 X 的 ode，得到所谓的特征值问题

X ′′ + λ2X = 0 (3.4.44a)

X(0) = X(l) = 0 (3.4.44b)

经过讨论可知只有 λ2 > 0 时才给出了非平凡解。此时 X = C1 sinλx+C2 cosλx，那么
由 X(0) = 0 得到 C2 = 0。再由 X(l) = 0，得

sinλl = 0, ⇒ λ =
nπ

l
, n = 1, 2, . . . (3.4.45)

对于每个 n 都有一个三角函数满足特征值问题，称为特征函数。

Xn(x) = An sin nπx
l

(3.4.46)

得到 λ 的表达式后，也可类似计算 T (t)（这里的 Cn 已经与前面 C1, C2 无关系。）

Tn(t) = Cn sin nπc
l
t+Dn cos nπc

l
t (3.4.47)

将所有的对应的 Xn 和 Tn 组合线性叠加即得到方程的解

u =
∞∑

n=1

An sin nπx
l

(
Cn sin nπc

l
t+Dn cos nπc

l
t
)

(3.4.48)

其中 An, Cn, Dn 为待定系数。不妨设 An = 1。然后使其满足初值条件。

u(x, 0) =
∞∑

n=1

Dn sin nπx
l

= ϕ(x), ut(x, 0) =
∞∑

n=1

Cn
nπc

l
sin nπx

l
(3.4.49)

由 Fourier 级数展开，可知

Dn =
2

l

∫ l

0

ϕ(x) sin nπx
l

dx, Cn =
l

nπc

2

l

∫ l

0

ψ(x) sin nπx
l

dx (3.4.50)

这两式是需要背下来的。作为验证，可以将 ϕ(x) 的表达式代入检验 Dn = Dn。

此时系数 Cn, Dn 均已确定，那么 u 也就完全确定了。

3.4.11 波动方程第二类双边初值问题

如果边界条件是第二类的，即具有

utt − c2uxx = 0, 0 < x < l, t > 0 (3.4.51a)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x > 0 (3.4.51b)

ux(0, t) = ux(l, t) = 0, t > 0 (3.4.51c)
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的形式，则操作也是类似。设 u = X(x)T (t)，首先得到特征值问题

X ′′ + λ2X = 0 (3.4.52a)

X ′(0) = X ′(l) = 0 (3.4.52b)

此时当 λ = 0时，还有常数解 X0 = B0 ̸= 0。同时 T 满足方程 T ′′ = 0，即 T0 = C0t+D0

其余时候只有 λ2 > 0 时才有非平凡解。同样得到 λ = nπ/l，但 X 变为

Xn = Bn cos nπ
l
x, n = 1, 2, . . . (3.4.53)

之后类似求 T，最后得到的函数为

u = B0D0 +B0C0t+
∞∑

n=1

Bn cos nπx
l

(
Cn sin nπc

l
t+Dn cos nπc

l
t
)

(3.4.54)

令 Bn = 1，计算

u(x, 0) = D0 +
∞∑

n=1

Dn cos nπx
l

=
∞∑

n=0

Dn cos nπx
l

(3.4.55)

则

Dn =
2

l

∫ l

0

ϕ(x) cos nπx
l

dx, n = 0, 1, . . . (3.4.56)

而

ut(x, 0) = C0 +
∞∑

n=1

l

nπx
Cn cos nπx

l
(3.4.57)

于是分别讨论。

C0 =
2

l

∫ l

0

ψ(x)dx, Cn =
l

nπc

2

l

∫ l

0

ψ(x) cos nπx
l

dx (3.4.58)

这样的方法对于混合边界条件，即形如

u(0, t) = ux(l, t) = 0 (3.4.59)

的条件也适用。对于添加了阻尼项的弦振动方程也适用。

3.5 高维波方程

3.5.1 方程推导

n = 2：鼓面振动方程 假设没有水平移动，并设 u(x, y, t) 表示鼓面垂直位移，和一维

情况类似，表面张力 T = const > 0。∀D ⊂ R2，根据牛顿定律 F = ma：∫
∂D

T
∂u

∂n
dS =

∫
D

ρuttdxdy (3.5.1)
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利用格林公式，左端化为 ∫
∂D

T
∂u

∂n
dS =

∫
D

div(T∇u)dxdy (3.5.2)

推出 ∫
D

[ρuxx − div(T∇u)] dxdy = 0 (3.5.3)

得到方程为

ρuxx = T∆u 或 utt − c2∆u = 0, c2 =
T

ρ
(3.5.4)

n = 3 的情况 类似有 utt − c2(uxx + uyy + uzz) = 0。

三维波：光、声、雷达等。

3.5.2 三维波方程初值问题

三维波方程的初值问题如下：

utt − c2(uxx + uyy + uzz) = 0 (3.5.5)

u(x, y, z, t = 0) = ϕ(x, y, z) (3.5.6)

ut(x, y, z, t = 0) = ψ(x, y, z) (3.5.7)

令 r =
√
x2 + y2 + z2，我们假设如下球对称性质

ϕ(x, y, z) = ϕ(r) ψ(x, y, z) = ψ(r) u(x, y, z, t) = u(r, t) (3.5.8)

求导

ux = urrx = ur
x

r
uxx = urr

x2

r2
+ ur

1

r
− ur

x2

r3
(3.5.9)

同理，

uyy = urr
y2

r2
+ ur

1

r
− ur

y2

r3
uzz = urr

z2

r2
+ ur

1

r
− ur

z2

r3
(3.5.10)

此时原方程化为

utt − c2
(
urr +

2

r
ur

)
= 0 (3.5.11)

再令 v = ru，考虑到

vrr = (ru)rr = rurr + 2ur vtt = rutt (3.5.12)

方程最终化为

vtt − c2vrr = 0 r > 0 (3.5.13)

这是一维波方程。
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3.5.3 高维球面波与 EPD 引理

用球面平均法处理。球面平均为

Mh(x1, x2, x3, r) =
1

4πr2

∫∫
Sr

hdS =

∫
Sr

hdS (3.5.14)

n 维波方程具有形式 (n ≥ 2, n ∈ Z)

utt − c2∆u = 0 ∆ =
n∑

i=1

∂2

∂x2i
(3.5.15)

固定 x ∈ Rn，对 ∀r > 0

U(x; r, t) =

∫
∂B(x,r)

u(y, t)dSy (3.5.16)

Φ(x; r) =

∫
∂B(x,r)

ϕ(y)dSy (3.5.17)

Ψ(x; r) =

∫
∂B(x,r)

ψ(y)dSy (3.5.18)

Euler-Poisson-Darboux 引理 固定 x ∈ Rn，对 ∀r > 0，如果 u ∈ C2 是波方程

utt − c2∆u = 0 (3.5.19a)

u(x, 0) = ϕ(x) (3.5.19b)

ut(x, 0) = ψ(x) (3.5.19c)

那么 U ∈ C2(R+ × [0,+∞)]) 是方程

Utt − c2
(
Urr +

n− 1

r
Ur

)
= 0 (3.5.20a)

U(x; r, t = 0) = Φ(x; r) (3.5.20b)

U(x; r, t = 0) = Ψ(x; r) (3.5.20c)

证明： 为了求 Ur，把球心先平移到原点，半径缩放为 1。

U(x; r, t) =

∫
∂B(0,1)

u(x+ rz, t)dSz (3.5.21)

Ur =

∫
∂B(0,1)

z · ∇u(x+ rz, t)dSz (3.5.22a)

=

∫
∂B(0,r)

z

r
· ∇u(x+ z)dSz (3.5.22b)

=

∫
∂B(x,r)

y − x

r
∇u(y, t)dSy (3.5.22c)
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注意法线方向，上式可写为

=

∫
∂B(x,r)

∇u(y, t) · n(y)dSy (3.5.23)

再用格林公式

=
r

n

∫
B(x,r)

∆udy (3.5.24)

其中格林公式第一项的来源为

|B(x, r)| = r

n
|∂B(x, r)| (3.5.25)

继续求导，有

Urr =
1

n

∫
B(x,r)

∆udy + r

n

(∫
B(x,r)

∆udy
)

r

(3.5.26)

为了计算后一项，我们把要对 r 求偏导数的项还原为求平均之前的形式，并且把体积分

写为球面积分和按半径 r 积分的叠加。∫
B(x,r)

∆udy =
1

|B(x, r)|

r∫
0

∫
∂B(x,ξ)

∆udSydξ (3.5.27)

其中令 |B(x, r)| = rnωn，

= − n2

rn+1ωn

∫
B(x,r)

∆udy + n

rnωn

∫
∂B(x,r)

∆udSy (3.5.28)

= −n
r

∫
B(x,r)

∆udy + n

r

∫
B(x,r)

∆udSy (3.5.29)

于是

Urr =

∫
∂B(x,r)

∆udSy +

(
1

n
− 1

)∫
B(x,r)

∆udy (3.5.30)

代入 式 3.5.24，可知
Urr +

n− 1

r
Ur =

∫
∂B(x,r)

∆udSy (3.5.31)

最终

Utt − c2
(
Urr +

n− 1

r
Ur

)
= 0 (3.5.32)

证毕。

3.5.4 用 EPD 引理解三维波方程

下面来解方程，令 Ũ(r, t) = rU(x; r, t)，Φ̃ = rΦ，Ψ̃ = rΨ，可以发现只有 n = 3 时

方程化为 
Ũtt − c2Ũrr = 0 r > 0

Ũ

∣∣∣∣
t=0

= Φ̃ Ũt

∣∣∣∣
t=0

= Ψ̃

Ũ(r = 0, t) = 0

(3.5.33)
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方程的解为（注：下面过程略去 Φ(x; r) 中的 x，简记为 Φ(r)，Ψ 同理）

Ũ(r, t) =


1
2
[Φ̃(r + ct) + Φ(r − ct)] + 1

2c

r+ct∫
r−ct

Ψ̃(ξ)dξ r > ct

1
2
[Φ̃(ct+ r) + Φ(ct− r)] + 1

2c

ct+r∫
ct−r

Ψ̃(ξ)dξ 0 < r ≤ ct

(3.5.34)

那么

u(x, t) = lim
r→0+

U(x; r, t) = lim
r→0+

Ũ

r
(3.5.35)

= lim
r→0+

 Φ̃(ct+ r)− Φ̃(ct− r)

2r
+

1

2cr

ct+r∫
ct−r

Ψ̃(ξ)dξ

 (3.5.36)

= Φ̃′(ct) +
1

c
Ψ̃(ct) =

∂

∂(ct)
(ctΦ(ct)) + tΨ(ct) (3.5.37)

=

(
t

∫
∂B(x,ct)

ϕ(y)dSy

)
t

+ t

∫
∂B(x,ct)

ψ(y)dSy (3.5.38)

=

∫
∂B(x,ct)

[ϕ(y) +∇ϕ(y) · (y − x) + tψ(y)]dSy (?) (3.5.39)

惠更斯原理 Huygen’s principle，只对大于等于 3 的奇数维成立。注：因为积分是对球面

进行的，也就是说球面上的才有贡献。

3.5.5 用降维法解二维波方程

利用降维法，Dimension Reduction (Hardamard)。utt − c2(ux1x1
+ ux2x2

) = 0

u(x1, x2, t = 0) = ϕ(x1, x2) ut(x1, x2, t = 0) = ψ(x1, x2)
(3.5.40)

定义 x̄ = (x1, x2, 0) ∈ R3 x = (x1, x2) ∈ R2，̄u(x1, x2, x3, t) = u(x1, x2, t)，̄ϕ(x1, x2, x3) =

ϕ(x1, x2)，ψ̄(x1, x2, x3) = ψ(x1, x2)。于是有方程ūtt − c2(ūx1x1
+ ūx2x2

+ ūx3x3
) = 0

ū(x1, x2, x3, t = 0) = ϕ̄ ū1(x1, x2, x3, t = 0) = ψ̄
(3.5.41)

套用波方程的解，

u(x1, x2, t) = ū(x1, x2, x3, t) (3.5.42)

=
∂

∂t

(
t

∫
∂B(x̄,ct)

ϕ̄(y1, y2, y3)dSy

)
+

∫
∂B(x̄,ct)

ψ̄(y1, y2, y3)dSy (3.5.43)
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∫
∂B(x̄,ct)

ϕ̄(y1, y2, y3)dSy =
1

|∂B(x̄, ct)|

∫
|y−x|=ct

ϕ(y1, y2)dSy (3.5.44)

=
2

|∂B(x̄, ct)|

∫
B(x,ct)

ϕ(y1, y2)

√
1 +

∣∣∇(y1,y2)y3(y1, y2)
∣∣2dy1dy2

(3.5.45)

=
2

4π(ct)2

∫
B(x,ct)

ϕ(y)
ct√

(ct)2 − |y − x|2
dy (3.5.46)

=
ct

2

∫
B(x,ct)

ϕ(y)√
(ct)2 − |y − x|2

dy (3.5.47)

相当于从三维的球面投影到二维的圆面，系数的 2 是因为上方和下方均投影到圆上。其
中可以由 y3 =

√
(ct)2 − (y1 − x1)2 − (y2 − x2)2 计算

1 + |∇y3|2 =

∣∣∣∣∣∣ 1

2

√
(ct2)− |y − x|2

(−2)(y − x)

∣∣∣∣∣∣
2

+ 1 =
|y − x|2

(ct2)− |y − x|2
+ 1 (3.5.48)

结论：

u(x1, x2, t) =
∂

∂t

ct2
2

∫
B(x,ct)

ϕ(y)√
(ct)2 − |y − x|2

dy

+
ct2

2

∫
B(x,ct)

ψ(y)√
(ct)2 − |y − x|2

dy

(3.5.49)

3.5.6 二维波方程的性质

由点 (x0, y0, t0) 作斜率为 c 的圆锥，与 t = 0 平面交于一圆，此圆即为该点的依赖

区域。而此圆锥为该圆的决定区域。

初始平面的一个区域的影响区域则为倒置的圆锥。

三维波是在边界上积分，所以只有不断扩大的初始条件的球面上的振幅才对某时刻

某点的振幅有影响，而内部没有影响。但是二维波不同。对于在时间上前进的某一点，下

一时刻的依赖区域包含上一时刻的依赖区域，因此之前所有的扰动都会影响到之后任意

时刻的振幅，例如过去一段时间内的声音会在之后持续叠加。二维波没有惠更斯原理，二

维世界也是没有声音的世界。注：因为在投影时从三维球面投影到了整个二维圆面，因

此整个圆面对积分都有贡献。

3.6 扩散方程和热传导方程

3.6.1 扩散方程的导出

菲克定律（Fick’s law)：扩散速度与浓度梯度成正比。
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令 u(x, t) 表征浓度，在一维情况中为单位长度上的质量。于是在 [x0, x1] 上总质量

为

M(t) =

x1∫
x0

u(x, t)dx (3.6.1)

质量变化率

dM
dt =

x1∫
x0

ut(x, t)dx (3.6.2)

由于质量守恒，质量变化率应为流进 [x0, x1]与流出的质量之差，再根据菲克定律，得到

dM
dt = −kux(x, t)− (−kux)(x1, t) =

x1∫
x0

(kux)xdx (3.6.3)

由于 x0, x1 是任意的，于是得到一维形式的扩散方程（类似地，热传导方程），具有形式

ut = kuxx, t > 0 (3.6.4)

在热传导方程中 u 还能表示温度。

对多维的情况，则类似有

ut = k∆u (3.6.5)

如果有源或汇，则成为非齐次的：

ut − kuxx = f(x, t) (3.6.6)

扩散方程似乎没有通解，直接研究其初值问题。

3.6.2 扩散方程解的性质与初值问题

齐次扩散方程的初值问题具有形式

ut = kuxx, t > 0 (3.6.7a)

u(x, 0) = ϕ(x) (3.6.7b)

方程的解为

u =

∫
R
G(x− y, t)ϕ(y)dy (3.6.8)

其中 G 称为热核或基本解。

G(x, t) =
1√
4πkt

e−x2/4kt, t > 0 (3.6.9)

具有性质 ∫
R
G(x, t)dx = 1 (3.6.10)
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如果作积分变量替换 z = (x− y)/
√
4kt，则积分式可表为

u =
1√
π

∫
R

e−z2

ϕ(x− z
√
4kt)dz (3.6.11)

此式称为 Poisson 公式。有时这个公式更好记，但有时上面的热核积分式更好用。这种
积分式也称为卷积。

下面给出求解的过程。首先考察方程 式 3.6.7的性质。

相似 如果 u(t, x) 是热方程 式 3.6.7的解，那么 u(ϵt,
√
ϵx) 也是此方程的解。

平移 如果 u(t, x) 是方程的解，那么 u(t, x− y) 也是方程的解。

导数 如果 u(t, x) 是方程的解，那么 ux, ut, uxx 也是方程的解。

线性组合 显然；

积分 如果 S(t, x) 是方程的解，那么∫
R
S(t, x− y)g(y)dy (3.6.12)

只要有意义，也是方程的解。

接下去找一些特解。考虑初值为 Heavyside 函数的情况

Q(x, t = 0) =

1 x > 0

0, x < 0
(3.6.13)

设自相似解

Q(x, t) = g(ξ) ξ =
x√
4kt

(3.6.14)

其中 ξ 的形式借鉴了相似变换不变的性质。继续计算

Qt = g′(ξ)ξt = g′(ξ)(−1

2

x√
4kt

· 1
t
) (3.6.15a)

Qx = g′(ξ)ξx = g′(ξ)
1√
4kt

(3.6.15b)

Qxx = g′′(ξ)
1

4kt
(3.6.15c)

原方程化为

Qt − kQxx = 0 (3.6.16a)

⇒ − 1

2t

x√
4kt

g′(ξ)− k
1

4kt
g′′(ξ) (3.6.16b)

⇒ ξg′(ξ) +
1

2
g′′(ξ) = 0 (3.6.16c)
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令 h(ξ) = g′(ξ)，得到 ξh+ 1
2
h′(ξ)，解常微分方程得

h = ce−ξ2 ∀c (3.6.17)

积分一次，得到

g(ξ) = c

ξ∫
0

e−s2ds+ c1 (3.6.18)

确定一下常数。当 t→ 0+ 时

ξ →

+∞ x > 0

−∞ x < 0
(3.6.19)

结合 Heavyside 初始条件，有

c

+∞∫
0

e−s2ds+ c1 = 1 ⇒ c

√
π

2
+ c1 = 1 (3.6.20a)

c

−∞∫
0

e−s2ds+ c1 = 0 ⇒ −c
√
π

2
+ c1 = 0 (3.6.20b)

解得

c1 =
1

2
c2 =

1√
π

(3.6.21)

于是

g(ξ) =
1√
π

ξ∫
0

e−s2ds+ 1

2
Q(t, x) =

1√
π

x√
4kt∫

0

e−s2ds+ 1

2
(3.6.22)

那么 Q(t, x)就是柯西问题在 Heavyside函数为初始条件下的解。同时 S(t, x) = Qx(t, x)

也是一个解。

我们断言对于任意的初始条件 ϕ(x)，

u(x, t) =

∫
R
S(t, x− y)ϕ(y)dy (3.6.23)

是原方程的解。下面进行证明。由积分性质已经知其为解，只需说明它在 t → 0+ 是趋

向于 ϕ(x)。

u(x, t) =

∫
R
S(t, x− y)ϕ(y)dy =

∫
R
Qx(t, x− y)ϕ(y)dy (3.6.24a)

= −
∫
R
Qy(t, x− y)ϕ(y)dy (3.6.24b)

= −Q(t, x− y)ϕ(y)

∣∣∣∣+∞

−∞
+

∫
R
Q(t, x− y)ϕ′(y)dy (3.6.24c)

=

∫
R
Q(t, x− y)ϕ′(y)dy (3.6.24d)
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lim
t→0+

u(x, t) =

∫
R
Q(t = 0, x− y)ϕ′(y)dy (3.6.24e)

=

x∫
−∞

ϕ′(y)dy = ϕ(x)− ϕ(−∞) = ϕ(x) (3.6.24f)

其中 Q(t = 0, x− y) 使用了 式 3.6.13的性质

3.6.3 指数平方积分和误差函数

在求解热方程时经常会遇到指数平方函数 e−x2

的定积分。主要通过配方法和误差

函数表示法来解决。

例：解热方程式 3.6.7，其中 ϕ(x) = e3x

直接采用 Poisson 公式，令 z = (x− y)/
√
4kt，计算积分

I =

∫
R

e−z2e3x−3z
√
4ktdz = e3x

∫
R

e−(z2+3
√
4ktz)dz (3.6.25)

其中配方可得

z2 + 3
√
4ktz = (z + 3

√
kt)2 − 9kt (3.6.26)

于是

I = e3x+9kt

∫
R

e−(z+3
√
kt)2dz (3.6.27)

已知 ∫
R

e−z2dz =
√
π (3.6.28)

由于在整个轴上积分，变量的平移并不改变值，因此

I =
√
πe3x+9kt (3.6.29)

而原方程的解

u =
1√
π
I = e3x+9kt (3.6.30)

如果系数比较复杂，直接配方比较头大，可以用待定系数法，将指数配成 −A(z −
B)2 + C 的模式，则有 ∫

R
e−A(z−B)2+C =

eC√
A

(3.6.31)

所以关键就是要求出 A 与 C。

若积分不是整个实轴或半个实轴，则积分无法得出具体值，只能用误差函数表示。定

义为

erf(x) =
2√
π

∫ x

0

e−y2dy (3.6.32)

例：解方程式 3.6.7，其中 ϕ(x) = 1, x > 0; ϕ(x) = 3, x < 0
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仍然用 Poisson 公式，设 z = (x− y)/
√
4kt，则积分变为两段。

I =

∫
R

e−z2

ϕ(x−
√
4ktz)dz =

∫ x/
√
4kt

−∞
e−z2dz +

∫ +∞

x/
√
4kt

3e−z2dz (3.6.33)

为了化为误差函数，需要将积分上下限作整理。

I =

(∫ 0

−∞
+

∫ x/
√
4kt

0

+3

∫ ∞

0

−3

∫ x/
√
4kt

0

)
e−z2dz (3.6.34)

并结合半直线上积分为
√
π/2，得到

I = 2
√
π −

√
π

2√
π

∫ x/
√
4kt

0

e−z2dz = 2
√
π −

√
πerf(x/

√
4kt) (3.6.35)

方程的解为

u =
I√
π
= 2− erf(x/

√
4kt) (3.6.36)

3.6.4 非齐次热方程的齐次初值问题

问题具有形式

ut − kuxx = f(x, t), t > 0 (3.6.37a)

u(x, 0) = 0 (3.6.37b)

类似波动方程的情况，利用 Duhamel 齐次化方法，先解

wt − kwxx = 0, t > 0 (3.6.38a)

w(x, 0; τ) = f(x, τ) (3.6.38b)

然后积分得原方程的解

u =

∫ t

0

w(x, t− τ ; τ)dτ (3.6.39)

3.6.5 各种热方程

类似波动方程，

• 非齐次热方程初值问题，用线性叠加法解；

• 热方程第一类第二类单边初值问题，用奇延拓偶延拓法解；

• 热方程第一类第二类非齐次单边初值问题，用平移法解；

• 热方程第一类第二类双边或混合初值问题，用分离变量法解。
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3.6.6 扩散方程的极值原理与解的适定性

极值原理 扩散方程具有极值原理。如果 u(x, t) 在矩形 0 ≤ x ≤ l, 0 ≤ t ≤ T 上连续，

在其内部满足扩散方程 ut = kuxx，则其在除上边的三条边 x = 0, x = l, t = 0 上取到最

大值和最小值。（强极值原理：最大值只能在边上取到，内部永远小于最大值）。除非 u

为常数。

证明：令

M = max{u(x, t = 0), u(x = 0, t), u(x = l, t)} (3.6.40)

我们目的是证明

u(x, t) ≤M ∀x ∈ [0, l] ∀t ∈ [0, T ] (3.6.41)

构造函数 ∀ε > 0 v(x, t) = u(x, t) + εx2，如果能证明

v(x, t) ≤M + εl2 ∀(x, t) ∈ [0, l]× [0, T ] (3.6.42)

那么

u(x, t) ≤M + ε(l2 − x2) ∀(x, t) ∈ [0, l]× [0, T ] (3.6.43)

当 ε→ 0+ 时，即得到结论。而由于

vt − kvxx = −2kε < 0 (3.6.44)

于是如果 v 在某个内部点 (x0, t0) 达到最大值，那么由极大值点的性质

vt|(x0,t0) = 0 vxx|(x0,t0) ≤ 0 (3.6.45)

那么在这一点有

(vt − kvxx)|x0,t0 ≥ 0 (3.6.46)

矛盾！因此内部没有极大值。下面看 t = T 的边界，如果 v 在这个边界上有最大值，那

么

vt|(x0,T ) = lim
δ→0

v(x0, T )− v(x0, T − δ)

δ
≥ 0 (3.6.47)

vx|(x0,T ) = 0 vxx|(x0,T ) ≤ 0 (3.6.48)

又一次推出了

(vt − kvxx)|(x0,t) ≥ 0 (3.6.49)

矛盾！因此 v 的最大值只能在底部或侧边取到。验证边界：

t = 0 v(x, t = 0) ≤M + εl2 (3.6.50)

x = 0 v(x = 0, t) ≤M (3.6.51)

x = l v(x = l, t) ≤M + εl2 (3.6.52)

证明完毕。

极值原理根据其物理意义也容易理解。由于浓度或温度是向外扩散或传导的，那么

浓度或温度最高最低的情况只会出现在“有人为干预的”杆的两端和初始时刻。随着时

间进行，内部的温度和浓度将逐渐被“平均”。
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解的唯一性 极值原理将方程的解与初值条件、边值条件联系了起来。由此可证明解的

唯一性。假设两解 u1�u2 满足非齐次热方程非齐次双边第一类初值问题

ut − kuxx = f(x, t), 0 < x < l, t > 0 (3.6.53a)

u(x, 0) = ϕ(x), 0 ≤ x ≤ l (3.6.53b)

u(0, t) = g(t), u(l, t) = h(t) , t > 0 (3.6.53c)

则其差函数 v = u1 − u2 满足齐次热方程齐次双边第一类齐次初值问题。这表明在三条

边上 v 都恒为零，又 v 的最大小值只能在边上取到，则 v 恒为零，从而证得解的唯一性。

或者用能量法证明。仍然考虑差函数 v = u1 − u2，满足方程

vt − kvxx = 0 (3.6.54)

变形得 (
v2

2

)
t

− (kvxv)x + kv2x = 0 (3.6.55)

在 (0, l) 上对 x 作一次积分，其中因为 v 在两边界上为零，中间项消失。

d
dt

l∫
0

v2

2
(x, t)dx+

l∫
0

kv2xdx = 0 (3.6.56)

再在 (0, t) 上作一次积分，得到

l∫
0

v2

2
(x, t)dx+

t∫
0

l∫
0

kv2xdxdt = 0 (3.6.57)

显然 v ≡ 0。

对于非齐次热方程初值问题的唯一性，也可类似证得。此时需要假设解 u 在整条直

线上有界，|u| ≤ B，考虑 w = u1 − u2，取矩形区域 |x− x0| ≤ L, 0 ≤ t ≤ t0，作函数

v = w ± 4B

L2

(
(x− x0)

2

2
+ kt

)
(3.6.58)

对 v 应用极值原理，可得 |w| ≤ 4Bkt0/L
2。令 L 趋向无穷可得 w 趋向 0。

解的稳定性 对于方程

ut − kuxx = 0 (3.6.59a)

u(x, t = 0) = ϕ1(x) (3.6.59b)

u(x = 0, t) = u(x = l, t) = 0 (3.6.59c)

其解设为 u1。将初始条件换为 ϕ2，对应的解设为 u2，考虑其差值 v = u1 − u2，则 v 满

足初始条件 v(x, t = 0) = ϕ1(x)− ϕ2(x)。由极值原理，可得

|v(t, x)| ≤ max
[0,l]

|ϕ1(x)− ϕ2(x)| (3.6.60)
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也就是函数的大小被初值条件改变的大小控制。而且稳定性是 L∞ 的，例如

l∫
0

v2(x, t)dx ≤
l∫

0

|ϕ1(x)− ϕ2(x)|2 (3.6.61)

3.7 位势方程和 Laplace 方程

非齐次位势方程（二维）具有形式

uxx + uyy = f(x, y) (3.7.1)

当 f ≡ 0 时，成为齐次位势方程。

位势方程的定解条件有一些变化。此时没有初值条件。第一类边值条件变为

u(x, y) = ϕ(x, y), (x, y) ∈ ∂D (3.7.2)

其中 D 为所考虑的区域。

第二类边值条件变为
∂u

∂n
= ϕ(x, y), (x, y) ∈ ∂D (3.7.3)

第三类边值条件为
∂u

∂n
+ αu = ϕ(x, y), (x, y) ∈ ∂D (3.7.4)

在矩形区域上，位势方程也可通过分离变量法解。在圆形区域上，它有一些不同。

3.7.1 圆上的 Laplace 初值问题

方程具有形式

uxx + uyy = 0, x2 + y2 < a2 (3.7.5a)

u = f(x, y), x2 + y2 = a2 (3.7.5b)

需要作极坐标变换。变换后方程为

urr +
1

r
ur +

1

r2
uθθ = 0, r < a (3.7.6a)

u = f(r cos θ, r sin θ), r = a (3.7.6b)

在边界上 r = a，条件可替换为 u = g(θ)

此时在极坐标下，圆区域变为矩形区域 0 ≤ r ≤ a, θ ∈ R
通过分离变量法，设 u = R(r)Θ(θ)，得到两个 ode。

Θ′′ + λΘ = 0 r2R′′ + rR′ − λR = 0 (3.7.7)

需要注意的是换元时有周期边界条件

Θ(θ + 2π) = Θ(θ) (3.7.8)

还需要补充有界条件 |R(0)| < +∞，才能顺利解出这个方程
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3.8 Fourier 变换

3.8.1 变换和逆变换的定义

连续函数如果在任意有界区间逐段光滑且在整个实轴上绝对可积，则存在 Fourier
变换。

Fu(x) = û(ξ) =

∫
R
u(x)e−ixξdx (3.8.1)

其逆变换为

F−1û(ξ) = u(x) =
1

2π

∫
R
û(ξ)eixξdξ (3.8.2)

3.8.2 变换的性质

线性性质：

F(c1u1 + c2u2) = c1Fu1 + c2Fu2 (3.8.3)

微分性质：

Fu′ = iξFu (3.8.4)

卷积性质：定义卷积

(f ∗ g)(x) =
∫
R
f(y)g(x− y)dy =

∫
R
f(x− y)g(y)dy (3.8.5)

则

F(f ∗ g) = F(f)F(g) (3.8.6)

F−1(f̂ ĝ) = (F−1f̂) ∗ (F−1ĝ) (3.8.7)

关于傅里叶变换的应用，可见另一篇。|https://hfdxmy.cn/math/mathphysic/kaoshi/|

3.9 广义函数和格林函数

3.9.1 广义函数

广义函数是以检验函数的集合为定义域，实数域为值域的函数。

检验函数 ϕ(x) 是 R 上的一个无穷次连续可微的函数，且只在一个有界区间上不为
零，即具有紧的支集。故当 |x| 很大时，ϕ(x) ≡ 0。所有检验函数的全体记为 D(R)，即
为广义函数的定义域。

记

(f, g) =

∫ ∞

−∞
f(x)g(x)dx (3.9.1)

若泛函 F : D(R) → R 可表为

F (ϕ) = (f, ϕ) (3.9.2)

其中 f 为某一函数，并且 F 是线性连续的，则 F 称为广义函数。
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线性指的是如下的性质：

F (aϕ+ bψ) = aF (ϕ) + bF (ψ), ∀a, b ∈ R, ϕ, ψ ∈ D(R) (3.9.3)

而连续指的是对一系列检验函数的集合 ϕn ⊂ D(R)，它们具有共同的紧支集，即

∃M > 0, ∀ |x| > M, ∀n, ϕn(x) ≡ 0 (3.9.4)

并且这一系列函数及其各阶导数分别一致收敛于某个检验函数 ϕ 即其各阶导数，则

F (ϕn) → F (ϕ), n→ ∞ (3.9.5)

对于任意可积函数 f(x)，按照式 3.9.2定义的泛函 F 也是广义函数。为了简明起见，

有时直接用 f(ϕ) 代表泛函 F (ϕ)，即 f(ϕ) = (f, ϕ)。函数 f 由不同的变量类型（即是代

入数字还是函数）采取不同的运算，不会产生歧义。

例如 δ 函数，其直观定义是

δ(x) =

0, x ̸= 0

+∞, x = 0

∫
R
δ(x)dx = 1 (3.9.6)

但是根据其性质 ∫
R
δ(x)ϕ(x) = ϕ(0) (3.9.7)

可定义相应的广义函数 δ，即 δ(ϕ) = ϕ(0)。

广义函数的收敛性 设广义函数序列 fn 是一个广义函数序列，而 f 是一个广义函数，若

当 n→ ∞ 时，有
∀ϕ ∈ D(R), fn(ϕ) → f(ϕ) (3.9.8)

则称 fn 弱收敛于 f，例如热核 G(x, t)（见式 3.6.9）当 t→ 0 时弱收敛于广义函数 δ。

广义函数的导数 广义函数的导数由分部积分公式定义。考虑到对某一广义函数 f 及任

意检验函数 ϕ，形式地有∫
R
f ′(x)ϕ(x)dx = f(x)ϕ(x)

∣∣∣∣+∞

−∞
−
∫
R
f(x)ϕ′(x)dx (3.9.9)

而由检验函数具有紧支集的性质，可知

f(x)ϕ(x)

∣∣∣∣+∞

−∞
= 0 (3.9.10)

于是按照如下方式定义广义函数的导数

f ′(ϕ) = (f ′, ϕ) := −(f, ϕ′) (3.9.11)
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如 δ 函数的导数

δ′(ϕ) = (δ(x), ϕ′) = −ϕ′(0) (3.9.12)

而 Heavyside 函数 H(x) = 1, x > 0; 0, x < 0 对应广义函数的导数为

H ′(ϕ) = −
∫
R
H(x)ϕ′(x)dx = −

∫ ∞

0

ϕ′(x)dx = ϕ(0) (3.9.13)

因此 H ′ = δ

3.9.2 格林公式和基本解

在 Rn 中，首先由散度定理∫
Ω

∇ · w⃗dx =

∫
∂Ω

w⃗ · n⃗ds (3.9.14)

取 w⃗ = v∇u，考虑到

∇ · (v∇u) = ∇v · ∇u+ v∆u v∇u · n⃗ = v
∂u

∂n⃗
(3.9.15)

于是得到格林第一公式 ∫
Ω

v∆udx =

∫
∂Ω

v
∂u

∂n⃗
ds−

∫
Ω

∇u · ∇vdx (3.9.16)

将 u, v 对调，得到另一式子，相减得到格林第二公式∫
Ω

(u∆v − v∆u)dx =

∫
∂Ω

(
u
∂v

∂n⃗
− v

∂u

∂n⃗

)
ds (3.9.17)

设 x0 为空间中一点，如果 u 在 x0 处有奇性，并且满足

−∆u = δ(x− x0) (3.9.18)

则 u 称为 Laplace 方程以 x0 为极点的基本解。

在二维、三维空间中，基本解 Φ 表达式如下

Φ(x, x0) = Φ(|x− x0|) =


1

2π
ln 1

|x− x0|
, n = 2

1

4π |x− x0|
, n = 3

(3.9.19)

推导略，可代入验证。其中 |x− x0| 表示两点间距离。
基本解具有以下的性质，对于函数 u，有

−u(x0) =
∫
Ω

Φ∆udx+

∫
∂Ω

(
u
∂Φ

∂n⃗
− Φ

∂u

∂n⃗

)
ds (3.9.20)

其中 Φ = Φ(x, x0)，x0 ∈ Ω。
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证略，可以通过在极点 x0 附近作半径为 ϵ 的小球或小圆，在其间区域利用格林第

二公式，将第一项换为第二项的形式，合并后只剩下在小球或小圆上的积分。此时代入

∂/∂n⃗ = −∂/∂r ，再令 ϵ→ 0，可得极限为 u(x0)。

对于特殊的调和函数而言，如果在区域 Ω 内有 ∆u = 0，则上面的第一项为零，进

一步得到

u(x0) =

∫
∂Ω

(
Φ
∂u

∂n⃗
− u

∂Φ

∂n⃗

)
ds (3.9.21)

这说明调和函数在某点的值可用其在边界上的值和外法向导数确定。

3.9.3 格林函数和位势方程

解的唯一性 先证明 Laplace 方程的第一类边值问题解的唯一性。方程为

∆u = 0, x ∈ Ω (3.9.22a)

u = ϕ(x), x ∈ ∂Ω (3.9.22b)

设 u1, u2 是两个解，令 v = u1 − u2，则 v 满足方程

∆v = 0, x ∈ Ω (3.9.23a)

v = 0, x ∈ ∂Ω (3.9.23b)

可由极值原理得 v ≡ 0。另一方面，结合 ∆v = 0，也可由格林公式得到∫
Ω

∇v · ∇vdx =

∫
∂Ω

v
∂v

∂n⃗
ds (3.9.24)

而在区域边界上，有 v = 0。因此右端为零。左端由于 (∇v)2 ≥ 0，可推知 ∇v ≡ 0。于是

在区域内 v 恒为常数，但由于其在边界上为零，故在整个区域内也为零。于是 u1 ≡ u2，

证得了解的唯一性。

然而，对于第二类边值问题

∆u = 0, x ∈ Ω (3.9.25a)
∂u

∂n⃗
= ϕ(x), x ∈ ∂Ω (3.9.25b)

解不唯一，互相相差一个常数。证明类似，但仅能到 ∇v ≡ 0 一步。

对于第三类边值问题，即将边界条件换为

∂u

∂n⃗
+ au = ϕ, x ∈ ∂Ω (3.9.26)

解又是唯一的。

解的格林函数表达 由式 3.9.21，结合边值条件可知上面方程的解可如下表示。

u(x0) =

∫
∂Ω

(
Φ(x, x0)

∂ϕ

∂n⃗
− ϕ

∂Φ(x, x0)

∂n⃗

)
ds (3.9.27)
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在此式的推导中，只用到了基本解 Φ(x, x0) 在 x0 之外调和，在 x0 处有奇性的性质。而

在上面解的表达式中 ∂ϕ/∂n⃗ 项难以确定。所以我们考虑用一个具有更好性质的函数来

替代 Φ，使得这一项被消去。这一函数便称为格林函数。一般按照以下三个性质对其定

义：

1. 在 x0 之外调和，即

∆G(x, x0) = 0, x ∈ Ω ∧ x ̸= x0 (3.9.28)

2. 在边界上为零，即
G(x, x0) = 0, x ∈ ∂Ω (3.9.29)

3. 和基本解的差 H = G(x, x0)−Φ(x, x0) 在 x0 处有界，且在整个区域上都是调和函

数。

满足这三个性质的函数可以证明具有唯一存在性。

对两个调和函数 H 和 u 用格林第二公式，可知∫
∂Ω

(
H
∂u

∂n⃗
− u

∂H

∂n⃗

)
ds = 0 (3.9.30)

在边界上 u = ϕ。将该式加到位势方程解的表达式，相当于用 G 替代了 Φ。而又由于 G

在边界上为零，表达式变为

u(x0) = −
∫
∂Ω

ϕ
∂G(x, x0)

∂n⃗
ds (3.9.31)

右端所有函数均已经确定，这即是 Laplace 方程边值问题式 3.9.22解的表达式。
而若方程是非齐次的，如

∆u = f(x), x ∈ Ω (3.9.32a)

u = ϕ(x), x ∈ ∂Ω (3.9.32b)

则用同样的方法，只需要在格林第二公式时稍作修改，即可得到解的表达式为

u(x0) =

∫
Ω

G(x, x0)f(x)dx−
∫
∂Ω

ϕ
∂G(x, x0)

∂n⃗
ds (3.9.33)

另外，格林函数具有对称性，即

G(x, x0) = G(x0, x) (3.9.34)

3.9.4 半空间上的格林函数

以三维空间 R3 为例，上半空间 Ω = {x|x3 > 0}。这是一个无界区域，一般要加上
自然的当 |x| → ∞ 时调和函数及其偏导数都趋于 0 的条件。
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由于基本解 Φ的表达式已经确定，而要成为格林函数只需要满足在边界上为零的条

件，因此考虑用镜像法实现。设 x0 点关于边界平面的对称点为 x∗0，则格林函数正是

G(x, x0) = Φ(x, x0)− Φ(x, x∗0) =
1

4π

(
1

|x− x0|
− 1

|x− x∗0|

)
(3.9.35)

用坐标分量写出距离表达式

|x− x0| =
√
(x1 − x01)2 + (x2 − x02)2 + (x3 − x03)2 (3.9.36)

|x− x∗0| =
√

(x1 − x01)2 + (x2 − x02)2 + (x3 + x03)2 (3.9.37)

可见在边界上时，x3 = 0，两距离相等，显然有 G = 0。

而格林函数与基本解的差为 Φ(x, x∗0)。由于 x∗0 在下半空间，因此在上半空间这是一

个有界且调和的函数。由此各项性质均验证完毕。

相应地，可以写出对应方程

∆u = 0, x ∈ Ω (3.9.38a)

u = ϕ(x), x ∈ ∂Ω (3.9.38b)

的解。只需注意此时在边界上有

∂G

∂n⃗
= − ∂G

∂x3

∣∣∣∣
x3=0

= − 1

2π

x03

|x− x0|3

∣∣∣∣
x3=0

(3.9.39)

解的表达式为

u(x0) =
x03
2π

∫
x3=0

ϕ(x1, x2)

((x1 − x01)2 + (x2 − x02)2 + x203)
3/2

dx1dx2 (3.9.40)

对于第二类边值问题，由于在边界上有 ∂u/∂n⃗ = ϕ 是已知的，可以构造“格林函

数”为

G(x, x0) = Φ(x, x0) + Φ(x, x∗0) =
1

4π

(
1

|x− x0|
+

1

|x− x∗0|

)
(3.9.41)

此时有
∂G

∂n⃗
= 0, x ∈ ∂Ω (3.9.42)

用类似的方式（以 G 代 Φ），可得此时第二类边值问题解的表达式。

3.9.5 球上的格林函数

对于球域也可用镜像法求出格林函数。简单起见设球心在原点，即 Ω = {x| |x| < R}。
若 x0 = 0 在原点，则只需要设 G(x, 0) = Φ(x, 0) − 1

4πR
即可使得在球面上格林函

数为零。

若 x0 ̸= 0 不在原点，则类似半空间的情况，设

G(x, x0) =
1

4π

(
1

|x− x0|
− q

|x− x∗0|

)
(3.9.43)
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不过 q 和 x∗0 都待定，条件是使得在球面上，|x| = R 时格林函数为零。即

q2 |x− x0|2 = |x− x∗0|
2 (3.9.44)

用向量的方式展开整理，得到

|x∗0|
2
+R2 − q2(|x0|2 +R2) = 2x · (x∗0 − q2x0) (3.9.45)

注意到只有右端与 x有关，为了使其与 x无关，使其系数为零，相应左端也需要等于零。

即

x∗0 = q2x0, |x∗0|
2
+R2 − q2(|x0|2 +R2) = 0 (3.9.46)

解得

q =
R

|x0|
, x∗0 =

R2

|x0|2
x0 (3.9.47)

也就是说 x0 和 x∗0 及圆心三点共线，且长度满足 x0 · x∗0 = R2

此时格林函数为

G(x, x0) =
1

4π

(
1

|x− x0|
− R

|x0|
1

|x− x∗0|

)
(3.9.48)

相应地，可以求出边值问题

∆u = 0, x ∈ Ω (3.9.49a)

u = ϕ(x), x ∈ ∂Ω (3.9.49b)

的解为

u(x0) =
R2 − x20
4πR

∫
|x|=R

ϕ

|x− x0|3
ds, |x0| < R (3.9.50)
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